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ABSTRACT

Full Waveform Inversion (FWI) method becomes popular in recent years for estimat-
ing subsurface parameters by iteratively minimizing the difference between the modelled
data and observed data. Inverting isotropic and elastic parameters using multi-parameter
FWI has been studied by many researchers. While updating multiple parameters is still
a challenging problem for increasing the nonlinearity of the inverse problem. One diffi-
culty for multi-parameter FWI is known as cross-talk problem rising from the coupling
effects between different physical parameters. It is known that the strong coupling effects
between P-wave velocity and density make it difficult to recover density. In this research,
we examine the ability of multi-parameter approximate Hessian and its parameter-type
approximation in suppressing cross-talk and de-coupling the elastic parameters. We also
show that they can be calculated using adjoint-state technique efficiently. Compared to the
multi-parameter approximate Hessian, the parameter-type approximation can be inverted
trivially and its storage requirement is reduced greatly.

INTRODUCTION

Full Waveform Inversion (FWI) estimates the subsurface parameters by iteratively min-
imizing the difference between the modelled data and observed data (Lailly, 1983; Taran-
tola, 1984). In recent years, it is widely studied by many geophysicists in academic and
industrial level. Inversing multiple parameters using FWI makes the inverse problem more
undetermined. Furthermore, multi-parameter FWI also suffers from the cross-talk (or
trade-off) problem rising from the coupling effects between different physical parameters,
which gives rise to the parameterization issue for multi-parameter FWI.

Estimating the isotropic and elastic parameters has been investigated by many researchers.
Tarantola et al. (1985) originally analyzed the scattering patterns of different elastic param-
eters and emphasized the importance of parameterization choice for effective inversion.
Mora (1987) carried out a nonlinear elastic FWI with multi-component data using precon-
ditioned conjugate gradient algorithm. They found that for reflection seismic acquisition
geometry, the impedance and velocity parameterizations are more suitable for inversion
than Lamé parameterization. What’s more, the similarity of the scattering patterns between
P-wave velocity and density at shot apertures makes that density cannot be well resolved.
The study of Köhn et al. (2012) reals a strong requirement of sequential inversion from low
to high frequencies to reconstruct the density model.

The Hessian matrix H indicates the second-order partial derivative of the misfit func-
tion. The mono-parameter Hessian in mono-parameter FWI works as deconvolution oper-
ator for compensating the geometrical spreading and de-blurring the gradient (Pratt et al.,
1998; Pan et al., 2014a,b). The multi-parameter Hessian has a block structure and carries
more information. Newton’s method requires the computation and inversion of the full
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Hessian matrix, which is extremely expensive for large scale inverse problem. The con-
jugate gradient (CG) algorithms involve the Hessian-vector product for avoiding explicitly
constructing and storing the Hessian. A number of CG iterations can achieve comparable
inversion result compared to one obtained by Newton’s method. The Quasi-Newton meth-
ods (e.g., l-BFGS method) approach the inverse Hessian iteratively by storing the changes
of the gradient and model from a number of previous iterations.

The multi-parameter approximate Hessian H̃ within Gauss-Newton method keeps the
first-order term of full Hessian and its off-diagonal blocks indicate the correlation of Fréchet
derivative wavefields with respect to different physical parameters and predict the coupling
effects. Hence, the multi-parameter approximate Hessian H̃ plays a crucial role in mit-
igating the cross-talk problem (Operto et al., 2013; Innanen, 2014c). However, efficient
calculation, storage and inverting of H̃ is still a challenging problem. Innanen (2014c) gave
the parameter-type multi-parameter Hessian approximation H̃, which keeps the diagonal
elements of the block matrices and can also suppress cross-talk. In this research, we show
that the multi-parameter approximate Hessian H̃ and its parameter-type approximation H̃
can also be constructed using adjoint-state technique. The additional forward modelling
problems need to be solved is just equivalent to the number of receivers. Furthermore, H̃
can be trivially inverted and its storage requirement is greatly reduced compared to that of
H̃.

The paper is organized as follows. First, we review the forward modelling problem
in isotropic and elastic media and the basic theory of FWI. We then, introduce the multi-
parameter approximate Hessian H̃ and its parameter-type approximation H̃. The expres-
sions for calculating gradient vectors, H̃ and H̃ using adjoint-state method are given. In
the numerical section, we verify the effectiveness of H̃ and H̃ in reducing cross-talk with
a multi-scatter example. Then, the proposed method is applied on a modified Marmousi-II
model.

THEORY AND METHODS

Elastic Full Waveform Inversion

Forward Modelling

The equation of motion for isotropic and elastic media is given by:

(λ+ 2µ)∇∇ · u− µ∇×∇× u + f = ρ∂2
t u, (1)

where λ and µ are Lamé constants, ρ is density, f is the force term with both a vertical
source and a horizontal source, u indicates the displacement field. The P-wave velocity
and S-wave velocity can be calculated as α =

√
(λ+ 2µ) /ρ and β =

√
µ/ρ. The wave-

fields solutions are obtained using an explicit finite-difference method with fourth-order
accuracy in space and second-order accuracy in time (Virieux, 1986; Levander, 1988). A
Clayton Engquist boundary condition is applied on four boundaries of the model (Clayton
and Engquist, 1980).
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Basic Theory of FWI

Full waveform inversion (FWI) employs iterative scheme for inversing subsurface model
parameter m to minimize the misfit Φ between the synthetic data usyn and observed data
uobs (Lailly, 1983; Tarantola, 1984; Virieux and Operto, 2009). The misfit function is for-
mulated as least-squares norm:

Φ (m) =
1

2
‖uobs − usyn‖2

2, (2)

where ‖ · ‖2 means the `-2 norm. The descent direction δm is the solution of Newton
system:

Hkδmk = −∇mΦ (mk) , (3)

where k is the iteration number, ∇mΦ (mk) and Hk are the gradient and Hessian, corre-
sponding to the first and second-order partial derivative of the misfit function. Conjugate
gradient (CG) methods avoids explicitly calculating and inversing the Hessian by involving
Hessian-vector product. Quasi-Newton methods (e.g, l-BFGS method) approach the in-
verse Hessian iteratively by storing the change of the gradient and model from a number of
previous iterations. Newton-like methods ( e.g., Gauss-Newton method) tend to build ap-
proximate versions of Hessian matrix (Pratt et al., 1998). Inversing the isotropic and elastic
parameters using FWI has been studied by many researchers (Epanomeritakis et al., 2008;
Xiong et al., 2011; Köhn et al., 2012). While effective updating the multiple elastic pa-
rameters simultaneously is still a challenging task. The coupling effects between different
physical parameters result in the cross-talk (trade-off) problem, which also give rise to the
parameterization issue for elastic FWI (Tarantola, 1986). The overlap of Fréchet derivative
wavefields due to different physical parameters at certain range of scattering angle mainly
accounts for this problem (Operto et al., 2013).

Elastic multi-parameter approximate Hessian and its parameter-type approximation

For multi-parameter FWI, the Hessian matrix has a block structure with Np diagonal
blocks and Np(Np − 1) off-diagonal blocks, where Np is the number physical parameters.
The diagonal blocks correspond to second-order partial derivative of the misfit function
with respect to the same physical parameter∇m∇mΦ. The off-diagonal blocks correspond
to second-order partial derivative of the misfit function with respect to different physical
parameters∇m∇m′Φ (m 6= m′). The Gauss-Newton multi-parameter approximate Hessian
H̃ only keeps the first-order term in full Hessian by ignoring the second-order scattering
effects. Considering Gauss-Newton elastic FWI with Lamé constants parameterization,
equation (3) can be changed to:

H̃λλ H̃λµ H̃λρ

H̃µλ H̃µµ H̃µρ

H̃ρλ H̃ρµ H̃ρρ




δmλ

δmµ

δmρ

 = −


∇λΦ

∇µΦ

∇ρΦ

 , (4)

where ∇λΦ, ∇βΦ, and ∇ρΦ indicate the gradient vectors for parameters λ, µ, and ρ. The
diagonal blocks of H̃ are the correlations of two Fréchet derivative wavefields with respect
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FIG. 1. Schematic diagram of the multi-parameter approximate Hessian H̃ with elastic parameters
λ, µ and ρ.

to the same physical parameter, as indicated by the blue boxes of Figure 1. The off-diagonal
blocks are the correlation of two Fréchet derivative wavefields with respect to two different
physical parameters, as indicated by the red boxes of Figure 1. For instance, the element
H̃λλ (r, r′) in diagonal block H̃λλ and the element H̃λρ (r, r′) in off-diagonal block H̃λρ are:

H̃λλ (r, r′) = ∇λ(r)u†∇λ(r′)u∗, H̃λρ (r, r′) = ∇λ(r)u†∇ρ(r′)u∗, (5)

where the symbols † and ∗ indicate transpose and complex conjugate respectively. As
shown in Figure 1, the off-diagonal elements in the diagonal blocks correspond to space-
type trade-off. The diagonal elements in the off-diagonal blocks correspond to parameter-
type trade-off. The off-diagonal elements of the off-diagonal blocks correspond to space-
parameter-type trade-off. The off-diagonal blocks predict the coupling effects between
different physical parameters and applying its inverse to the gradient can reduce the cross-
talk.

Explicit calculation of Fréchet derivative wavefields needs number of 3Ng forward sim-
ulations, which is extremely expensive (Ng is the number of grid nodes). Furthermore,
storing and inversing the approximate Hessian is also a challenging problem. Innanen
(2014c,b) gave the parameter-type multi-parameter Hessian approximation H̃, which only
keeps the diagonal elements of sub-block matrices, as indicated by the black-dash lines of
Figure 1. Innanen (2014b) proved its effectiveness in suppressing cross-talk with an ana-
lytic example. Its diagonal block element H̃λλ (r) and off-diagonal block element H̃λρ (r)
are expressible as:

H̃λλ (r) = ∇λ(r)u†∇λ(r)u∗, H̃λρ (r) = ∇λ(r)u†∇ρ(r)u∗. (6)

What’s more, this parameter-type approximation can be inverted trivially and memory re-
quirement for storing H̃ is reduced by 1.5Ng times compared to storing H̃.
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Constructing Gradient, Multi-parameter approximate Hessian and parameter-type
approximation with adjoint-state method

Innanen (2014a) gave the three-term gradient vector and nine-term Hessian operator for
multi-component elastic reflection FWI. In this section, we show that the gradient vector,
multi-parameter approximate Hessian and its parameter-type approximation can be calcu-
lated using adjoint-state method.

We can first recall the equation describing the propagation of scattered wavefields due
to the perturbations of density δρ and elastic constants δcijkl:

∂j (c̃ijkl∂lδuk)− ρ̃∂2
t δui = δρ∂2

t ũi − ∂jδMij, (7)

where ũi indicates the i component of the incident wavefields, δMij = δcijklẽkl is the
equivalent moment tensor source, and ẽkl denote the strain components of the incident
wave. The derivation of equation (7) can be found in Pan and Innanen (2015). When only
considering the perturbations of isotropic and elastic parameters, the solution of equation
(7) can be written as an integral formulation in frequency domain:

δūn (r, ω) =

∫
Ω(r′)

∫
ω′
δρω2ũiG̃ni(r, ω; r′, ω′)dΩ(r′)dω′

−
∫

Ω(r′)

∫
ω′
δλẽklδijδkl∂jG̃ni(r, ω; r′, ω′)dΩ(r′)dω′

−
∫

Ω(r′)

∫
ω′
δµẽkl (δikδkl + δilδjk) ∂jG̃ni(r, ω; r′, ω′)dΩ(r′)dω′,

(8)

where G̃ni(r, ω; r′, ω′) indicates the Green’s tensor in the unperturbed background medium
due to the scattered source at position r′ = (x′, y′, z′). Ω (r′) indicates the volume including
all of the scattered sources. The Fréchet derivative wavefields recorded at receiver rg for a
source located at rs due to model perturbations δλ (r), δµ (r) and δρ (r) are expressible as:

∇λ(r)ūn (rg, rs, ω) = −ẽklδijδkl∂jG̃ni(r, rg, ω),

∇µ(r)ūn (rg, rs, ω) = −ẽkl (δikδkl + δilδjk) ∂jG̃ni(r, rg, ω),

∇ρ(r)ūn (rg, rs, ω) = ω2ũi (r, rs, ω) G̃ni(r, rg, ω),

(9)

where ẽkl = 1/2 (∂lũk (r, rs, ω) + ∂kũl (r, rs, ω)) denote the strain components of the in-
cident wave. Considering 2D elastic case (x-z plane), the gradients for λ, µ and ρ are
expressible as:

∇λ(r)Φ =

− 〈(∂xũx (r, rs, ω) + ∂zũz (r, rs, ω)) (∂xũ
∗
x(r, rg, ω) + ∂zũ

∗
z (r, rg, ω))〉,

(10)

∇µ(r)Φ =

− 〈(∂zũx (r, rs, ω) + ∂xũz (r, rs, ω)) (∂zũ
∗
x (r, rg, ω) + ∂xũ

∗
z (r, rg, ω))〉

− 2〈(∂xũx (r, rs, ω) ∂xũ
∗
x (r, rg, ω) + ∂zũz (r, rs, ω) ∂zũ

∗
z (r, rg, ω))〉,

(11)

∇ρ(r)Φ = 〈ω2 (ũx (r, rs, ω) ũ∗x (r, rg, ω) + ũz(r, rs, ω) ũ∗z (r, rg, ω))〉, (12)
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FIG. 2. (a), (b) and (c) show the true model perturbations δmα, δmβ and δmρ.
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FIG. 3. The multi-parameter approximate Hessian H̃
z
lame for Lamé constants parameterization (λ, µ

and ρ) with z component data.

where 〈·〉 means integration over rs, rg and ω. u∗i (r, rg, ω) indicate adjoint wavefields
backpropagated from receiver rg to r:

u∗i (r, rg, ω) = G̃ni (r, rg, ω) ∆d∗n (r, rg, ω) , (13)

where ∆dn indicate the n component of the data residuals. The gradient vectors for
other parameterizations can be obtained using chain rule. For the Gauss-Newton multi-
parameter approximate Hessian H̃ in equation (4), its element is formed by correlating two
Fréchet derivative wavefields:

H̃mm′ (r, r′) = ∇m(r)u†∇m′(r′)u∗. (14)

Inserting the Fréchet derivative wavefields into equation (14), we can obtain the elements in
all block matrices of H̃. For instance, the elements H̃λλ (r, r′) and H̃λρ (r, r′) are expressible
as:

H̃λλ (r, r′) =

∂kũk (r, rs, ω) ∂iG̃ni (r, rg, ω) ∂kũ
∗
k(r′, rs, ω)∂iG̃

∗
ni(r′, rg, ω),

H̃λρ (r, r′) =

− ω2∂kũk (r, rs, ω) ∂iG̃ni (r, rg, ω) ũ∗i (r′, rs, ω) G̃∗ni(r′, rg, ω).

(15)
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FIG. 4. The multi-parameter approximate Hessian H̃
z
vel for velocity parameterization (α, β and ρ)

with z component data.
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FIG. 5. The estimated model perturbations using steep descent method (the first row), parameter-
type preconditioning method (the second row) and Gauss-Newton method (the third row) with data
residuals ∆dα (a), ∆dβ (b) and ∆dρ (c) respectively.

when r = r′, we can obtain the elements in parameter-type approximation H̃. For instance:

H̃λλ (r) =| ∂kũk (r, rs, ω) |2| ∂iG̃ni (r, rg, ω) |2,
H̃λρ (r) =

− ω2∂kũk (r, rs, ω) ∂iG̃ni (r, rg, ω) ũ∗i (r, rs, ω) G̃∗ni(r, rg, ω).

(16)

According to equations (15) and (16), the multi-parameter approximate Hessian H̃ and its
parameter-type approximation H̃ can be constructed using adjoint-state technique. The ex-
pressions of multi-parameter approximate Hessian and the parameter-type approximation
for other elastic parameterizations can also be obtained using chain rule.
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FIG. 6. (a), (b) and (c) show the true P-wave velocity, S-wave velocity and density model. (d), (e)
and (f) show the initial P-wave velocity, S-wave velocity and density model.

NUMERICAL EXPERIMENTS

De-coupling the elastic parameters: a multi-scatter example

In this section, we first give a multi-scatter example to show that the ability of multi-
parameter approximate Hessian H̃ and its parameter-type approximation H̃ in suppressing
cross-talk. The initial model for inversion is a homogeneous and isotropic model with
P-wave velocity α = 2500 m/s, S-wave velocity β = 1300 m/s and density ρ = 2.2
g/cm3. It consists of 50 × 50 = 2500 nodes with grid size of 5 m in both horizontal
and vertical dimensions. Nine point scatters are embedded in the background model with
−10% model perturbations. The true model perturbations for parameters α, β and ρ are
shown in Figures 2a, b and c respectively. The horizontal and vertical sources are located
at rs = (x = 125 m, y = 0 m, z = 0 m).

We, first, explicitly construct the multi-parameter approximate Hessian H̃
z
lame and H̃

z
vel

for Lamé constants parameterization and velocity parameterization using recorded z com-
ponent data, as shown in Figures 3 and 4. It can be observed that the elastic multi-parameter
approximate Hessian is a square and symmetric matrix and the energy distributions in H̃

z
lame

and H̃
z
vel are quite different, which is determined by the scattering patterns of these elastic

parameters. We also notice that H̃
z
vel is dominated by its diagonal block H̃

z
ββ , which cor-

responds to the scattering pattern of S-wave velocity. This is because significant SV-SV
scattering due to δβ will present when incorporating S-wave source.

To verify the effectiveness of the multi-parameter approximate Hessian and its parameter-
type approximation in suppressing cross-talk, we choose velocity parameterization and use
only z component data for inversion. We, first, use only the data residuals ∆dα due to
δα for inversion. The estimated model perturbations for α, β and ρ using steepest descent
method are illustrated in the first row of Figure 5a. Only the estimated model perturbation
δmα is right. The estimated model perturbations δmβ and δmρ are cross-talk artifacts. Fur-
thermore, we notice that δmρ is very similar to δmα, which is caused by the ambiguity of
the scattering patterns between α and ρ. The second row show the estimated model per-
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g h I

FIG. 7. (a), (b) and (c) show the true model perturbations δmα, δmβ and δmρ. (d), (e) and (f) show
the estimated model perturbations preconditioned by the main diagonal elements of H̃. (g), (h) and
(i) show the estimated model perturbations preconditioned by the parameter-type approximation H̃
(The amplitudes have been normalized).

turbations with parameter-type Hessian approximation preconditioning. The amplitudes in
δmα have been scaled and the cross-talk artifacts in δmβ and δmρ are reduced obviously.
The third row in Figure 5 show the estimated model perturbations with multi-parameter ap-
proximate Hessian H̃

z
vel preconditioning. δmα is obviously resolved. The artifacts in δmβ

and δmρ are suppressed greatly. Figures 5b and c illustrate the estimated model perturba-
tions using the data residuals ∆dβ and ∆dρ. We can also observe the effectiveness of H̃
and H̃ in suppressing the cross-talk.

A Modified Marmousi-II Model Example

We then apply the parameter-type Hessian approximation preconditioning on a modi-
fied Marmousi-II model. Figures 6a, b and c show the true P-wave velocity, S-wave velocity
and density. Figures 6d, e and f show the corresponding initial models. Figures 7a, b and c
show the true model perturbations δmα, δmβ and δmρ with normalized amplitudes. A total
of 40 sources and 400 receivers are deployed along the top surface of the model. We con-
struct the gradients and parameter-type approximation using a phase-encoding technique.
Figures 7d, e and f show the corresponding gradients preconditioned by the main diagonal
elements of H̃ in the 1st iteration. The main diagonal elements of H̃ can scale the gradients
but cannot mitigate the cross-talk. Comparing Figures 7d, e and f with the true model per-
turbations, we can observe that P-wave velocity perturbation can be estimated very well.
While some artifacts show up in the gradients for S-wave velocity and density, as indicated
by the black circles. Figures 7g, h and i show the estimated model perturbations precondi-
tioned by parameter-type approximation. We can observe that the artifacts are alleviated to
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some extent.

CONCLUSIONS

In this research, we show that the multi-parameter approximate Hessian and its parameter-
type approximation can be constructed using adjoint-state method efficiently. The parameter-
type approximation preconditioning is then practiced on a multi-scatter example and a mod-
ified Marmousi-II example to verify its effectiveness in suppressing cross-talk.
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