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ABSTRACT

Full-waveform inversion (FWI) provides high-resolution estimates of the subsurface
properties by iteratively minimizing a l-2 norm misfit function, which measures the dif-
ference between the modelled data and observed data. FWI suffers from cycle-skipping
difficulties arising from inaccurate initial models and lack of low frequency information in
the seismic data. In this paper, we aim to recover low frequency information from well log
data through band-limited impedance inversion. Projection-onto-convex-sets (POCS) algo-
rithms are generally used to infill the missed traces in seismic data reconstruction. In this
paper, we also consider recovering the low frequency information by spectral extrapolation
with POCS algorithm. The reflectivity estimate is first generated. The frequency spectrum
is then extrapolated with POCS algorithm. A band-limited impedance inversion is then
performed with the reflectivity section and interpolated well log data. Through this pro-
cess, we build an enhanced initial model for full-waveform inversion with low frequency
information. We then illustrate with numerical examples that the inversion results can be
improved with the enhanced initial velocity model.

INTRODUCTION

Full-waveform inversion (FWI) allows for reconstruction of high-resolution velocity
models of the subsurface through the extraction of the full information content of the seis-
mic data (Tarantola, 1984; Pratt et al., 1998; Virieux and Operto, 2009). FWI iteratively
minimizes a l-2 norm misfit function, which measures the difference between the modelled
data and observed data.

FWI is promising but also suffers from many challenges, one of which is cycle-skipping.
The inversion process is classically solved with local optimization schemes and is therefore
strongly dependent on the starting model definition. It only locates the local global mini-
mum misfit if the starting model is close to the true model. One key assumption and criteria
in the localized inversion is that the modelled and observed waveforms are within half a
wave-cycle at the lowest frequency to converge iteratively in the right direction. Hence, for
successful application of FWI, the modelled data must match the observed data at the low-
est usable frequencies within half a wave-cycle. Theoretically, at low frequencies, there is
a high chance that the modelled and observed data match within half a wave-cycle. Hence,
the low frequencies are crucial to recovering the long wavelength structures of the model.

However, in traditional seismic data, the low frequencies are missed, resulting in FWI
applications that are always trapped in local minima. Impedance inversion is very useful for
reservoir characterization and band-limited impedance inversion (BLIM) is implemented
by incorporating low frequency information from well log data (Ferguson and Margrave,
1996; Lloyd and Margrave, 2013). In this paper, we consider recovering the low frequen-
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cies from well log data for full-waveform inversion through band-limited impedance in-
version. The impedance inversion result is used as the initial model for full-waveform
inversion. However, one problem is that the traces far away from the well log positions
may not be reliable. In this paper, we try to recover the low frequency information for
the reflectivity section using a projection-onto-convex-sets (POCS) algorithm. The POCS
algorithm is generally employed to infill missing seismic data in seismic data reconstruc-
tion. In this paper, we attempt to use this method to recover the low frequency information,
based on a series of assumptions (Innanen, 2011).

FWI can be carried out in the time domain (Lailly, 1983; Tarantola, 1984; Mora, 1987)
or frequency domain (Pratt et al., 1998; Sirgue and Pratt, 2004). When considering compu-
tational efficiency, the frequency domain FWI is more attractive because it involves only a
set of discrete frequencies for inversion. In this research, we implement frequency domain
FWI with a multiscale approach by sequentially increasing the discrete frequencies from
low to high (Pratt and Chapman, 1992; Bunks et al., 1995; Sirgue and Pratt, 2004). This
multiscale strategy can help to mitigate cycle-skipping problem. The most common fre-
quency selection strategy for this process, the mono-frequency strategy, involves choosing
single frequencies for inversion sequentially (Kim et al., 2011).

The gradient in FWI is equivalent to a poorly scaled image, which suffers from geomet-
rical spreading and finite-frequency effects. In Gauss-Newton and full Newton methods for
FWI, the search direction can be greatly enhanced by multiplying the gradient with the in-
verse Hessian. However, the calculation, storage and inversion of the Hessian is extremely
expensive. Gradient-based methods (e.g., steepest-descent and non-linear conjugate gra-
dient methods) assume the Hessian matrix is an identity matrix but suffer from slow local
convergence rates. Quasi-Newton methods represent alternative strategies for large-scale
inverse problems. The quasi-Newton methods do not construct the Hessian explicitly, but
update the inverse Hessian approximations by storing the information from previous it-
erations. The BFGS method, due to Broyden (1970), Fletcher (1970), Goldfarb (1970)
and Shanno (1970), is a popular quasi-Newton method used to iteratively approximate the
inverse Hessian. The limited-memory BFGS (l-BFGS) method stores the changes of the
gradient and model from a limited number of previous iterations and uses the stored in-
formation to implicitly form an inverse of the approximated Hessian (Nocedal, 1980; Byrd
et al., 1995; Nocedal and Wright, 2006). In this research, the l-BFGS optimization strat-
egy is adopted and implemented with a "two-loop recursion" scheme (Nocedal and Wright,
2006; Anagaw, 2014; Wu et al., 2015).

The paper is organized as follows. We first review the basic principles of the non-linear
least-squares inverse problem. Then, we introduce the flow for the band-limited impedance
inversion method and the POCS algorithm. The proposed strategies which combine band-
limited impedance inversion and the POCS algorithm are explained. In the numerical sec-
tion, we first illustrate with numerical examples the effects of cycle-skipping in FWI. Then,
we show the effectiveness of the proposed strategies in mitigating the cycle-skipping prob-
lem.
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THEORY AND METHODS

The non-linear least-squares inverse problem

As a non-linear least-squares optimization problem, FWI seeks to estimate the subsur-
face parameters by iteratively minimizing the difference between the synthetic data dsyn
and observed data dobs (Lailly, 1983; Tarantola, 1984; Virieux and Operto, 2009; Pan et al.,
2015a). The misfit function Φ is formulated in a least-squares form:

Φ (m) =
1

2

∑
xs

∑
xg

∑
ω

‖∆d (xg, xs, ω) ‖2, (1)

where ∆d = dobs−dsyn is the data residual vector, and ‖ · ‖ denotes the L2 norm. Here, the
synthetic data dsyn is related to the seismic wavefield u by a detection operator P , which
samples the wavefield at the receiver locations: dsyn = Pu. The Newton optimization
approach is developed based on the second-order Taylor-Lagrange expansion of the misfit
function Φ:

Φ (m + ∆m) ≈ Φ (m) + g†∆m +
1

2
∆m†H∆m, (2)

where the symbol "†" indicates the transpose, ∆m is the search direction, and g = ∇mΦ (m)
and H = ∇m∇mΦ (m) indicate gradient and Hessian respectively.

To minimize the quadratic approximation of the misfit function, the updated model at
the (k + 1)th iteration can be written as the sum of the model at the kth iteration and the
search direction ∆mk:

mk+1 = mk + µk∆mk, (3)

where µk is the step length, a scalar constant calculated through a line search method sat-
isfying the weak Wolfe condition (Gauthier et al., 1986; Pica et al., 1990; Nocedal and
Wright, 2006). Within a Newton optimization framework, the search direction ∆mk is the
solution of the Newton linear system:

Hk∆mk = −gk. (4)

The gradient is the first-order partial derivative of the misfit function with respect to the
model parameter and it indicates the direction in which the misfit function is increasing
most rapidly (Pratt et al., 1998). It can be constructed by zero-lag correlation between the
Fréchet derivative wavefield with complex conjugate of the data residuals ∆d:

g (x) = ∇m(x)Φ (m) = −
∑

xg

∑
xs

∑
ω

<

(
∂d†syn (xg, xs, ω)

∂m (x)
∆d∗ (xg, xs, ω)

)
, (5)

where the symbol "∗" denotes the complex conjugate, ∂dsyn(xg ,xs,ω)
∂m(x) indicates the Fréchet

derivative wavefield (or Jacobian matrix) recorded at the receiver xg due to model pertur-
bation at position x and < (·) denotes the real part. Within the adjoint-state formalism
(Plessix, 2006), the gradient can be expressed as (Sirgue and Pratt, 2004; Plessix and Mul-
der, 2004; Tao and Sen, 2013; Pan et al., 2015a):

g (x) =
∑

xg

∑
xs

∑
ω

<
(
ω2fs (ω)G (x, xs, ω)G (xg, x, ω) ∆d∗ (xg, xs, ω)

)
, (6)
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whereG (x, xs, ω) andG (xg, x, ω) indicate source-side and receiver-side Green’s functions
respectively. Following equation (6), the gradient can be constructed efficiently by cross-
correlating the forward modelled wavefield with the back-propagated data residual wave-
field (Virieux and Operto, 2009; Pan et al., 2013, 2014, 2015b). The gradient is poorly-
scaled due to geometrical spreading, and it is also contaminated by spurious correlations
because of finite-frequency effects and doubly-scattered energy (Pratt et al., 1998). The
Hessian operator is the second-order partial derivative of the misfit function with respect to
the model parameter (Pratt et al., 1998; Plessix and Mulder, 2004):

H (x, x′) = ∇m(x)∇m(x′)Φ (m)

=
∑

xg

∑
xs

∑
ω

<

(
∂d†syn (xg, xs, ω)

∂m (x)

∂d∗syn (xg, xs, ω)

∂m (x′)
+
∂2d†syn (xg, xs, ω)

∂m (x) ∂m (x′)
∆d∗ (xg, xs, ω)

)
,

(7)

where x′ is the neighboring position around the position x (Valenciano, 2008; Pan et al.,
2015a) and ∂2dsyn(xg ,xs,ω)

∂m(x)∂m(x′) means the second-order partial derivative wavefield due to model
perturbations at positions x and x′. Multiplying the gradient with the inverse Hessian can
greatly enhance the model update, which provides a quadratic convergence rate.

Well data regularization

Asnaashari et al. (2013) introduced a prior model norm term for smoothly incorporat-
ing prior model information into an FWI workflow. This prior model term can significantly
reduce the the inversion sensitivity to incorrect initial conditions. They also studied a dy-
namic decreasing weighting of the prior model term. Thus, the misfit function can be
expressed as:

Φ̃ (m) = Φ (m) + Φw (m)

=
1

2

∑
xs

∑
xg

∑
ω

‖∆d (xg, xs, ω) ‖2 + λ‖Ww(m−mw)‖2, (8)

where Ww is the weighting matrix in the model space, mw is the well log model and λ is
the trade-off parameter for balancing the contribution from the well log model. Thus, the
gradient is given as:

∇mΦ̃ (m) = −

(
∂d†syn
∂m

)
∆d∗ + λW†

wWm (m−mw) . (9)

Band-limited Impedance Inversion

In this section, we introduce the band-limited impedance inversion method, which
can be used to invert the seismic data using well log data, providing the low frequen-
cies required by the inversion process (Ferguson and Margrave, 1996). To approximate the
impedance of the subsurface imaging using seismic data, it is necessary to account for the
band-limited nature of the seismic data, especially at low frequencies.
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The normal incidence reflection coefficient is given as:

rj =
Ij+1 − Ij
Ij+1 + Ij

, (10)

where r and I indicate the reflection coefficient and impedance respectively. Solving equa-
tion (10) for Ij+1:

Ij+1 = I1Π
j
k=1

1 + rk
1− rk

, (11)

Dividing equation (11) by I1 and taking the logarithm gives:

Ij+1 = I1exp

(
2

j∑
k=1

rk

)
. (12)

If we model the seismic trace as scaled reflectivity: sk = 2rk
γ

, then equation (12) becomes:

Ij+1 = I1exp

(
γ

j∑
k=1

sk

)
. (13)

Equation (13) integrates the seismic trace and then exponentiates the result to provide an
impedance trace.

POCS Algorithm

The POCS algorithm is implemented in a iterative scheme (Innanen, 2011). We suppose
that the measure trace s0(t) is deficient in frequencies below f0. The threshold operator Γ0

is used to generate trace y0(t) = Γs0(t). For trace y0(t), it is equal to s0(t) for all values
above the threshold, and zero everywhere else.

A new spectrum is now generated, equal to S0(f) within the signal band, and equal to
Y0(f) elsewhere:

X1(f) = HY0(f) + (1−H)S0(f), (14)

whereH = H(f−f0)−H(f +f0) and H is the Heaviside or step function. This spectrum
is inverse Fourier transformed to the time domain, forming s1(t). This process is repeated
with a new threshold Γ1. The updated trance sk+1(t) is given in terms of sk(t):

sk+1(t) = F−1 (HF (Γksk(t)) + (1−H)F (sk(t))) , (15)

where F and F−1 are Fourier and inverse Fourier transforms, respectively.

NUMERICAL EXPERIMENTS

In this numerical section, we first examine the effects of lack of low frequency using the
BP velocity model. The BP model has 239× 675 grid cells with a grid interval of 10 m in
both horizontal and vertical directions. We deploy 67 sources from 100 m to 6700 m with a
source interval of 100 m and a depth of 20 m. A total of 675 receivers are distributed from
10 m to 6750 m with a receiver interval of 10 m and a depth of 20 m. A Ricker wavelet with
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a 30 Hz dominant frequency is used as the source function. Figures 1a and 1b show the
true P-wave velocity model and initial P-wave velocity model respectively. It can be seen
that in the initial model, the salt structure, which represents a long wavelength component
of the model, has been removed.
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FIG. 1. (a) The true P-wave model; (b) The initial P-wave model; (c) The inverted model with
frequency band (1-25 Hz);(d) The inverted model with frequency band (3-25 Hz); (e) The inverted
model with frequency band (6-25 Hz);(f) The inverted model with frequency band (8-25 Hz);

Figures 1c, 1d, 1e, 1f show the inversion results with the frequency bands of 1-25 Hz, 3-
25 Hz, 6-25 Hz and 8-25 Hz. It can be observed that the salt structures can be reconstructed
very well with a frequency band of 1-25 Hz, as shown in Figure 1c. When using a frequency
band of 3-25 Hz for inversion, the salt structures can also be recovered, but the sub-salt area
within 1-2km can not be inverted. When missing more low frequencies, the salt structures
can not be reconstructed very well, as shown in Figures 1e and 1f.

We next illustrate with numerical examples the sensitivity of FWI to the initial model.
Figure 2 shows the true Marmousi-II P-wave velocity model. The Marmousi-II model has
244× 681 grid cells with a grid interval of 10 m in both horizontal and vertical directions.
We deploy 67 sources from 100 m to 6700 m with a source interval of 100 m and a depth of
20 m. A total of 681 receivers are distributed from 10 m to 6810 m with a receiver interval
of 10 m and a depth of 20 m.
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FIG. 2. The true P-wave velocity model.

Figure 3a shows the initial model by smoothing the true model with a Gaussian func-
tion. As we can see, this initial model contains long wavelength structure. Figures 3b, 3c
and 3d show the inversion results with the frequency bands of 1 Hz-30 Hz, 3 Hz-30 Hz and
6 Hz-30 Hz. It can be observed that the velocity model can be reconstructed very well with
the initial model, even if the low frequencies are missing.

Figure 4a shows the linear initial model, which represents a poor starting model for
FWI. Figures 4b, 4c and 4d show the inversion results with the frequency bands of 1 Hz-
30 Hz, 3 Hz-30 Hz and 6 Hz-30 Hz. We can see that without low frequencies, the model
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cannot be reconstructed well. Figure 4e shows the model with well log data interpolation.
Figure 4f shows the inversion result with well log data regularization and a frequency band
of 6 Hz-30 Hz. Comparing Figure 4d with 4f, we notice that the well data regularization
technique can help to mitigate the cycle-skipping difficulty.
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FIG. 3. (a) The smoothed initial P-wave velocity model; (b) The inverted model with frequency band
(1 Hz-30 Hz); (c) The inverted model with frequency band (3 Hz-30 Hz); (d) The inverted model with
frequency band (6 Hz-30 Hz).
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FIG. 4. (a) The linear initial P-wave velocity model; (b) The inverted model with frequency band (1
Hz-30 Hz); (c) The inverted model with frequency band (3 Hz-30 Hz); (d) The inverted model with
frequency band (6 Hz-30 Hz); (e) The interpolated model with well log data; (f) The inverted model
with well data regularization with frequency band (6 Hz-30 Hz).

Figure 5a shows the initial model obtained using interpolated well log data at 0 km and
6.81 km. Figures 5b, 5c and 5d show the inversion results with the frequency bands of 1-30
Hz, 3-30 Hz and 6-30 Hz respectively. Compared to the inversion results in Figure 4, we
observe that the inversion result with the frequency band of 3-30 Hz has been improved,
while the inversion result with the frequency band of 6-30 Hz is still not satisfactory.

Figure 6 shows the true reflectivity in time domain. The frequencies below 6 Hz are then
removed. The POCS algorithm is then used to recover the low frequencies. The estimated
reflectivity section is then used to carry out band-limited impedance inversion combined
with the initial model shown in Figure 4a. This process gives an enhanced initial model, as
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FIG. 5. (a) The initial P-wave velocity model obtained by interpolating the well log data; (b) The
inverted model with frequency band (1 Hz-30 Hz); (c) The inverted model with frequency band (3
Hz-30 Hz); (d) The inverted model with frequency band (6 Hz-30 Hz).
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FIG. 6. True reflectivity section in time domain.

shown in Figure 7a. Figures 7b, 7c and 7d show the inverted models with frequency bands
of 1-30 Hz, 3-30 Hz and 6-30 Hz respectively. We observe that the inverted model with
frequency band of 3-30 Hz becomes much better compared to the ones in Figures 5c and
5c.
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FIG. 7. (a) The initial P-wave velocity model obtained by band-limited impedance inversion and
POCS; (b) The inverted velocity model with frequency band (1 Hz-30 Hz); (c) The inverted model
with frequency band (3 Hz-30 Hz); (d) The inverted model with frequency band (6 Hz-30 Hz).

CONCLUSION

In this paper, we are trying to recover low frequencies for full-waveform inversion with
band-limited impedance inversion combined with a POCS algorithm. We illustrate with
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numerical examples that the inversion results can be improved by the proposed strategies.
While, more numerical tests are needed for obtaining the reflectivity estimate.
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