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ABSTRACT

Full-waveform inversion (FWI) promises high-resolution estimates of the subsurface
model properties by iteratively minimizing the difference between modeled and observed
data. Its computational cost remains an obstacle in practical applications, and research is
active in developing efficient FWI implementations. We describe an efficient frequency-
ray parameter (f -p) domain FWI equipped with linear phase-encoding in this paper. The
linear phase-encoding is performed by constructing the super-gathers by summing densely
distributed individual shots with linear phase shifts. A slant update strategy with varied ray
parameters is proposed to further reduce the computation burden. The proposed strategies
can reduce the computation burden significantly but also unfortunately introduce strong
cross-talk artifacts. We demonstrate that a partial overlap-frequency strategy is important
to suppress these cross-talk artifacts. The frequency-ray parameter domain FWI is im-
plemented with gradient-based methods, quasi-Newton l-BFGS method and a truncated
Gauss-Newton method. The f -p domain FWI is then enacted on a Marmousi-II model
to demonstrate the effectiveness and efficiency of the combined strategies on reconstruct-
ing the velocity model. Different optimization methods with the proposed strategies are
examined and compared. The resistivity to noisy data is finally analyzed and discussed.

INTRODUCTION

Full-waveform inversion (FWI) is becoming increasingly popular for building velocity
models in oil and gas exploration (Lailly, 1983; Tarantola, 1984; Pratt et al., 1998; Virieux
and Operto, 2009). It promises high-resolution estimates of the model parameters, but
this comes at high computational cost. Aiming at reducing the computational cost for
FWI, an efficient frequency-ray parameter (f -p) domain FWI with a slant update strategy
is developed in this research.

Formulated as a non-linear optimization problem, FWI estimates the subsurface param-
eters by iteratively minimizing the difference between the modeled data and observed data.
With the adjoint-state method (Plessix, 2006), the gradient of the least-squares objective
function can be constructed by zero-lag cross-correlation between the forward modeled
wavefield and back-propagated data residual wavefield. For modern seismic acquisitions,
dense sources and receivers generate massive seismic data sets, and therefore, iterative so-
lution of the seismic inverse problem with shot-profile methods is computationally very
costly.

One popular approach for reducing the computational cost of FWI is to employ the
phase-encoding technique, which involves the formation of super-gathers from summation
of individual shots. Phase-encoding method was first introduced in pre-stack migration
(Morton and Ober, 1998; Romero et al., 2000) but was subsequently adopted to construct
the gradient and Hessian in FWI (Krebs et al., 2009; Boonyasiriwat et al., 2009; Tang,
2009; Pan et al., 2015a). Simulation of simultaneous sources can reduce computational
cost significantly but at the expense of introducing cross-talk artifacts, which arise from
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undesired interactions between unrelated source and receiver wavefields (Liu et al., 2006).
Furthermore, a random phase-encoding is considered to be sensitive to noisy data set (Ben-
Hadj-Ali et al., 2011). Linear phase-encoding strategy is performed by applying linear
phase shifts at the source locations and transforming the shot gathers into plane-wave gath-
ers with different ray parameters (Zhang et al., 2005; Liu et al., 2006; Tao and Sen, 2013).
Compared to random phase-encoding, linear phase-encoding is not sensitive to random
noise and shows limited amount of noise with dense acquisition arrangements (Vigh and
Starr, 2008). Linear phase-encoding still produces undesired artifacts due to the simultane-
ous extrapolation of multiple sources. In traditional linear-phase encoding (TLPE) method,
the cross-talk artifacts are mitigated by stacking a set of ray parameters at each iteration
(Tao and Sen, 2013; Wu et al., 2015). Because the number of ray parameter gathers is much
smaller than the number of common shot gathers in shot-profile (SP) method, the compu-
tational cost can be significantly reduced (Kwon et al., 2015). In this paper, to reduce the
computational cost further, we develop a slant update (SU) strategy with linear-phase en-
coding, in which the gradient is constructed with single ray parameter but the ray parameter
varies sequentially or randomly at each iteration. We give 2D numerical examples to show
that the SU strategy can reconstruct the velocity model very well with reducing the com-
putational cost significantly. Furthermore, the proposed strategies are expected to reduce
the computation burden greatly for 3D large-scale inverse problems and they are applica-
ble for both fixed-spread (land or ocean bottom survey) and non-fixed spread acquisitions
(marine-streamer survey).

The gradient in FWI is equivalent to a reverse time migration (RTM) image constructed
with a cross-correlation imaging condition. This means that the gradient is poorly-scaled
and imperfectly focused as a consequence of geometrical spreading and finite-frequency
effects (Pratt et al., 1998; Shin et al., 2001a; Pan et al., 2014b). The search direction can
be greatly enhanced by multiplying the gradient with the inverse Hessian. In the steepest-
descent (SD) method, the search direction is aligned with the negative of the gradient. In a
non-linear conjugate-gradient (NCG) approach, the search direction is a linear combination
of the gradient with the previous search direction (Hu et al., 2011). These gradient-based
methods, by approximating the Hessian matrix as an identity matrix, experience a slow
local convergence rate.

In Newton-type methods (e.g., full Newton and Gauss-Newton methods), the model
update is calculated by multiplying the gradient with the inverse Hessian, which leads to
a quadratic convergence rate. Unfortunately, the calculation, storage and inversion of the
Hessian at each iteration greatly increases the computation burden, especially for large-
scale inverse problems. In response, various Hessian approximations are developed to
precondition the gradient. Shin et al. (2001a) introduced the pseudo-Hessian, in which the
Fréchet derivative wavefield is replaced with the virtual source during the auto-correlation
process. In Gauss-Newton methods, an approximate Hessian is adopted by neglecting the
second-order term that accounts for the non-linearity of the Hessian (Pratt et al., 1998).
Tang (2009) introduced a phase-encoded Hessian by constructing the Green’s functions
using a phase-encoding method.

The truncated-Newton method employs second-order adjoint-state formulas to com-
pute the Hessian-vector products instead of calculating the Hessian explicitly (Métivier
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et al., 2012, 2013). The search direction is obtained by solving the Newton linear sys-
tem approximately with a conjugate gradient (CG) algorithm. In this research, a trun-
cated Gauss-Newton (TGN) method is also implemented by constructing the gradient and
Hessian with the linear phase-encoding. Furthermore, a phase-encoded diagonal pseudo-
Hessian is employed to precondition the CG algorithm. Quasi-Newton methods do not
construct the Hessian explicitly, but update the inverse Hessian approximations by stor-
ing the information from previous iterations. The BFGS method, due to Broyden (1970),
Fletcher (1970), Goldfarb (1970) and Shanno (1970), is a popular quasi-Newton method to
iteratively approximate the inverse Hessian. The limited-memory BFGS (l-BFGS) method
stores the changes of the gradient and model from a limited number of previous iterations
and uses the stored information to implicitly form an inverse of the approximated Hessian
(Nocedal, 1980; Byrd et al., 1995; Nocedal and Wright, 2006). In this research, the l-
BFGS optimization strategy is implemented with a "two-loop recursion" scheme (Nocedal
and Wright, 2006; Anagaw, 2014; Wu et al., 2015).

FWI can be carried out in the time domain (Lailly, 1983; Tarantola, 1984; Mora, 1987)
or frequency domain (Pratt et al., 1998; Sirgue and Pratt, 2004). When considering com-
putational efficiency, the frequency domain FWI is more attractive because it involves only
a set of discrete frequencies for inversion. In this research, we implement frequency do-
main FWI with a multiscale approach by sequentially increasing the discrete frequencies
from low to high (Pratt and Chapman, 1992; Bunks et al., 1995; Sirgue and Pratt, 2004).
This multiscale strategy can help to mitigate cycle-skipping problem. The most common
frequency selection strategy for this process, is mono-frequency strategy, involves choos-
ing single frequencies for inversion sequentially (Kim et al., 2011). In this research, we
implement a partial overlap-frequency approach, in which multiple frequencies are used
for inversion simultaneously and the frequency band expands with overlapping frequencies
(Anagaw and Sacchi, 2014). This is demonstrated numerically to attenuate cross-talk noise
and improve the inversion results obviously based on slant updates. Another challenge of
FWI with phase-encoding is the sensitivity to noisy data (van Leeuwen et al., 2011). We
add Gaussian noise to the data set for examining the noise resistance ability of the proposed
strategies. We show that the f -p domain FWI with slant update strategy is robust and stable
for noisy data, especially when using low frequencies for inversion.

We organize the results as follows. First, the wave equation forward modelling problem
and the basic theory of FWI are reviewed. Then, we explain the traditional linear phase-
encoding method and the proposed slant update strategy in this paper. We then introduce
different optimization methods for FWI and describe the line search method with weak
Wolfe condition. The partial overlap-frequency strategy employed in this research is then
introduced. In the numerical modeling section, we first apply the l-BFGS f -p domain FWI
with slant update strategy on a Marmousi-II model. The numerical examples are illustrated
to examine the effectiveness and efficiency of the proposed strategy in reconstructing the
velocity model. We then compare the performances of different optimizations methods
with the proposed encoding strategy. Finally, we give examples to analyze the sensitivity
of different encoding methods to noisy data.

CREWES Research Report — Volume 27 (2015) 3



Pan et. al

THEORY AND METHODS

In this section, first, the forward modelling problem in the f -p domain and basic prin-
ciple of full-waveform inversion are reviewed, and then we describe the proposed slant
update strategy with linear phase-encoding. The different numerical optimization methods
for FWI and the partial overlap-frequency strategy are then introduced.

Forward Modelling in the f -p domain

Frequency domain forward modelling in acoustic medium is governed by the following
wave equation (Marfurt, 1984):

∇2u(x, xs, ω) + m(x)ω2u(x, xs, ω) = −fs(ω)δ (x− xs) , (1)

where x = (x, y, z) denotes the subsurface location with Cartesian coordinates, ω is the
angular frequency,∇2 is the Laplacian operator, m (x) is the square of slowness, u(x, xs, ω)
denotes the pressure wavefield at position x, δ (x− xs) is the Dirac delta function, and
fs(ω) means the source signature at position xs. The solution of equation (1) can be written
as the convolution of the source fs(ω) with the Green’s function G (x, xs, ω):

u (x, xs, ω) = fs (ω)G (x, xs, ω) . (2)

In this research, we use a 9-point finite difference scheme to discretize the model (Jo et al.,
1996) and a Engquist-Majda boundary condition is applied on all of the boundaries of the
model (Engquist and Majda, 1977). After discretization, equation (1) can be written as:

L (x, ω) u(x, xs, ω) = −fs(ω)δ (x− xs) , (3)

where L (x, ω) is the impedance matrix, which is typically sparse and symmetric.

The linear phase-encoding is performed by applying linear phase shifts (or time delays
in the time domain) at densely distributed sources. The phase shift function γ (xs, p, ω) =
ωp (xs − x0) is associated with ray parameter (or slant parameter) p and source location
xs. A common-receiver gather can be transformed into ray parameter super-gather from a
line source wavefield, which is known as τ -p transform (Zhang et al., 2005):

ũ (xg, p, ω) =
∑

xs

u (xg, xs, ω) exp (iωp(xs − x0)) , (4)

where x0 indicates the horizontal location of the initial source and xg indicate the receiver
locations. The synthetic ray parameter gather in frequency domain is generated with a
line source by applying phase shifts at the source locations. Thus, the corresponding wave
equation is given as:

L (x, ω) ũ(x, p, ω) = −
∑

xs

exp (iωp (xs − x̂s)) fs(ω)δ (x− xs) , (5)

where when p ≥ 0, x̂s indicates the location of initial source x0
s, if p < 0, x̂s indicates the

location of the right most source xend
s . The solution of equation (5) with a line source can

be written as:

ũ(x, p, ω) =
∑

xs

fs(ω)G (x, xs, ω) exp (iωp (xs − x̂s)) . (6)
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In this research, the linear equations (equations (3) and (5)) are solved with a direct solver
based on multi-frontal Lower Upper (LU) decomposition (Davis and Duff, 1997), which is
efficient for a multi-source problem with forward and backward substitutions (Tao and Sen,
2013). For equation (5), because the number of ray parameters is generally much smaller
than the number of sources, the number of backward substitutions is considerably reduced
(Wu et al., 2015).

Full-waveform inversion: Review

As a non-linear least-squares optimization problem, FWI seeks to estimate the sub-
surface parameters through an iterative process by minimizing the difference between the
synthetic data usyn and observed data uobs (Lailly, 1983; Tarantola, 1984; Virieux and Op-
erto, 2009). The misfit function Φ is formulated in a least-squares form:

Φ (m) =
1

2

∑
xs

∑
xg

∑
ω

‖uobs (xg, xs, ω)− usyn (xg, xs, ω) ‖2, (7)

where ‖ · ‖ means the `-2 norm. The Newton optimization approach is developed based on
the second-order Taylor-Lagrange expansion of the misfit function Φ:

Φ (m + ∆m) ≈ Φ (m) + g†∆m +
1

2
∆m†H∆m, (8)

where the symbol "†" means transpose, ∆m is the search direction, g = ∇mΦ (m) and
H = ∇m∇mΦ (m) indicate gradient and Hessian respectively.

To minimize the quadratic approximation of the misfit function, the updated model at
the (n + 1)th iteration can be written as the sum of the model at the nth iteration and the
search direction ∆mn:

mn+1 = mn + µn∆mn, (9)

where µn is the step length, a scalar constant calculated through a line search method
(Gauthier et al., 1986; Pica et al., 1990; Nocedal and Wright, 2006). Within a Newton
optimization framework, the search direction ∆mn is the solution of the Newton linear
system:

Hn∆mn = −gn. (10)

The gradient is the first-order partial derivative of the misfit function with respect to the
model parameter and it indicates the direction in which the misfit function is increasing
most rapidly (Pratt et al., 1998). It can be constructed by zero-lag correlation between the
Fréchet derivative wavefields with complex conjugate of the data residuals ∆d:

g (x) =
∑

xs

∑
xg

∑
ω

<

(
∂u†syn (xg, xs, ω)

∂m (x)
∆d∗ (xg, xs, ω)

)
, (11)

where the symbol "∗" means complex conjugate and < (·) denotes the real part. The gradi-
ent can be efficiently constructed by applying a zero-lag cross-correlation between the for-
ward modeled wavefield and back-propagated data residuals wavefield, using the adjoint-
state technique (Plessix, 2006). With the adjoint formalism, the FWI gradient is given by
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(Sirgue and Pratt, 2004; Plessix and Mulder, 2004):

g (x) =
∑

xs

∑
xg

∑
ω

<
(
ω2fs(ω)G(x, xs, ω)G∗(x, xg, ω)∆d∗ (xg, xs, ω)

)
, (12)

where G(x, xs, ω) and G(x, xg, ω) indicate the source-side and receiver-side Green’s func-
tions in the reference medium respectively (Stolt and Benson, 1986; Sirgue and Pratt,
2004). The gradient is poorly-scaled due to geometrical spreading, and it is also contami-
nated by spurious correlations because of finite-frequency effects. The Hessian operator is
the second-order partial derivative of the misfit function with respect to the model parame-
ter:

H (x, x′) = ∇m(x)∇m(x′)Φ (m)

=
∑

xg

∑
xs

∑
ω

<

(
∂u†syn (xg, xs, ω)

∂m (x)

∂u∗syn (xg, xs, ω)

∂m (x′)
+
∂2u†syn (xg, xs, ω)

∂m (x) ∂m (x′)
∆d∗ (xg, xs, ω)

)
,

(13)

where H (x, x′) denotes one element in Hessian H corresponding to two model perturba-
tions at x and x′. Preconditioning the gradient with the Hessian can greatly enhance the
model update, which provides a quadratic convergence rate.

A slant update strategy with linear phase-encoding

The simultaneous source method was first proposed in pre-stack depth migration for
addressing the obstacle of high computational cost (Morton and Ober, 1998; Romero et al.,
2000; Stoffa et al., 2006). This technique was then applied in FWI for gradient and Hessian
calculation (Vigh and Starr, 2008; Krebs et al., 2009; Ben-Hadj-Ali et al., 2011; Tao and
Sen, 2013; Castellanos et al., 2015; Pan et al., 2015a). The linear phase-encoding strategy is
performed by decomposing the densely seismic data into plane-wave domain and choosing
a set of ray parameters for modeling, migration and inversion. Liu et al. (2006) proved
the equivalence between the shot-profile migration image and plane-wave migration image
and showed that the cross-talk artifacts, arising from the interactions between unrelated
source and receiver wavefields, can be suppressed reasonably well by stacking sufficient
ray parameters.

The ray parameter is controlled by the take-off angle and top surface velocity (Zhang
et al., 2005):

p =
sin θ

c
, (14)

where θ is the take-off angle and c indicates the surface velocity. Different ray parameters
account for illuminating subsurface layers with different dip angles and the pre-knowledge
of the geological structures in the target area can be used to determine the ray parameter
range (Wang et al., 2006; Vigh and Starr, 2008; Pan et al., 2015a). Following equation
(4), the data residual vector ∆d̃ (xg, p, ω) with ray parameter p can be obtained by τ -p
transform:

∆d̃ (xg, p, ω) =
∑

x′s

∆d (xg, x′s, ω) exp (iωp(x′s − x̂s)) . (15)
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The adjoint data residual wavefield can be obtained by convolving the data residual vector
∆d̃ (xg, p, ω) with the receiver-side Green’s function G (x, xg, ω):

ṽ∗ (xg, p, ω) =
∑

x′s

∆d∗ (xg, x′s, ω) exp (iωp(x̂s − x′s))G
∗ (x, xg, ω) . (16)

Cross-correlating the forward modeled wavefield ũ (x, p, ω) (equation (6)) with the back-
propagated wavefield ṽ∗ (xg, p, ω) (equation (16)) gives the slant gradient with ray param-
eter p:

g̃(x, p) =
∑

xs

∑
xg

∑
x′s

∑
ω

<
(
ω2fs(ω)G (x, xs, ω)G∗ (x, xg, ω) ∆d∗ (xg, x′s, ω)

× A2 (ω) exp (iωp(xs − x′s))
)
,

(17)

where A (ω) is a weighting function depending on angular frequency ω (Liu et al., 2006;
Tang, 2009). When xs = x′s, the slant gradient g̃(x, p) is equal to shot-profile gradient g(x)
(equation (11)). When xs 6= x′s, the slant gradient g̃(x, p) becomes the cross-talk artifacts
term gcross. Thus, the slant gradient is the summation of shot-profile gradient with the cross-
talk term. These cross-talk artifacts can be suppressed reasonably by stacking a group of
ray parameters:

g̃(x) =
∑

xs

∑
xg

∑
x′s

∑
p

∑
ω

<
(
ω2fs(ω)G (x, xs, ω)G∗ (x, xg, ω) ∆d∗ (xg, x′s, ω)

× A2 (ω) exp (iωp · (xs − x′s))
)
,

(18)

where p is the ray parameter vector and "·" means inner product. Equation (18) is named as
phase-encoded gradient in this paper. Extracting the encoding function ψ (xs, x′s, ω) from
equation (18):

ψ (xs, x′s, ω) =
∑

p

A2 (ω) exp (iωp · (xs − x′s)) . (19)

If the number of ray parameters in p is large enough, integrating over ray parameters yields
a Dirac delta function in space (Liu et al., 2006; Tang, 2009):

ψ (xs, x′s, ω) =
A2 (ω)

ω2
δ (xs − x′s) . (20)

Inserting equation (20) into equation (18) gives:

g̃(x) =
∑

xs

∑
xg

∑
x′s

∑
ω

<
(
ω2fs(ω)G (x, xs, ω)G∗ (x, xg, ω) ∆d∗ (xg, x′s, ω)

A2 (ω)

ω2
δ(xs − x′s)

)
.

(21)
Considering the sifting property of the delta function and making A2 (ω) = ω2, the phase-
encoded gradient becomes the shot-profile gradient (equation (11)) and the cross-talk arti-
facts are suppressed completely:

g̃(x) = g(x) =
∑

xs

∑
xg

∑
ω

<
(
ω2fs(ω)G (x, xs, ω)G∗ (x, xg, ω) ∆d∗ (xg, xs, ω)

)
. (22)
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To mitigate the cross-talk artifacts with linear phase-encoding method, stacking a set of ray
parameters at each iteration with ray parameter spacing ∆p is usually performed (Tao and
Sen, 2013; Kwon et al., 2015). Zhang et al. (2005) gave the suggestion for determining the
number of ray parameters:

Np ≥
2Ns∆xsfmax sin θmax

c
, (23)

where fmax is the maximum frequency, Ns and ∆xs are the number of sources and source
spacing and θmax indicates the maximum take-off angle, which can be obtained with max-
imum ray parameter pmax: θmax = sin−1 (pmaxc) following equation (14). Here, we de-
fine this strategy as traditional linear phase-encoding (TLPE) method, in which number of
2×Np×Nf forward modelling problems need to be solved at each iteration. Nf indicates
the number of frequencies used for inversion at each iteration. In shot-profile (SP) method,
number of 2×Ns ×Nf forward modelling problems are required for gradient calculation,
which is proportional to the number of sources Ns. Because the number of ray parameters
Np is far smaller than the number of sources Ns, the computation burden at each iteration
in TLPE method is greatly reduced compared to SP method. In this research, for reducing
the computation burden further, we develop a slant update (SU) strategy, in which the slant
gradient with single ray parameter (equation (17)) is used to update the model instead of
the phase-encoded gradient with stacking ray parameters (equation (18)). Furthermore, the
ray parameter needs to be changed sequentially or randomly iteration by iteration. Thus,
number of Nf forward modelling problems are required for gradient construction at each
non-linear iteration.

Gauss-Newton and full Newton methods

The Newton-type optimization methods (e.g., Gauss-Newton (GN) and full Newton
(FN) methods) use the quadratic search direction and converge fast for inverting a limited
number of unknown parameters. In exact GN method, the search direction is calculated by
multiplying the gradient with an inverse approximate Hessian:

∆mn = − (Hn
a)−1 gn, (24)

where the approximate Hessian Ha is formed by correlating two Fréchet derivative wave-
fields, which accounts for the first-order scattering effects, as indicated by the first term of
equation (13):

Ha (x, x′) =
∑

xs

∑
xg

∑
ω

<

(
∂u†syn (xg, xs, ω)

∂m (x)

∂u∗syn (xg, xs, ω)

∂m (x′)

)
, (25)

where x′ can be considered as the neighboring point around the imaging point x in subsur-
face (Valenciano, 2008). Because of band-limited seismic data, the two Fréchet derivative
wavefields are often to a great degree uncorrelated, meaning that the approximate Hessian
is diagonally dominant and banded (Pratt et al., 1998; Valenciano, 2008; Tang, 2009; Pan
et al., 2014a). Thus, the approximate Hessian in Gauss-Newton method can de-blur the
gradient and remove the finite-frequency effects (Pratt et al., 1998). Furthermore, the dou-
bly scattered energy in the data residuals can result in second-order scattering artifacts in
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the gradient. The second term in equation (13) predicts the second-order non-linear effects
by correlating the second-order partial derivative wavefields with the data residuals. With
this second-order preconditioner, the second-order scattering artifacts in the gradient can
be suppressed effectively (Pratt et al., 1998; Pan et al., 2015b). Multiplying the gradient
with the inverse of the full Hessian H (equation (13)) forms one full Newton step. For
these Newton-type methods, explicit calculating and inversing the Hessian at each iteration
are required. Considering the subsurface model with number of Nm model parameters,
the Hessian is a Nm × Nm square and symmetric matrix. Even though, the Newton-type
methods benefit from fast convergence rates, the computation, storage and inversion of the
second derivative Hessian at each iteration are prohibitively expensive, which limits their
applications for large-scale inverse problems in exploration geophysics.

Gradient-based methods

The gradient-based methods (e.g., steepest-descent (SD) and non-linear conjugate-gradient
(NCG) methods) assume the Hessian matrix H as an identity matrix I and they are more
attractive than the Newton-type ones when inversing a large number of unknown model
parameters. The steepest-descent method simply determines the search direction to be the
negative of the gradient: ∆mn = −gn. In mathematics, conjugate-gradient method seeks
the solution of a linear system. The non-linear conjugate-gradient method generalizes the
conjugate-gradient method to non-linear optimization and obtain the local minimum of a
non-linear function using its gradient alone (Hu et al., 2011). The search direction is just
a linear combination of current gradient and previous search direction, which can be ex-
pressed as:

∆mn = −gn + βn∆mn−1, (26)
where βn is a scalar, which makes ∆mn and ∆mn−1 conjugate. There are a lot of ap-
proaches for determining parameter βn. In this research, the Fletcher-Reeves method
(Fletcher and Reeves, 1964) is used to obtain the parameter βn:

βn =
g†ngn

g†n−1gn−1
. (27)

The truncated-Newton methods

The truncated-Newton methods (Hessian-free optimization methods or inexact-Newton
methods), instead of constructing the Hessian approximations or inverse Hessian approxi-
mations, solve the Newton linear system (equation (10)) approximately with a conjugate-
gradient (CG) method (Saad, 2003; Métivier et al., 2014). The CG method is an optimal
algorithm for solving a symmetric and positive definite system and it only requires com-
puting the Hessian-vector products Hυ instead of forming the Hessian matrix explicitly,
where υ is an arbitrary vector in model space. In truncated-Newton methods, the full Hes-
sian (equation (13)) is always replaced with Gauss-Newton Hessian (equation (25)), which
makes sure that the linear system is always positive definite (Nash, 2000):

(Hn
a + εA) ∆mn = −gn, (28)

where εA is the damping term, ε is a small constant value and A indicates the maximum
value of the Gauss-Newton Hessian. Thus, the truncated Gauss-Newton (TGN) method
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is implemented in a double-iterative scheme: the outer loop is iteratively updating the
model parameters for the non-linear optimization problem, and the inner loop is solving
the linear system (equation(28)) iteratively with the CG algorithm. The inner iteration is
typically stopped or "truncated" before the solution of the Newton equation is obtained. The
truncated Gauss-Newton method can be accelerated by preconditioning the CG algorithm
(PCG method) in the inner iteration:

M−1 (Hn
a + εA) ∆mn = −M−1gn, (29)

where the preconditioner M is devised as Hessian approximation or M−1 is the inverse
Hessian approximation.

In this research, to implement the truncated Gauss-Newton (TGN) method, the gradient
is obtained by the phase-encoding method with slant update strategy. The Gauss-Newton
Hessian-vector product is calculated using second-order adjoint-state method with linear
phase-encoding (Métivier et al., 2014), which forms the phase-encoded Gauss-Newton
Hessian H̃a (equation (44)). Furthermore, a phase-encoded diagonal pseudo-Hessian H̃diag

(equation (55)) is employed as the preconditioner. The search direction is obtained by
solving the following linear system:(

H̃n
diag + λB

)−1 (
H̃

n

a + εA
)

∆mn = −
(
H̃n

diag + λB
)−1

g̃n, (30)

where the phase-encoded Gauss-Newton Hessian H̃a and phase-encoded diagonal pseudo-
Hessian H̃diag are derived in Appendix A and Appendix B respectively. λB is the stabi-
lization term for the preconditioner, where λ is a small constant value and B indicates
the maximum value of the diagonal pseudo-Hessian. The Gauss-Newton Hessian-vector
products construction with linear phase-encoding is equal to

The inner CG algorithm should be terminated with an appropriate stopping criteria
(Nash, 2000). We define the maximum inner iteration ñmax and relative residual γñ:

γñ =
‖H̃ñ

a∆mñ + g̃ñ‖
‖g̃ñ‖

, (31)

where ñ indicates the CG inner iteration index. The inner iteration is stopped when γñ <
γmin, where γmin indicates the relative residual tolerance.

Quasi-Newton methods

The quasi-Newton methods provide an attractive alternative to Newton-type and gradient-
based methods by approximating the inversion Hessian iteratively instead of constructing
the Hessian matrix explicitly (Brossier et al., 2009; Ma and Hale, 2012). BFGS method,
named after Broyden (1970), Fletcher (1970), Goldfarb (1970) and Shanno (1970), is one
popular quasi-Newton strategy to approximate the inverse Hessian iteratively using the
changes of the model and gradient (Nocedal and Wright, 2006). The model update with
BFGS formula can be written as:

∆mn = −Hngn, (32)
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whereHn indicates the inverse Hessian:

Hn+1 =

(
I− sny†n

y†nsn

)
Hn

(
I− yns†n

y†nsn

)
+

sns†n
y†nsn

, (33)

where sn = mn+1−mn and yn = gn+1−gn indicate the changes of the model and gradient
respectively. The initial approximation H0 is important to BFGS method and it is usually
set as an identity matrix to make sure that the updated matrix maintains positive definiteness
(Wu et al., 2015).

Even though, BFGS method can reduce the computational cost to approximate the Hes-
sian, the memory requirement for storage and computational cost for preconditioning re-
main to be challenging, especially for large-scale optimization problem. To overcome this
difficulty, a limited-memory BFGS (l-BFGS) method is developed by storing the model
and gradient changes from a limited number M of previous iterations (typically M < 10)
(Nocedal, 1980). The stored information is then used to construct an approximated in-
verse Hessian. A "two-loop recursion" scheme is implemented in this research to obtain
the search direction using the information of previous updates (Nocedal and Wright, 2006).
The pseudo-code of this "two-loop recursion" scheme is illustrated in Table 1.

The inverse Hessian approximation employed in l-BFGS method is based on the gradi-
ent and model changes from previous iterations. In TLPE and SU methods, the shot-profile
gradient is replaced by the phase-encoded gradient and slant gradient, which impacts the in-
verse Hessian approximations. The inverse Hessian approximations (equation (33)) H̃ (p)
and H̃ (pn+1, pn) in TLPE and SU methods can be expressed as:

H̃n+1 (p) =

(
I− snỹ†n (p)

ỹ†n (p) sn

)
H̃n (p)

(
I− ỹn (p) s†n

ỹ†n (p) sn

)
+

sns†n
ỹ†n (p) sn

, (34)

H̃n+1 (pn+1, pn) =

(
I− snỹ†n (pn+1, pn)

ỹ†n (pn+1, pn) sn

)
H̃n (pn+1, pn)

(
I− ỹn (pn+1, pn) s†n

ỹ†n (pn+1, pn) sn

)
+

sns†n
ỹ†n (pn+1, pn) sn

,

(35)
where ỹn (p) = g̃n+1 (p) − g̃n (p) and ỹn (pn+1, pn) = g̃n+1 (pn+1) − g̃n (pn). The con-
vergence rate of the l-BFGS optimization method will be impacted using the changes of
the phase-encoded gradient and slant gradient to approximate the inverse Hessian. Simi-
larly, the line search method for calculating step length will also be influenced with phase-
encoding strategy. Studying the influences of phase-encoding method on the convergence
rate of the optimization method is beyond the scope of this research.

Line search with weak Wolfe condition

In this paper, we use a line search method to get the step length µn (equation (9)) satis-
fying the Wolfe condition, which can be measured by the following inequalities (Nocedal
and Wright, 2006):

Φ (mn + µn∆mn) ≤ Φ (mn) + µnc1∆m†n∇Φ (mn) , (36)

∇Φ (mn + µn∆mn) ≥ c2∇Φ (mn) , (37)
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Table 1 Two-loop recursion scheme for l-BFGS FWI.

1. Given initial inverse Hessian approximationH0 = I;

2. ∆m = g;

3. For i = n− 1, n− 2, ...., n−M

4. xi=s†i∆m/y†isi;

5. ∆m=∆m-xiyi;

6. v = H0∆m;

7. End

8. For i = n−M,n−M + 1, ...., n− 1

9. z=y†ix/y†isi;

10. v=v− si (xi − z);

11. End

12. Hngn = v;

13. ∆mn=gn.
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Table 2 Frequency selection strategies.

Strategies Frequency Group (FG) Iteration Times Per FG

Mono-frequency f1︸︷︷︸
FG1

, f2︸︷︷︸
FG2

, . . . , fmax︸︷︷︸
FGmax

NFG

Partial overlap-frequency f1, f2, f3︸ ︷︷ ︸
FG1

, f2, f3, f4︸ ︷︷ ︸
FG2

, . . . , fmax−2, fmax−1, fmax︸ ︷︷ ︸
FGmax

NFG

where the constant parameters c1 and c2 satisfy 0 < c1 < c2 < 1. In practice, parameter c1
can be chosen as c1 = 10−4 and parameter c2 should be much larger c2 = 0.9 (Nocedal and
Wright, 2006). Equation (36) is the Armijo condition, which ensures that the step length
µn decreases the misfit function sufficiently (Armijo, 1966). Equation (37) is known as the
weak Wolfe condition, which ensures that the slope has been reduced sufficiently (Nocedal
and Wright, 2006). The initial step length µ0 is always chosen as 1 and then after a set of
trial step lengths, the optimal one will be accepted to satisfy the above conditions.

Frequency selection strategy

The common frequency selection strategy in frequency domain FWI is the sequential
inversion of single frequencies (Sirgue and Pratt, 2004), which is named as mono-frequency
strategy in this research. This mono-frequency selection strategy is performed by increas-
ing the single frequencies from low to high sequentially without overlapping the frequen-
cies, as shown in Table 2. Each frequency group only contains one single frequency and
for each single frequency, number of NFG iterations are performed. We employ a partial
overlap-frequency strategy, in which number of Nf = 3 frequencies are used for inver-
sion simultaneously. The frequency group increases from low to high with 2 frequencies
overlapped and for each frequency band, number of NFG iterations are performed. In this
research, we demonstrate that inversing multiple frequencies simultaneously is important
to reduce the cross-talk artifacts for the slant update strategy.

NUMERICAL EXPERIMENTS

In this section, we first apply the l-BFGS f -p domain FWI with slant update strategy on
a Marmousi-II model and verify the effectiveness and efficiency of proposed strategy, com-
pared to shot-profile (SP) and traditional linear-phase encoding (TLPE) methods. Then, we
illustrate the inversion results by different optimization methods with the slant update strat-
egy and demonstrate the computation efficiency of l-BFGS method. Finally, we analyze
the sensitivity of different encoding methods to the noisy data.
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Examining the f -p domain FWI with slant update strategy

In this numerical section, the l-BFGS f -p domain FWI with the slant update strategy is
applied on a Marmousi-II model. We examine the effectiveness of the proposed strategies
in reconstructing the velocity model and the importance of the partial overlap-frequency
strategy. The Marmousi-II model has 244 × 681 grid cells with a grid interval of 10 m in
both horizontal and vertical directions. We deploy 67 sources from 100 m to 6700 m with a
source interval of 100 m and a depth of 20 m. A total of 681 receivers are distributed from
10 m to 6810 m with a receiver interval of 10 m and a depth of 20 m. A Ricker wavelet with
a 30 Hz dominant frequency is used as the source function. Figures 1a and 1b show the true
Marmousi-II P-wave velocity model and initial P-wave velocity model respectively. The
initial velocity model is obtained by smoothing the true model with a Gaussian function.

Figures 2a and 2b show the monochromatic seismic data sets (f = 20 Hz) generated us-
ing the true Marmousi-II model in source-receiver domain for shot-profile FWI (Ns = 67)
and ray parameter-receiver domain for f -p domain FWI with increasing the ray parameter
from −0.5 s/km to 0.5 s/km (∆p = 0.01 s/km). For SP method, the whole data set shown
in Figure 2a should be used for inversion in each iteration. While in TLPE and SU meth-
ods, the data sets with several ray parameters and single ray parameter are extracted for
inversion. To evaluate the quality of the inversion results, we use the relative least-squares
error (RLSE) ε:

ε =
‖mn −mt‖
‖m0 −mt‖

, (38)

where m0, mt and mn indicate the initial model, true model and the inverted model at
the nth iteration. The RLSE of the initial model is ε0 = 1. Smaller RLSE means better
inversion result. If the model parameters are reconstructed completely, RLSE ε approaches
0.

We perform two different frequency selection strategies for comparison with l-BFGS
optimization method. In the mono-frequency strategy (as shown in Table 2), the frequency
is increased sequentially from 1 Hz to 36 Hz by 1 Hz every 11 iterations. In the partial
overlap-frequency selection strategy (as shown in Table 2), a group of 3 frequencies are
used for inversion simultaneously and the frequency band expands every 11 iterations with
overlapping 2 frequencies. For the SU strategy, we compare two different ray parameter
selections. The random SU is implemented by randomly selecting the ray parameter in the
range of [−0.05 s/km, 0.05 s/km] at each iteration. While for the sequential SU, the ray
parameter is sequentially changed from −0.05 s/km to 0.05 s/km with an interval ∆p =
0.01 s/km for each frequency group.

First, we obtain the inversion results by slant update strategy with fixed ray parameters
p = −0.01 s/km and p = −0.03 s/km, as shown in Figures 3a and 3b respectively. As
we can see, the inversion results with fixed ray parameters are contaminated by artifacts
seriously and the main geological structures of the model are obscure. This is because
single ray parameter is not enough to illuminate the subsurface layers with different dip
angles. Figures 3c and 3e show the inversion results by random and sequential SU with
mono-frequency strategy. Even though, the inversion results become much better in com-
parison with Figures 3a and 3b, they are still contaminated by strong cross-talk artifacts.
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We next carry out the partial overlap-frequency strategy for inversion. Figures 3d and 3f
show the inversion results by random and sequential SU with partial overlap-frequency
strategy. Compared to Figures 3c and 3e, it can be observed that the artifacts have been
suppressed effectively and the inversion results have been improved significantly, which
demonstrate the importance of inverting multiple frequencies simultaneously for slant up-
date strategy. Furthermore, the sequential SU strategy appears to provide a better inversion
result than random SU strategy.
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FIG. 1. (a) shows the true Marmousi-II P-wave velocity model; (b) shows the initial P-wave velocity
model.

Computational cost comparison of different encoding methods

Next, we give the inversion results using TLPE and SP methods with l-BFGS optimiza-
tion method for comparison to examine the computational efficiency of the slant update
strategy. We perform TLPE method with two ray parameter settings. For the first one,
the ray parameter is varied from −0.03 s/km to 0.03 s/km with an interval of 0.01 s/km
(Np = 7). For the second one, the ray parameter is varied from −0.05 s/km to 0.05 s/km
with the same interval (Np = 11).

Figures 4a and 4c show the inverted velocity models by mono-frequency TLPE method
with Np = 7 and Np = 11 respectively. As we can see, compared to Figures 3c and 3e,
the inversion results have been improved obviously by stacking ray parameters at each it-
eration with mono-frequency strategy. Furthermore, we observe that by stacking more ray
parameters at each iteration, the inversion result more closely approaches the true model
and the SP method provides best result, as shown in Figure 4e, but at the cost of exten-
sive computation. Figures 4b, 4d and 4f are the inverted models using TLPH (Np = 7),
TLPH (Np = 11) and SP methods with partial overlap-frequency strategy, which are better
than those obtained with mono-frequency strategy. We also note that with partial overlap-
frequency strategy, SU methods can get inversion results (Figures 3d and 3f) comparable
to those by TLPE and SP methods (Figures 4b, 4d and 4f).

We show the RLSE vs. Iterations for different methods with mono-frequency strategy
and partial overlap-frequency strategy in Figures 5a and 5b respectively. In Figure 5a, we
see that the random and sequential SU methods fail to converge. While the SU methods
with partial overlap-frequency strategy converge efficiently, as shown in Figure 5b. Figure
6 show the RLSE vs. Data amount for different methods. Figure 6b gives the enlarged view
of red box area in Figure 6a. Table 3 lists the CPU running time for different methods with
partial overlap-frequency strategy to achieve comparable quality inversion results. As can
be seen in Table 3, to achieve the same quality inversion results (RLSE ε = 0.7, 0.6 and
0.5), the CPU running times using sequential SU method are reduced approximately by
49, 47 and 30 times, compared to SP method. These illustrations verify that the proposed
strategies can get comparable inversion results with reducing the computation burden con-
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FIG. 2. The monochromatic seismic data set (f = 20 Hz) in source-receiver domain for shot-profile
FWI (a) and ray parameter-receiver domain for f -p domain FWI (b).
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FIG. 3. (a) Mono-frequency slant update with p = −0.01 s/km; (b) Mono-frequency slant update with
p = −0.03 s/km; (c) Mono-frequency random slant update; (d) Partial overlap-frequency random
slant update (ε = 0.4862); (e) Mono-frequency sequential slant update; (f) Partial overlap-frequency
sequential slant update (ε = 0.4596).

siderably.
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FIG. 4. (a) Mono-frequency TLPE with Np = 7 (ε = 0.5305); (b) Partial overlap-frequency TLPE
with Np = 7 (ε = 0.4251); (c) Mono-frequency TLPE with Np = 11 (ε = 0.4472); (d) Partial overlap-
frequency TLPE with Np = 11 (ε = 0.3598); (e) Mono-frequency SP (ε = 0.3777); (f) Partial overlap-
frequency SP (ε = 0.3064).

Comparison of different optimization methods

In this numerical section, we implement the proposed slant update strategy with differ-
ent optimization methods, including SD, NCG and truncated Gauss-Newton (TGN) meth-
ods, in comparison with l-BFGS method. In the TGN method, the Gauss-Newton Hessian
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FIG. 5. RLSE vs. Iteration for different methods with mono-frequency strategy (a) and partial
overlap-frequency strategy (b). The black-solid, black-dash, grey-dash, grey-bold and grey-thin
lines indicate the RLSE as iteration proceeds for SP, random SU, sequential SU, TLPE (Np = 7)
and TLPE (Np = 11) methods.

H̃a (equation (44)) and diagonal pseudo-Hessian preconditioner (equation (55)) are both
constructed with linear phase-encoding. The source-side ray parameter ps and receiver-
side ray parameter pg both range from −0.01 s/km to 0.01 s/km with ∆p = 0.01 s/km. The
stopping criteria for the inner iteration is ñmax = 10 and γmin = 2.0e-1. The stabilization
parameters are ε = 1.0e-2 and λ = 1.0e-2 (equation (30))

Figures 7a and 7b show the inversion results by sequential SU with SD and NCG meth-
ods respectively. The partial overlap-frequency strategy is adopted. Compared to the inver-
sion result obtained using l-BFGS method (Figure 3f), the inversion results obtained using
SD and NCG methods are seen to be contaminated by more noise, even though, the veloc-
ity model can be reconstructed well. The green, blue and red lines in Figure 8 illustrate the
RLSE for l-BFGS, NCG and SD optimization methods as the iteration proceeds. These nu-
merical experiments verify that the l-BFGS method for f -p domain FWI with slant update
strategy provides a faster convergence rate.

Sensitivity to random noise

Another major challenge of FWI with phase-encoding technique is the sensitivity of
the method to noisy data (van Leeuwen et al., 2011). To test the resistance ability of the
proposed strategies to random noise, we add Gaussian noise to the seismic data set with
SNR = 3 and SNR = 5. SNR means signal to noise ratio and smaller SNR indicates
stronger random noise. We use the RLSE change ∆ε of the inverted model to evaluate the
sensitivity of the inversion result to noisy data:

∆ε =
ε̃− ε
ε
× 100%, (39)
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FIG. 6. RLSE vs. Number of forward problems solved. The black-solid, black-dash, grey-dash,
grey-bold and grey-thin lines indicate the RLSE for SP, random SU, sequential SU, TLPE (Np = 7)
and TLPE (Np = 11) methods. (b) is the enlarged view of (a).

where ε̃ indicates the RLSE of the inverted model with noisy data. Smaller ∆ε means less
sensitivity to random noise.

The reconstructed models by partial overlap-frequency SP with SNR = 3 and SNR = 5
are presented in Figures 9a and 9b respectively. Figure 10a shows the RLSE vs. Iterations
for the SP method with noisy data. Even though, noise effects are not obvious in the
inverted models for SP method, the qualities of the final inversion results are decreased,
compared to Figure 4f. Figures 9c and 9d are the inverted models by TLPE (Np = 7)
method with SNR = 3 and SNR = 5. The reconstructed models by SU method with
SNR = 3 and SNR = 5 are shown in Figures 9e and 9f. Figure 10b and 10c shows
the corresponding RLSE as iteration proceeds for TLPE and SU methods, respectively.
For TLPE and SU methods, the artifacts caused by random noise become more obvious,
compared to the inversion results with noise-free data (Figure 4b and Figure 3f).

We illustrate the RLSE ε of the inversion results and RLSE changes ∆ε in Table 4
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Table 3 Comparison of the CPU running time for different methods.

Methods

Partial overlap-frequency

CPU time (s)

ε = 0.7

CPU time (s)

ε = 0.6

CPU time (s)

ε = 0.5

SP 5.424e3 8.653e3 13.044e3

TLPE (Np = 7) 0.647e3 1.093e3 2.172e3

TLPE (Np = 11) 0.954e3 1.506e3 2.608e3

Random SU 0.120e3 0.199e3 0.553e3

Sequential SU 0.116e3 0.183e3 0.428e3
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FIG. 7. (a) and (b) show the inversion results using partial overlap-frequency SU strategy with SD
(ε = 0.5572), NCG (ε = 0.5062) and Hessian-free Gauss-Newton (ε = 0.3616) methods respectively.

to compare the sensitivities of different methods to random noise at iterations n = 100,
n = 200 and n = 300, which correspond to frequency groups 9-11 Hz, 18-20 Hz and 27-29
Hz. We can observe that at early iterations when using low frequencies for inversion, the
inversion results are less sensitive to the random noise, compared to using high frequencies.
Furthermore, we notice that SU method is not very sensitive to noisy data, especially when
using low frequencies for inversion. Its random noise resistance ability is better than TLPE
method (Np = 7).
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FIG. 9. Inversion results obtained by different methods with partial overlap-frequency strategy and
noisy data. (a) SP method with SNR = 3 (ε̃ = 0.3064); (b) SP method with SNR = 5 (ε̃ = 0.3251);
(c) TLPE (Np = 7) method with SNR = 3 (ε̃ = 0.5503); (d) TLPE (Np = 7) method with SNR = 5
(ε̃ = 0.4675); (e) SU method with SNR = 3 (ε̃ = 0.5078); (f) SU method with SNR = 5 (ε̃ = 0.4705).

DISCUSSION

The numerical experiments presented in this research verify that the proposed f -p do-
main FWI with slant update strategy can reconstruct the velocity model very well with re-
ducing the computational cost considerably. While the inversion results may be influenced
by the ray parameter setting obviously. The ray parameter range should be determined to
illuminate the subsurface layers with different dip angles. The ray parameters should be
sampled properly according to the anti-aliasing rule of τ -p transform (Zhang et al., 2005)
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FIG. 10. RLSE vs. Iterations for partial overlap-frequency SP (a), TLPE (Np = 7) (b) and SU (c)
methods with noisy data. The black, red, and blue lines indicate the RLSE for noise-free data, noisy
data with SNR = 3 and SNR = 5 respectively.

Table 4 Comparison of the sensitivities to random noise for different methods.

Methods Iteration n f (Hz) Noise-free ε ε̃ with SNR = 5 (∆ε) ε̃ with SNR = 3 (∆ε)

SP
100 9-11 0.5116 0.5135 (0.37 %) 0.5251 (2.64 %)
200 18-20 0.4048 0.4060 (0.30 %) 0.4190 (3.51 %)
300 27-29 0.3418 0.3441 (0.67 %) 0.3597 (5.24 %)

TLPE
100 9-11 0.5607 0.5886 (4.96 %) 0.6229 (11.08 %)
200 18-20 0.4789 0.5103 (6.55 %) 0.5613 (17.20 %)
300 27-29 0.4433 0.4801 (8.31 %) 0.5479 (23.60 %)

SU
100 9-11 0.5944 0.6009 (1.08 %) 0.6086 (2.32 %)
200 18-20 0.5090 0.5176 (1.66 %) 0.5378 (5.36 %)
300 27-29 0.4753 0.4855 (2.09 %) 0.5201 (8.62 %)

and Radon transform (Vigh and Starr, 2008; Pan et al., 2015a). Examining the influences
ray parameter setting needs further studies.

FWI is an ill-posed problem meaning that an infinite number of models matches the
data. Regularization technique can alleviate the non-uniqueness of the ill-posed inverse
problem (Menke, 1984). No regularization technique is used in this research. So, for
further research, introducing regularization term is necessary for the proposed strategies. In
this paper, we employ l-BFGS method for inversion compared to gradient-based methods.
The propose strategies should be extended to more advanced optimization methods, such
as Hessian-free optimization methods.

The numerical experiments are carried out for inversion from very low frequency (1
Hz), which mitigates the cycle-skipping problem. While in real data application, the low
frequency information is always missed. Hence, testing the performance of the proposed
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methods without low frequencies is necessary. In this research, we only discuss the sensi-
tivity of the methods to random noise. The influences of other types of noise (e.g., surface
related multiples) should also be taken into consideration. For marine-streamer survey,
the inconsistent acquisition geometries between the observed data and modeled data can
result in strong artifacts, which can be mitigated by correlation-based method (Choi and
Alkhalifah, 2012).

CONCLUSION

In this paper, employing a linear-phase encoding technique, we develop an efficient
frequency-ray parameter (f -p) domain FWI with slant update strategy for reducing the
computation burden. The gradient constructed with single ray parameter is used to update
the model at each iteration but the ray parameter varies as iteration proceeds. In addition
to the common mono-frequency selection strategy for inversion, we also employ a partial
overlap-frequency selection strategy for comparison. We notice that inverting multiple fre-
quencies simultaneously is important to reduce the cross-talk artifacts and guarantee the
quality of the inversion result for the proposed strategies. The numerical examples are
illustrated to show that the slant update strategy can obtain comparable quality inversion
results with reducing the computational cost significantly in comparison with traditional
methods. We also show the faster convergence rate of l-BFGS optimization method com-
pared to the gradient-based methods. Finally, we illustrate that the proposed slant update
strategy is robust to random noise, especially when using low frequencies for inversion.
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THE PHASE-ENCODED GAUSS-NEWTON HESSIAN

With Born approximation, the Gauss-Newton Hessian Ha (equation (25)) can be written
with four Green’s functions (Plessix and Mulder, 2004):

Ha (x, x′) ≈
∑

xg

∑
xs

∑
ω

<
(
ω4|fs(ω)|2G (x, xs, ω)G (xg, x, ω)G∗ (x′, xs, ω)G∗ (xg, x′, ω)

)
.

(40)
As we can see, the source-side and receiver-side Green’s functions need to be constructed
to form the Gauss-Newton Hessian. Similarly, the linear phase-encoding technique can be
employed to construct the Gauss-Newton Hessian, which gives the phase-encoded Gauss-
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Newton Hessian H̃a:

H̃a (x, x′) =
∑

xs

∑
ps

∑
ω

<
(
ω4|fs(ω)|2G (x, xs, ω)As (ω) exp (iωps · (xs − x̂s))

)
×
∑

x′s

∑
ps

∑
ω

< (G∗ (x′, x′s, ω)A∗s (ω) exp (iωps · (x̂s − x′s)))

×
∑

xg

∑
pg

∑
ω

<
(
G (x, xg, ω)Ag (ω) exp

(
iωpg · (xg − x̂g)

))
×
∑

x′g

∑
pg

∑
ω

<
(
G∗
(
x′, x′g, ω

)
A∗g (ω) exp

(
iωpg ·

(
x̂g − x′g

)))
,

(41)

where As(ω) and Ag(ω) are the source-side and receiver-side weighting functions for Hes-
sian construction, ps and pg are source-side and receiver-side ray parameter vectors, and
for x̂s and x̂g, we have: {

x̂s = x0
s, ps ≥ 0

x̂s = xend
s , ps < 0

, (42)

and {
x̂g = x0

g, pg ≥ 0

x̂g = xend
g , pg < 0

, (43)

where x0
g and xend

g indicate the positions of the intial reciever and right most receiver. Re-
organizing equation (41) gives:

H̃a (x, x′) =
∑

xs

∑
x′s

∑
ps

∑
ω

<
(
ω4|fs(ω)|2G (x, xs, ω)G∗ (x′, x′s, ω)A2

s (ω) exp (iωps · (xs − x′s))
)

×
∑

xg

∑
x′g

∑
pg

∑
ω

<
(
G (x, xg, ω)G∗

(
x′, x′g, ω

)
A2

g (ω) exp
(
iωpg ·

(
xg − x′g

)))
(44)

If xs = x′s and xg = x′g, the phase-encoded Hessian H̃a is identical to the non-encoded
Hessian Ha. If xs = x′s or xg = x′g, the phase-encoded Hessian H̃a becomes the cross-talk
term Hcross

a . So, the phase-encoded Hessian H̃a is equal to the summation of non-encoded
Hessian Ha with the cross-talk term: H̃a = Ha + Hcross

a . To disperse this cross-talk term,
stacking over sufficient ray parameters is required. The source-side encoding function
ψs (xs, x′s, ω) and receiver-side encoding function ψg

(
xg, x′g, ω

)
can be expressed as:

ψs (xs, x′s, ω) =
∑

ps

A2
s (ω) exp (iωps · (xs − x′s)) . (45)

ψg

(
xg, x′g, ω

)
=
∑

pg

A2
g (ω) exp

(
iωpg ·

(
xg − x′g

))
. (46)

Following equation (20), if the numbers of ray parameters in ps and pg are large enough,
applying integration over the ray parameters gives:

ψs (xs, x′s, ω) =
A2

s (ω)

ω2
δ (xs − x′s) . (47)
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ψg

(
xg, x′g, ω

)
=
A2

g (ω)

ω2
δ
(
xg − x′g

)
. (48)

Inserting equations (47) and (48) into equation (44) gives:

H̃a (x, x′) =
∑

xs

∑
x′s

∑
ω

<
(
ω4|fs(ω)|2G (x, xs, ω)G∗ (x′, x′s, ω)

A2
s (ω)

ω2
δ (xs − x′s)

)

×
∑

xg

∑
x′g

∑
ω

<
(
G (x, xg, ω)G∗

(
x′, x′g, ω

) A2
g (ω)

ω2
δ
(
xg − x′g

))
,

(49)

Making A2
s (ω) = A2

g (ω) = ω2 and considering the sifting property of the delta function,
the cross-talk artifacts in the phase-encoded Hessian can be totally reduced:

H̃a (x, x′) = Ha (x, x′)

=
∑

xs

∑
xg

∑
ω

<
(
ω4|fs(ω)|2G (x, xs, ω)G∗ (x′, xs, ω)G (x, xg, ω)G∗ (x′, xg, ω)

)
.

(50)

THE PHASE-ENCODED DIAGONAL PSEUDO-HESSIAN PRECONDITIONER

The pseudo-Hessian H is constructed by replacing the Fréchet derivative wavefield with
the virtual source f̃s (ω) in the correlation process (Shin et al., 2001b). Taking partial
derivative with respect to model parameter on both sides of equation (1) gives:(

∇2 + m (x)ω2
) ∂u (x, xs, ω)

∂m (x)
= f̃s (ω) , (51)

where f̃s (x, ω) = −ω2u (x, xs, ω) is the virtual source. Considering equation (2), the
virtual source can be expressed with Green’s function:

f̃s (x, ω) = −ω2fs (ω)G (x, xs, ω) . (52)

The pseudo-Hessian is obtained by correlating two virtual sources (Shin et al., 2001a;
Plessix and Mulder, 2004):

H (x, x′) = f̃s (x, ω) f̃ ∗s (x′, ω) =
∑

xs

∑
xg

∑
ω

<
(
ω4 | fs (ω) |2 G (x, xs, ω)G∗ (x′, xs, ω)

)
,

(53)
where when x = x′, we can obtain the diagonal pseudo-Hessian Hdiag, the auto-correlation
of the two virtual sources:

Hdiag (x) =
∑

xs

∑
xg

∑
ω

<
(
ω4 | fs (ω) |2 G (x, xs, ω)G∗ (x, xs, ω)

)
. (54)

Similarly, following the derivation process in Appendix A, the diagonal pseudo-Hessian
can also be constructed with linear phase-encoding :

H̃diag (x) =
∑

xs

∑
x′s

∑
xg

∑
ps

∑
ω

<
(
ω4 | fs (ω) |2 G (x, xs, ω)G∗ (x, xs, ω)

A2
s (ω) exp (iωps · (xs − x′s))

)
.

(55)

CREWES Research Report — Volume 27 (2015) 25



Pan et. al

This phase-encoded diagonal pseudo-Hessian is used as the preconditioner in truncated
Gauss-Newton method (equation (30)). Furthermore, no additional computation cost is
needed for constructing this preconditioner.
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