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Predicting oil sands viscosity from well logs using an industry 
provided dataset 

Eric A. Rops and Laurence R. Lines 

ABSTRACT 
This study is an expansion of the work the author did in the previous CREWES report 

(Rops & Lines 2015), where it was demonstrated that heavy oil viscosity could be predicted 
directly from well logs within 25% error using a limited dataset. To further explore this 
idea, Donor Company has generously provided viscosity data from their Athabasca North 
and Athabasca South oil sands development projects, with multiple measurements per well. 

Multi-attribute analysis enables a target attribute (viscosity) to be predicted using other 
known attributes (the well logs). In the Athabasca North area, P-wave sonic and Density 
porosity were used to predict viscosity and the average validation error was 147,000cP, or 
19% of the total viscosity range. In the Athabasca South area, medium resistivity, gamma 
ray, and P-wave sonic were used to predict viscosity and the average validation error was 
only 70,000 cP, or 13% of the total viscosity range.  

 

INTRODUCTION 
Most of the world’s oil resources are heavy, viscous hydrocarbons that are difficult and 

costly to produce and refine. With high oil prices and demand, and production of most 
conventional-oil reservoirs in decline, industry focus in many parts of the world is shifting 
to exploitation of heavy oil.  

The fluid property that most greatly affects productivity and recovery is viscosity 
(Batzle et al 2006). The more viscous the oil, more energy needs to be injected into the 
system to reduce the viscosity to allow it to flow. Conventional oil viscosity can range from 
1 centipoise (cP) [0.001 Pa*s] which is the viscosity of water, to about 10 cP [0.01 Pa*s]. 
Viscosity of heavy and extra-heavy oils can range from 10 cP [0.01 Pa*s] to 10,000 cP [10 
Pa*s]. The most viscous hydrocarbon, bitumen, is a solid at room temperature and softens 
readily when heated. Viscosity of bitumen can range from 10,000 cP [10 Pa*s] to more 
than 1,000,000 cP [1,000 Pa*s] (Alboudwarej et al 2006). Figure 1 shows the logarithmic 
scale of viscosity subdivided by the grade category of oil, and compares it to the viscosities 
of typical items found in our kitchen. Figure 1 also illustrates the temperature-dependence 
of viscosity. Clearly, increasing reservoir temperature decreases the viscosity. 
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FIG. 1. Oil viscosities by grade category, compared to typical kitchen items. Note that viscosity 
has a logarithmic scale (ConocoPhillips Oil Sands website). 

Figure 2 shows core plug measurements from the oil sands about 50 km south-southwest 
of Fort McMurray, Alberta (Kato et al. 2008). The measurements show that both Vp and 
Vs decrease with increasing temperature (or decreasing viscosity).   

 

FIG. 2. P-wave and S-wave velocities of oil sands core plugs as a function of temperature at a 
constant pore pressure of 700 psi and confining pressure 900 psi (Kato et al. 2008). 
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In addition to its temperature dependence, measurements from Alberta oil sands 
operations indicate that viscosity also increases with reservoir depth. Figure 3 shows a 
depth-viscosity plot from ConocoPhillips’s Surmont SAGD project, which is located only 
10km south of the Athabasca South study area that this report is largely based on. It is not 
fully understood why bitumen viscosity increases with reservoir depth, but one of the 
proposed mechanisms is the increased biodegradation near the base of the reservoir due to 
the bottom-water (ConocoPhillips 2015). 

 

FIG. 3. Core sample viscosity measurements of the McMurray formation from ConocoPhillips’s 
Surmont SAGD oil sands operation, located only 10km south of the Athabasca South project. This 
data shows that bitumen viscosity increases with depth in the McMurray formation (ConocoPhillips 
2015).  

 
Goal of this study 

This study is an expansion of the work the author did in a previous CREWES report 
(Rops & Lines 2015), where it was demonstrated that viscosity could be predicted directly 
from well logs within 25% error. However due to the lack of publicly available viscosity 
data, the previous study was limited to a dataset of only 13 wells, with one viscosity 
measurement per well. 

Donor Company has generously provided viscosity measurements for two of their oil 
sands development areas, with multiple measurements per well. The goal of this study is 
to establish a correlation between the measured viscosity values, and all of the available 
well log curves using multi-attribute analysis. Thanks to the large dataset provided by 
Donor Company, this study should also determine whether or not this geostatistical method 
of viscosity prediction is actually feasible.  
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THEORY – MULTI ATTRIBUTE ANALYSIS 
The theory of multi-attribute analysis is explained in detail in a previous CREWES 

report in this volume (Rops & Lines 2015). A very brief summary is outlined here, with an 
additional section about the convolutional operator. 

Figure 4 illustrates the basic multi-attribute problem, showing the target log and, in this 
case, three attribute logs to be used to predict the target attribute (Hampson-Russell 2013). 

 

 

FIG. 4. The basic multi-attribute regression problem showing the target log and in this example, 
the 3 attributes to be used to predict the target (Hampson-Russell 2013).   

To lay out the theory of multi-attribute prediction, let us assume that the target log is P-
wave velocity, attribute 1 is bulk density, attribute 2 is gamma-ray, and attribute 3 is 
resistivity. The goal in this example is to predict P-wave velocity (in the depth domain) 
from the bulk density, gamma-ray, and resistivity curves.  

We can write the fundamental equation for linear prediction as: 

𝑉𝑉𝑉𝑉(𝑧𝑧) = 𝑤𝑤0 + 𝑤𝑤1𝐷𝐷(𝑧𝑧) + 𝑤𝑤2𝐺𝐺(𝑧𝑧) + 𝑤𝑤3𝑅𝑅(𝑧𝑧)                                     (1) 

where Vp(z) is P-wave velocity in m/s, D(z) is bulk density in kg/m3, and R(z) is resistivity 
in ohm*m. The regression coefficients w1, w2 …wn, can be solved for using least squares, 
and the best predictor attributes can be determined using a statistical method called step-
wise regression (Russell 2004). Next, a method called cross-validation is used to determine 
how many attributes should be used to predict the target log (Russell 2004). 

Please refer to Rops & Lines (2015) for a more complete explanation of the theory 
behind multi-attribute analysis. 
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The convolutional operator 

The multi-attribute analysis explained so far correlates each target depth sample with 
the corresponding sample on each log attribute (as in Figure 4). By using a convolutional 
operator, each target sample is predicted using a weighted average of a group of samples 
on each attribute as shown in Figure 5 (Hampson-Russell 2013). For example, if the 
operator length is set to 5, then each target log sample will be predicted using weighted 
values of 5 neighboring samples on the attributes.  

 

 

FIG. 5. Illustration of a 5-point convolutional operator, where 5 points for each attribute are 
averaged for every single point on the target attribute (Hampson-Russell 2013). 

 

Instead of using Equation 1 to predict the target attribute, using a convolutional operator 
modifies the equation for linear prediction to look like: 

𝑉𝑉𝑉𝑉(𝑧𝑧) = 𝑤𝑤0 + 𝑤𝑤1 ∗ 𝐷𝐷(𝑧𝑧) + 𝑤𝑤2 ∗ 𝐺𝐺(𝑧𝑧) + 𝑤𝑤3 ∗ 𝑅𝑅(𝑧𝑧)                             (2) 

where “*” represents convolution by an operator (Hampson-Russell 2013).  

Using the convolutional operator is like adding more attributes, it will always improve 
the prediction error, but the validation error may not improve and the danger of over-
training is increased (Rops & Lines 2015). Figure 6 shows a validation error plot where 5 
different operator lengths are used to predict P-wave velocity (Hampson-Russell 2013). In 
this example the validation error is minimized when a 7-point operator is used with 6 
attributes, and using a 9-point operator over-trains the data. 
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FIG. 6. Validation Error plot for 5 different operator lengths (Hampson-Russell 2013). 

 

DATA AND RESULTS 
The viscosity measurements used for this study were provided by Donor Company from 

their Athabasca North and Athabasca South oil sands projects. Figure 7a shows a regional 
map of where the projects are located. The wells each had cores taken from the McMurray 
formation. The bitumen was extracted from the cores by a 3rd party laboratory and the 
kinematic viscosities were measured at 35oC, 55oC, and 75oC. The measurements at 35oC 
were used for this study which most closely resembles reservoir conditions. Viscosity was 
measured in multiple intervals, ranging from 2 to 8 depth samples per well. The majority 
of wells had 3 viscosity measurements. 

Athabasca North Data 
Figure 7b shows a zoomed-in view of the Athabasca North project location. There are 

24 wells in this area with viscosity measurements which have all of the well log attributes 
available in LAS format. The viscosities (measured at 35oC) range from 35,000 cP to 
802,000 cP, with an average measured viscosity of 229,000 cP. Note that the virgin 
reservoir conditions would be cooler than 35oC, and the viscosities even higher. 

In order to train a multi-attribute relation to predict viscosity from other logs, we need 
to have viscosity “logs” in the Hampson-Russell Emerge® database as well. Viscosity logs 
were manually created for each well by linearly interpolating the viscosities between each 
measurement point, and nulling the log everywhere outside of the reservoir interval. This 
is shown in Figure 8, where the six viscosity measurements are denoted by the red points, 
and the black curve is the interpolated viscosity log. The expected trend of viscosity 
increasing with depth is also apparent. The yellow areas highlight the training intervals, 
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FIG. 8. Illustration of generating the viscosity “logs” and selection of the training intervals in one of 
the Athabasca North study wells. The red dots on the left are the provided viscosity measurements 
and the black curve is the interpolated viscosity log. Note that viscosity is presented on a logarithmic 
scale from 10,000 cP to 1,000,000 cP. The yellow areas highlight the training intervals (the mud 
barriers had to be avoided as shown).   

 

FIG. 7a. Location map of the Athabasca North 
and Athabasca South projects (Google Earth®). 

 

 

  

FIG. 7b. Zoomed-in view of the Athabasca North 
project area. All of the study wells are located within 

the red circle. Image from geoSCOUT®. 
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and note that the mud barriers had to be avoided when selecting the training intervals. The 
low-permeability shale intervals act as barriers and do not contain bitumen, so if they were 
included in the training it would lead to highly erroneous viscosity predictions. 

Figure 8 also serves as a nice example as a type-log for the Athabasca North area. The 
McMurray oil sands reservoir is a very clean sand as indicated by the low gamma-ray, and 
is very porous. From the porosity logs in the area, porosity ranges are between 30% and 
40%. The high resistivity values indicate the presence of hydrocarbons, and unlike 
conventional oil settings there actually little separation between the resistivity logs due to 
the low invasion profile of the high viscosity oil sands (Rider & Kennedy 2011). Another 
key petrophysical difference between conventional and oil sands settings is the relative 
magnitudes of the resistivity logs. In conventional settings, resistivity logs are ordered such 
that Rdeep > Rmedium > Rshallow in hydrocarbon bearing intervals (Rider & Kennedy 
2011). In bitumen settings, the shallow resistivity curve actually reads higher than the deep 
and medium curves (Rshallow > Rmedium > Rdeep). This is due to the low invasion profile 
of the drilling mud, and the tool measurement theory (Kevin Pyke, petrophysicist, personal 
communication, Nov 2, 2015).  

Before the prediction results are presented, some notable issues with the well logs in 
Athabasca North should be mentioned. Figure 9 shows another example well, and there is 
frequent “criss-crossing” between the deep and shallow resistivity logs, which should not 
happen. The S-wave sonic and SP (spontaneous potential) logs throughout Athabasca 
North are also questionable (David Gray, personal communication, Oct 30, 2015). These 
issues could have an impact on the viscosity predictions in Athabasca North. 

FIG. 9. Illustrating the issues with the resistivity logs in Athabasca North. The scales all increase 
from left to right, and the yellow areas highlight the training intervals. There is frequent “criss-
crossing” between the deep and shallow resistivity curves, which is strange. The S-wave sonic and 
spontaneous potential logs are also questionable throughout Athabasca North (David Gray, 
personal communication, Oct 30, 2015). 
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Viscosity Prediction Results – Athabasca North 
We will now use the multivariate procedure described in Rops & Lines (2015) to predict 

new pseudo-viscosity logs. The wells with all of the log attributes available in LAS format 
(24 wells) were used to train the train the relationship between viscosity and the well log 
attributes. Figure 10 shows the graphical training and validation errors of the multi-attribute 
analysis, along with the list of attributes used. Note that each row in the list corresponds to 
a particular multi-attribute transform and includes all the attributes above it. For example, 
the first row tells us that the best attribute to use is (1 / P-sonic [us/m]). The second row 
tells us that 1 / (P-sonic [us/m]) and (density porosity [%])2 together is the best pair of 
attributes to use.  

 
 Target (cP) Final Attribute Units Validation Error (cP) 
1 Viscosity 1 / (P-wave sonic) 1 / (μs/m) 156,138 
2 Viscosity (Density Porosity)2 (decimal)2 147,687 
3 Viscosity ln (SP) ln(mV) 142,087 
4 Viscosity (Neutron Porosity)2 (decimal)2 138,472 
5 Viscosity Weight Percent Bitumen decimal 138,035 
6 Viscosity ln (|Resistivity Separation|) ln(ohmm) 138,673 
7 Viscosity Sqrt(Deep Resistivity) Sqrt(ohmm) 136,868 
8 Viscosity 1 / Caliper 1 / mm 136,998 
FIG. 10. Emerge™ prediction error plot for viscosity (top), and the list of attributes with their 

associated validation errors (bottom). All of the well attributes from the 24 complete Athabasca 
North wells were used. The training error (all wells) is shown by the black dots and the validation 

error is shown by the red dots. Note that each row in the list corresponds to a particular multi-
attribute transform and includes all the attributes above it.  

Note that I combined both the error plot and the attribute list into a single figure (Figure 
10). This is because they go directly hand in hand and to save space. 
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From Figure 10, the average validation error remains fairly flat at about 138,000 cP after 
seven attributes, which is 18% of the total viscosity range of the study wells. This tells us 
that an optimum fit between viscosity and our well logs is found by using the top four 
attributes in Table 1. Using any additional attributes risks over-training the relationship. 

However, the results show that the SP (spontaneous potential) log is the third most 
important attribute to use. My first thought is that this does not make intuitive sense 
because SP does not have an absolute scale. Log analysts care about relative deflections of 
the SP curve (Rider & Kennedy 2011). Using an attribute without an absolute scale to 
predict absolute viscosity makes me nervous. Secondly, the SP logs in this area are 
questionable (David Gray, personal communication, Oct 30, 2015). The analysis was 
therefore modified to omit the SP log, and the updated results are displayed in Figure 11. 

 
 Target (cP) Final Attribute Units Validation Error (cP) 
1 Viscosity 1 / (P-wave sonic) 1 / (μs/m) 156,138 
2 Viscosity (Density Porosity)2 (decimal)2 147,687 
3 Viscosity (Neutron Porosity)2 ln(mV) 146,326 
4 Viscosity ln (|Resistivity Separation|) (decimal)2 144,903 
5 Viscosity sqrt(Weight Percent Bitumen) sqrt(decimal) 144,430 
6 Viscosity 1 / (S-P sonic difference) 1 / (μs/m) 144,507 
7 Viscosity 1 / (VpVs Ratio) unitless 143,287 
8 Viscosity 1 / Caliper 1 / mm 143,388 
FIG. 11. Emerge™ prediction error plot for viscosity (top), and the list of attributes with their 

associated validation errors (bottom). The 24 complete Athabasca North wells were used, with 
the SP log omitted from the analysis. The training error (all wells) is shown by the black dots and 

the validation error is shown by the red dots. Note that each row in the list corresponds to a 
particular multi-attribute transform and includes all the attributes above it.  
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From this result, it appears that the optimum viscosity prediction is done using the top two 
attributes: 1 / (P-sonic [us/m]) and (density porosity [%])2. Beyond two attributes, even 
though there are small validation error improvements, there is also a higher risk of false 
correlations due to adding excess attributes (over-training). The average validation error 
using two attributes is about 147,000 cP, which is 19% of the total viscosity range of the 
study wells (35,000 cP to 802,000 cP). The prediction equation can be written as: 

𝜼𝜼 = −𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 + 𝟖𝟖𝟖𝟖𝟐𝟐𝟖𝟖𝟐𝟐𝟐𝟐𝟖𝟖𝟖𝟖𝟐𝟐�
𝟐𝟐

𝑷𝑷 − 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔�
+ 𝟖𝟖𝟐𝟐𝟖𝟖𝟐𝟐𝟖𝟖𝟖𝟖𝟐𝟐(𝑫𝑫𝑷𝑷𝑫𝑫𝑫𝑫)𝟐𝟐          (𝟖𝟖) 

where η is kinematic viscosity in centipoise (cP) at a specific depth sample, P-wave sonic 
is measured in μs/m, and DPSS is density porosity (sandstone matrix) as a fraction.  

Figure 12 shows the prediction results for a good predictor well, a bad predictor well, 
and an average well plotted beside the logs used in the prediction. Each of the 24 wells 
were systematically left-out and predicted from the remaining 23 wells. The reservoir 
intervals are highlighted in yellow, which are the only intervals we care about, and all of 
the wells are scaled the same. In mud barriers between the reservoir intervals the viscosity 
predictions are nonsense, which is to be expected. 

For the successful well (12b), P-velocity increases (or P-slowness decreases) with 
increasing viscosity as Equation 3 states. For the bad well (12a), P-velocity actually 
decreases in the bottom portion which could explain why the base reservoir prediction fails. 
For the density porosity predictor, no obvious visual trend relating to viscosity is present, 
however the log is much “noisier” in the bad predictor well (12a), and is more coherent 
and continuous in the successful prediction intervals (12b and 12c). 

It is interesting that resistivity does not come up as an important viscosity predictor, 
since the first study of this method (Rops & Lines 2015) showed that resistivity was the 
second most important viscosity predictor. Resistivity is also sensitive to changing 
reservoir fluid types, so one might deduce that it should be a helpful viscosity predictor.  
The fact that resistivity did not come up as a predictor is likely a result of the questionable 
behavior of the resistivity logs in Athabasca North. Analysis of the wells from the 
Athabasca South project (next section) reveal how improved well data quality leads to 
better viscosity predictions. 
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FIG. 12. Athabasca North viscosity prediction (validation) results for a bad predictor well (a), a good predictor well (b), and an average well (c). 
Each of the 24 wells were systematically left-out and predicted from the remaining 23 wells. The black curves in the viscosity tracks are the true 
(interpolated) viscosities and the red curves are the predicted viscosities using Equation 3. The logs used to predict viscosity are also plotted. 
The yellow areas highlight the reservoir intervals. The denoted errors are the average validation errors of each training interval within the well. 

 Credit: Hampson-Russell Emerge™ 
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Before moving on, an interesting exercise is to omit the top attribute from the analysis 
to see what the most important attributes would be in the absence of the top predictor. This 
is shown in Figure 13, where the P-wave sonic log was removed from the analysis. 

 
 Target (cP) Final Attribute Units Validation Error (cP) 
1 Viscosity ln(Water Saturation) ln(decimal) 161,753 
2 Viscosity 1 / (S-wave sonic) 1 / (μs/m) 160,203 
3 Viscosity ln(S-P sonic difference) ln(μs/m) 153,985 
4 Viscosity (Neutron Porosity)2 (decimal)2 147,845 
5 Viscosity ln(SP) ln(mV) 141,846 
6 Viscosity (Density Porosity)2 (decimal)2 139,317 

FIG. 13. Emerge™ prediction error plot for viscosity (top), and the list of attributes with their 
associated validation errors (bottom). The 24 complete Athabasca North wells were used, with 

the P-wave sonic log omitted from the analysis.  

The validation errors have increased which is to be expected. However it is interesting 
that when P-wave sonic is dropped, the water saturation log rises to the top. Water 
saturation is a petrophysically-derived attribute which is directly related to the resistivity 
logs. The general form of the water saturation equation was defined by Archie (1941): 

𝑆𝑆𝑤𝑤 = �
𝐹𝐹𝑅𝑅𝑤𝑤
𝑅𝑅𝑡𝑡

                                                                  (4) 

where Sw is water saturation as a decimal, F is the formation resistivity factor (constant), 
Rw is the resistivity of the formation fluid in ohm*m, and Rt is the measured resistivity of 
the formation in ohm*m, which is often assumed to equal the deep resistivity log (Rider 
and Kennedy 2011). 

 
The fact that water saturation is the second best single viscosity predictor suggests that 

the resistivity logs could actually be good viscosity predictors if they were better quality. 
It also suggests that bitumen saturation (So) could have a role in viscosity prediction, where 
So = (1 – Sw).  
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Athabasca South Data 
Figure 14 shows a zoomed-in view of the Athabasca South project location, which is 

located about 10km south of the Athabasca North project. Figure 15 shows a type-well in 
Athabasca South.  

 
FIG. 14. Zoomed-in view of the Athabasca South project area. All of the study wells are located 

within the red circle. Image from geoSCOUT®. 

FIG. 15. Type well of the Athabasca South project area. The red dots on the left are the provided 
viscosity measurements and the black curve is the interpolated viscosity log. The viscosity is 
presented on a logarithmic scale from 10,000 cP to 1,000,000 cP. The yellow areas highlight the 
training intervals (the mud barriers had to be avoided as shown). There is bottom-water present at 
the base of the reservoir, based on the low resistivity, high porosity, and high sand content. 
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There are 40 wells in this area with viscosity measurements which have all of the well log 
attributes available in LAS format. The viscosities (measured at 35oC) range from 9,000 
cP to 550,000 cP, with an average measured viscosity of 121,000 cP. Note that the virgin 
reservoir conditions would be cooler than 35oC, and the viscosities even higher. 

Viscosity logs were manually created for each well by the same method as in Athabasca 
North, and illustrated in Figure 15. Similarly, the mud barriers were avoided when selecting 
the training intervals to avoid highly erroneous viscosity predictions. A notable qualitative 
difference in Athabasca South is that the resistivity logs appear more consistent than in 
Athabasca North. As in, the expected trend of Rshallow > Rmedium > Rdeep in bitumen 
saturated intervals was true most of the time, with the exception of a few intervals where 
the deep and shallow resistivity curves intersected. The medium resistivity curve 
consistently measured values between Rdeep and Rshallow in nearly all cases. Figure 15 
also nicely illustrates the presence of bottom-water below the bitumen, which is believed 
to be a factor causing viscosity to increase with reservoir depth. 

Viscosity Prediction Results - Athabasca South 
We will now use the multivariate procedure described in Rops & Lines (2015) to predict 

new pseudo-viscosity logs in Athabasca South. The wells with all of the log attributes 
available in LAS format (40 wells) were used to train the train the relationship between 
viscosity and the well log attributes. The input attributes were: caliper, density porosity 
(sandstone matrix), neutron porosity (sandstone matrix), effective porosity, neutron-
density separation, P-wave sonic, S-wave sonic, S-P sonic separation, VpVs ratio, 
photoelectric factor (PE), gamma-ray, spontaneous potential (SP), medium resistivity, 
shallow-deep resistivity separation, water saturation, and weight percent bitumen. The 
deep and shallow resistivity logs were omitted since the medium resistivity log was the 
most consistent.  

Figure 16 shows the graphical training and validation errors of the multi-attribute 
analysis, along with the list of the attributes used. Note that each row in the list corresponds 
to a particular multi-attribute transform and includes all the attributes above it. This result 
shows that the optimum viscosity prediction can be done using the top four attributes, 
beyond that the validation error remains almost totally flat. The average validation error is 
about 72,000 cP, which is 13.3% of the total viscosity range of the study wells (9,000 cP 
to 550,000 cP). 

The analysis so far has correlated each viscosity log value with the corresponding 
sample of each well log (ie. using an operator length of 1). We have not yet tried using a 
weighted average of the well logs (Figure 5) to predict viscosity. Figure 17 shows the 
prediction errors as a function of different operator lengths, using the same attributes as 
listed in Figure 16. From this result, the optimum viscosity prediction is found using the 
top four attributes with a 21-point operator, with an average validation error of 70,412 cP 
(13.0% of the total viscosity range). In this case, an operator length of 21 has improved the 
viscosity prediction by 1,600 cP. Note that the 21-point operator starts to get unstable when 
using six or more attributes, which suggests that using an operator length any larger risks 
over-training the data. 



Rops and Lines 

16 CREWES Research Report — Volume 27 (2015)  

 
 Target (cP) Final Attribute Units Validation Error (cP) 

1 Viscosity 1 / (Medium Resistivity) 1 / (ohmm) 79,052 
2 Viscosity sqrt(Gamma Ray) sqrt(API) 75,917 
3 Viscosity 1 / (P-wave sonic) 1 / (μs/m) 73,673 
4 Viscosity ln (|Resistivity Separation|) ln(ohmm) 72,022 
5 Viscosity ln(Spontaneous Potential) ln(mV) 71,888 
6 Viscosity (Effective Porosity)2 (decimal)2 71,894 
7 Viscosity 1 / (Water Saturation) 1 / (decimal) 71,857 
8 Viscosity Weight Percent Bitumen decimal 71,775 

FIG. 16. Emerge™ prediction error plot for viscosity (top), and the list of attributes with their 
associated validation errors (bottom). The 40 complete Athabasca South wells were used, with the 
deep and shallow resistivity logs omitted from the analysis. The training error (all wells) is shown 
by the black dots and the validation error is shown by the red dots. Note that each row in the list 
corresponds to a particular multi-attribute transform and includes all the attributes above it.  

 
FIG. 17. Validation error plot for the 40 complete Athabasca South wells as a function of operator 
length. The validation error improves as the operator length increases for the range of lengths 
tested. The optimum prediction is achieved using 4 attributes and a 21-point operator. 
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The prediction equation using a 1-point operator (Figure 16) can be written as: 

𝜼𝜼 = −𝟗𝟗𝟐𝟐𝟖𝟖𝟐𝟐𝟖𝟖 + 𝟗𝟗𝟖𝟖𝟖𝟖𝟖𝟖𝟐𝟐𝟐𝟐�
𝟐𝟐

𝑹𝑹𝒘𝒘𝒔𝒔𝑹𝑹𝒘𝒘𝑹𝑹𝒔𝒔𝑹𝑹𝑹𝑹�
− 𝟖𝟖𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐�𝑮𝑮𝒘𝒘𝑹𝑹𝑹𝑹𝒘𝒘𝑹𝑹𝒘𝒘𝑮𝑮

+ 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟖𝟖𝟖𝟖𝟖𝟖𝟐𝟐�
𝟐𝟐

𝑷𝑷 − 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔�
− 𝟐𝟐𝟖𝟖𝟗𝟗𝟐𝟐𝟗𝟗𝒍𝒍𝒔𝒔(|𝑹𝑹𝒘𝒘𝒔𝒔𝑫𝑫𝒘𝒘𝑹𝑹𝒘𝒘𝑹𝑹𝒘𝒘𝑹𝑹𝒔𝒔𝒔𝒔𝒔𝒔|)            (5) 

where η is kinematic viscosity in centipoise (cP) at a specific depth sample, ResMedium 
is measured in ohm*m, GammaRay is measured in API units, P-sonic is measured in μs/m, 
and |ResSeparation| is the absolute value of the deep and shallow resistivity separation 
measured in ohm*m. The full prediction equation using a 21-point operator is found in 
Appendix A. 

Figure 18 shows the prediction results for a good predictor well, a bad well where the 
base reservoir fails by about 230,000 cP, and an average well where the top reservoir 
somewhat fails by about 55,000 cP. Each of the 40 wells were systematically left-out and 
predicted from the remaining 39 wells. The reservoir intervals are highlighted in yellow, 
which are the only intervals we care about. In mud barriers between the reservoir intervals 
the viscosity predictions are meaningless. 

For the successful wells (18b and 18c), resistivity decreases with increasing viscosity 
as Equation 5 states. For the bad well (18a), resistivity stays relatively constant which could 
explain why the base reservoir prediction fails. For the resistivity separation predictor, Well 
18b has obvious separation and Well 18c does not, however both successfully predict the 
high viscosities at the base, suggesting that the separation may not be an important 
predictor after all. As for the Vp predictor, there is no obvious Vp increase (or P-slowness 
decrease) with increasing viscosity in Well 18b or Well 18c as Equation 5 states. However 
Vp seems to decrease with depth in Well 18a, which could also help explain the failed 
prediction at its base. 

Similar to the exercise performed earlier for Athabasca North, the top predictor attribute 
(resistivity) was omitted from the analysis to see what the most important attributes would 
be in the absence of resistivity (Figure 19). The best predictor appears to be ln(SP) based 
on this result. SP measures natural electric potential differences and can detect permeability 
contrasts between beds (Rider & Kennedy 2011). It seems strange that SP is once again 
coming up as a predictor, because the SP log does not have an absolute scale. Log analysts 
care about relative deflections of the SP curve (Rider & Kennedy 2011).  

In attempt to better understand this behavior, Figure 20 shows the viscosity predictions 
from Well 18c using only single attributes to better understand the dynamic behavior of 
the different predictors. Figure 20a shows the prediction using only 1/(Medium Resistivity 
[ohmm]), which is clearly the most dynamic predictor (it predicts viscosity with the most 
detail). Figure 20b uses only 1/(P-sonic [μs/m]), and Figure 20c uses only 1/(Gamma Ray 
[API]), both of which appear to be less sensitive predictors than 1/(Medium Resistivity). 
Figure 20d uses only ln(SP [mV]), which simply predicts a relatively constant value. In 
other words, Figure 20d is basically saying that in the absence of a good quality predicting 
attribute, transform the SP log to a relatively-constant value that represents an average of 
all the known viscosities. For reference, the linear SP prediction equation is written as: 
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FIG. 18. Athabasca South viscosity prediction (validation) results for a bad predictor well (a), a good predictor well (b), and an average well (c). Each 

of the 40 wells were systematically left-out and predicted from the remaining 39 wells. The black curves in the viscosity tracks are the true 
(interpolated) viscosities and the red curves are the predicted viscosities using Equation A1. The logs used to predict viscosity are also plotted. The 

yellow areas highlight the reservoir intervals. Credit: Hampson-Russell Emerge™ 
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 Target (cP) Final Attribute Units Validation Error (cP) 

1 Viscosity ln(Spontaneous Potential) ln(mV) 84,600 
2 Viscosity 1 / (Gamma Ray) 1 / API 83,136 
3 Viscosity 1 / (P-wave sonic) 1 / (μs/m) 81,610 
4 Viscosity sqrt(S-wave sonic) sqrt(μs/m) 81,752 

FIG. 19. Prediction error plot for viscosity (top), and the list of attributes with their associated 
validation errors (bottom). The 40 complete Athabasca South wells were used, and the resistivity 
logs were completely omitted from the analysis. 

 
FIG. 20. Viscosity predictions for well 18c using only single attributes to see the dynamic behavior 
of the different predictors. (a) 1/(Medium Resistivity) is used. (b) 1/(P-sonic [μs/m]) is used.              
(c). 1/(Gamma Ray) is used. (d) ln(Spontaneous potential) is used. The black curves in the viscosity 
tracks are the true viscosities, and the red curves are the predicted viscosities.  
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𝜼𝜼 = 𝟐𝟐𝟖𝟖𝟐𝟐𝟗𝟗𝟐𝟐𝟐𝟐 + 𝟐𝟐𝟗𝟗𝟐𝟐𝟗𝟗𝒍𝒍𝒔𝒔(|𝑫𝑫𝑷𝑷|)                                                  (6) 

where η is kinematic viscosity in centipoise (cP) at a specific depth sample, and SP is 
the spontaneous potential log measured in mV. The y-intercept is close to the average 
measured viscosity of the Athabasca South area, and the 2nd term corrects the prediction 
very slightly based on the SP log. 

Comments about the predicting attributes 
Comparing the prediction results between Athabasca North and Athabasca South, a 

common theme is that both the P-wave sonic and resistivity logs come up as top predictors 
(recall from Figure 13 that the water saturation log came up at the 2nd best solo predictor, 
which is directly related to the resistivity logs).  

 
From the core plug measurements of Figure 2, both Vp and Vs decrease with increasing 

temperature (or decreasing viscosity). Since temperature and viscosity are closely related, 
it makes sense for Vp and Vs to be sensitive to viscosity variations as well. It is surprising 
that Vs never came up as a predictor, and that could be a result of the questionable quality 
of the shear sonic data in the project area. With better shear sonic data, the viscosity 
predictions would likely be improved further. 

 
Resistivity logs are sensitive to changing reservoir fluid types, so it makes sense that 

resistivity came up as a viscosity predictor, although the exact mechanism is not known. 
The degree of bitumen saturation in the reservoir (So = 1 - Sw) from Equation 4 might also 
play a role in predicting viscosity in which case the resistivity of the formation water (Rw), 
which can change vertically and laterally, would become important. There is also a 
relationship between Vp and resistivity, first given by Faust (1953): 

 

𝑽𝑽𝑹𝑹 = 𝜸𝜸 �𝒁𝒁
𝑹𝑹𝟖𝟖
𝑹𝑹𝒘𝒘

�
𝟐𝟐/𝟐𝟐

                                                            (7) 

where Vp is P-wave velocity in the fluid saturated rock in ft/s, γ is a constant, Z is depth in 
feet, R0 is the resistivity of 100% water saturated rock in ohm*m, and Rw is the formation 
water resistivity in ohm*m. It is not clear yet whether the separation of the resistivity 
curves is a viable predictor due to the inconsistency of the deep and shallow resistivity logs 
in the project area.  

 
Gamma ray came up as the second top predictor for Athabasca South (Figure 16). The 

gamma ray log measures the natural radioactivity of the formation, and is commonly used 
to calculate shale volumes and differentiate between sand units and shale units (Rider & 
Kennedy 2011). A physical reason why the gamma ray log would be related to viscosity is 
unclear, however gamma ray is related to other logs. For example, in reservoir intervals 
where gamma ray decreases, Vp tends to decrease, resistivity increases, and density 
decreases.  
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CONCLUSIONS AND FUTURE WORK 
Multi-attribute analysis was successfully used to determine a relationship between 

bitumen viscosity and well logs in both the Athabasca North and Athabasca South project 
areas. In Athabasca North, P-wave sonic and Density porosity were used to predict 
viscosity and the average validation error for all wells was 147,000cP, or 19% of the total 
viscosity range. In Athabasca South, medium resistivity, gamma ray, and P-wave sonic 
were used to predict viscosity and the average validation error for all wells was only 70,000 
cP, or 13% of the total viscosity range. 

Sensitivity testing of the predicting attributes revealed that resistivity is the most 
dynamic viscosity predictor, in that it predicts viscosity with the most detail. P-wave sonic 
was shown to be a consistent but less dynamic predictor. In the absence of good predictors, 
it was found that, mysteriously, the SP log predicts the best average viscosity.   

The importance of data quality was also observed. The resistivity, S-wave sonic, and SP 
logs in Athabasca North were of questionable quality, which was likely a factor as to why 
the validation errors in Athabasca North were twice as great as the validation errors in 
Athabasca South. However despite any influences from log data quality, both the P-wave 
sonic and resistivity logs came up as top predictors in both areas, and potential physical 
relationships to viscosity were briefly discussed. 

Estimating viscosity ultimately adds value to any heavy oil or oil sands development 
project because it is used as a main criterion to select the optimum recovery method 
(Alboudwarej et al 2006). Viscosity is also used to refine production forecasts of heavy oil 
reservoirs once a recovery process has been selected (Miller et al 2006). 

Future Work 
With improved log data, the importance of the separation of the deep and shallow 

resistivity curves could be investigated in more detail, as well as the importance of the S-
wave sonic log. Also, by incorporating estimates of how Rw varies throughout the area, the 
role of bitumen saturation in viscosity prediction could be investigated. 

The next step I would like to try is using a neural network approach to predict viscosity 
(either a probabilistic, multi-layer, or discriminant analysis approach), which adds a whole 
new level of sophistication to the linear multi-attribute approach I have used. 

It would also be interesting to see if depth and temperature could be incorporated into 
the viscosity predictions, given the strong evidence from previous studies of their 
relationships to viscosity. 
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APPENDIX A – FULL ATHABASCA SOUTH PREDICTION EQUATION 
The full prediction equation for Athabasca South using a 21-point operator can be 

written as: 

𝜼𝜼 = −𝟐𝟐𝟖𝟖𝟐𝟐𝟖𝟖𝟖𝟖𝟖𝟖 + 𝒘𝒘𝟐𝟐 ∗ �
𝟐𝟐

𝑹𝑹𝒘𝒘𝒔𝒔𝑹𝑹𝒘𝒘𝑹𝑹𝒔𝒔𝑹𝑹𝑹𝑹�
+ 𝒘𝒘𝟐𝟐 ∗ �𝑮𝑮𝒘𝒘𝑹𝑹𝑹𝑹𝒘𝒘𝑹𝑹𝒘𝒘𝑮𝑮 + 𝒘𝒘𝟖𝟖 ∗ �

𝟐𝟐
𝑷𝑷 − 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔�

+ 𝒘𝒘𝟐𝟐 ∗ 𝒍𝒍𝒔𝒔(𝑹𝑹𝒘𝒘𝒔𝒔𝑫𝑫𝒘𝒘𝑹𝑹𝒘𝒘𝑹𝑹𝒘𝒘𝑹𝑹𝒔𝒔𝒔𝒔𝒔𝒔)                                                                      (𝐀𝐀𝟐𝟐) 

where η is kinematic viscosity in centipoise (cP) at a specific depth sample, “*” represents 
convolution by an operator, ResMedium is measured in ohm*m, GammaRay is measured 
in API units, P-wave sonic is measured in μs/m, and ResSeparation is measured in ohm*m. The 
regression coefficients w1, w2, w3, w4, are 21-point operators defined as: 

w1 w2 w3 w4 
    

739811.625 -18906.47266 75359600 -327.367889 
-478696.5313 13414.67676 -25732600 -553.628723 
-232349.4063 2750.363281 6364245.5 -521.89032 
178064.6563 -5530.978027 12700955 -332.458069 
218963.125 -5101.779297 2015255.75 413.83905 
75623.21875 3.630725 -1916656.75 -878.481201 
-38504.14063 -1242.518921 8501065 -1356.082642 
-19402.44336 -1574.131958 9322693 -1289.851562 
14391.60059 -4263.109375 43566476 -1623.327637 
-5019.878906 -947.915955 -714875.125 -1315.029785 
-3265.983643 -2668.846924 3748467.25 -548.245728 
57937.41016 -2602.015625 -21597482 -472.381165 
94691.45313 -2641.947998 -13700813 -494.663818 
81574.13281 -1232.887207 11085149 -10.713683 
86353.39844 -1884.713013 -7086170 318.605499 
81566.33594 641.279114 12138783 -258.608398 
115298.3438 -1930.737915 40417296 -305.841461 
60659.97656 -1788.584351 40540524 -528.024475 
-92642.77344 -1030.180054 -31138384 -1.072974 
-159682.2969 1364.331909 -112925240 -392.900055 
155465.5313 -2362.156494 165567248 -1896.943726 
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