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Amplitude migration in v(z) media 

Oliver Lahr, Gary F. Margrave and Kay Yuhong Liu 

ABSTRACT 
This report is meant to investigate the notion that amplitude migration in a v(z) 

medium must be treated differently than migration in a constant velocity medium. It is 
based on findings that migrated shot gathers near edges do not show even remotely close 
correct amplitudes. Reasons seem to deal with the fact that geometrical, both in-phase 
and out of phase, must be dealt with. To prove this, a ray based analysis was undertaken 
to account for spreading of both kinds. Based on that, it will be shown here that 
accounting for a v(z) medium will result in migrations that restore amplitudes more 
correctly than simply assuming a constant velocity medium. In particular, we will use a 
flat reflector model and a simple AVO 3 model. Also, several cost-saving measures that 
come with this improved migration will be pointed out. 

INTRODUCTION 
As is well known, Kirchhoff migration works well in both depth and time domain. It 

has been seen to adjust for correct times and depth by a number of authors, including 
Bancroft (2008) and Rodriguez & Margrave (2007). However, a question has arisen how 
well Kirchhoff migration can preserve amplitude and what might need to be done to 
become a True Amplitude migration algorithm. . After some research, it was found that a 
number of people, including Schleicher et. al.(1993) and Zhang et. al (2000) have done 
work on this. They each use a different approach, of which the approach by Zhang et. al, 
(2000) seems to fit the pattern of the CREWES toolbox algorithms. In essence, Zhang et. 
al, (2000)  utilize the same theory and techniques as described by (Bleistein et. al., 2001) 
and account for changes in v(z) media in their calculations. At this point in time, the 
CREWES toolbox 3D migration algorithms assume a medium with a constant speed, and 
utilize the Bleistein equation to implement the calculation. According to Bleistein et. al. 
(2001), this seems to be sufficient, however, as our previous report ‘Preservation of AVO 
after migration’ (Lahr & Margrave, 2015) indicates, this might not be the case. In that 
report, surveys were to be systematically decimated in order to point out qualitatively 
how lack of data affects final results. The surveys were 1000 x 1000 m, with shot and 
receiver line spacing of 10 m, 50m, 100m and 200 m respectively. As can be seen in Fig. 
1.1, the results were not deemed satisfactory for the 10 m spacing, as we were expecting 
the migrated amplitudes to line up with the Zoeppritz curve(indicated in red). However, 
the ‘curve’ of migrated amplitudes diverges from the expected Zoeppritz result 
substantially. As will be seen in this report, part of the problem here is the edge effect, 
however, more investigation will reveal that not accounting for v(z) in the algorithm has 
led to this result of ‘incorrect’ amplitudes.   
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Fig. 1.1: At shot location x=y=0 on 1000m x 1000m survey a. Data slice at .996 ms for AVO 3 
event b. Amplitudes at that event 

The purpose of this report is to show the difference between a v(z) migration 
algorithm and a constant velocity one. To begin with, the main Kirchhoff migration 
algorithm, as pointed out by Bleistein et. al. (2001), along with a sketch of how it was 
derived will be shown. After that, a brief description of the constant velocity algorithms 
as seen in the CREWES toolbox, and its v(z) counterpart will be given. Section 4 will 
show the improved results of the v(z) migrations using a simple flat reflector and a 
simple AVO 3 reflector data set. Included in that section will be a brief discussion on 
edge effects will be given, after which some concluding remarks and comments about 
future work are made. 

  MIGRATION/INVERSION – THEORY  
In essence, the migration utilized for this project has been derived by Bleistein et. al. 

(2001) for 2D, 2.5D and 3D geometries. It is valid for a generalized 3D surface as shown 
in Fig. 2.1, where the surface has been parameterized by  𝛏𝛏, and the source and receivers 
are given by 𝐱𝐱𝑔𝑔 and 𝐱𝐱𝑠𝑠. The image point y will be described in further detail below.  

 

Fig. 2.1: Generalized representation of source, receiver and image point as per Bleistein et. al. 
(2001) – see Fig. 5.3. 

It is at this image point, that the following reflectivity formula (2.1) holds true 

Top View of slice at t=0.996 seconds and x=0, y=0
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 𝛽𝛽(𝐲𝐲) = 1
8𝜋𝜋3 ∫ 𝑑𝑑

2𝜉𝜉 |ℎ(𝐲𝐲,𝛏𝛏)|
𝑎𝑎(𝐲𝐲,𝛏𝛏)�∇𝑦𝑦∅(𝐲𝐲,𝛏𝛏)�

∙ ∫ 𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑒𝑒−𝑖𝑖𝑖𝑖∅(𝐲𝐲,𝛏𝛏)𝑢𝑢𝑆𝑆�𝐱𝐱𝑔𝑔,𝐱𝐱𝑠𝑠,𝑖𝑖� (2.1) 

where  

𝛽𝛽(𝐲𝐲) = the reflectivity at an image point y, i.e. some (x,y,z) point in Cartesian 

Coordinates 

|ℎ(𝐲𝐲, 𝛏𝛏)|= the Beylkin determinant 

𝑎𝑎(𝐲𝐲, 𝛏𝛏) = the amplitudes for both source and receivers, as per Transport equation  

∅(𝐲𝐲, 𝛏𝛏) = the total traveltime, as per Eikonal equation (Shearer, 1999, Appendix 3)  

𝑢𝑢𝑆𝑆�𝐱𝐱𝑔𝑔,𝐱𝐱𝑠𝑠,𝑖𝑖� = the scattered wavefield being inverted for, with 𝐱𝐱𝑔𝑔 and 𝐱𝐱𝑠𝑠 denoting the 
source and receiver positions  

If one takes the Beylkin determinant, the amplitudes and the total travel time together, 
i.e. 

 w= |ℎ(𝐲𝐲,𝛏𝛏)|
𝑎𝑎(𝐲𝐲,𝛏𝛏)�∇𝑦𝑦∅(𝐲𝐲,𝛏𝛏)�

11T12T (2.2) 

one has a amplitude weight for each point in the summation. These weights differ for 2, 
2.5 and 3D shot, receiver and offset geometries and have been presented by Zhang et. al. 
(2002) for a v(z) velocity medium. Section 2.3 below will outline the derivation of the 
amplitude weight given in equation 1.2 for a 3D shot migration in a v(z) medium, while 
Section 2.2 will do the same for a constant velocity medium. A more complete derivation 
for that medium can be found in (Bleistein et al., 2001, pp. 242 – 250). For the 3D 
medium, Bleistein et al. (2001, Section 6.1 and 6.2) do an analougous derivation for 2.5 
media. 

2.1 Derivation of the Inverse Function  
The inverse equation given by (2.1) arises in part due to a linearized or Born 

approximation of the solution (2.3) of wave scattering that have been modelled by the 
Helmholtz, i.e. the temporal Fourier Transform of the 3D scalar wave equation.  

 �∇2 +   � 𝑖𝑖2

𝑣𝑣2(𝐱𝐱)��  𝑢𝑢(𝐱𝐱,𝒙𝒙𝒔𝒔,𝑖𝑖) =  −𝐹𝐹(𝑖𝑖)𝛿𝛿(𝐱𝐱 − 𝒙𝒙𝒔𝒔)             (2.3) 

Here, the vectors 𝐱𝐱 and  𝒙𝒙𝒔𝒔 represent (x,y,z) locations in the 3D Cartesian coordinate 
system, where 𝒙𝒙𝒔𝒔 specifically represents the source point that has caused wave 
propagation through a velocity medium. The speed 𝑣𝑣(𝐱𝐱) is known up to a given depth 
and unknown afterwards.. This 𝑣𝑣(𝐱𝐱) can be represented pictorially for the one 
dimensional case as seen in Figure 2.2, 
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FIG. 2.2. Diagram showing background, c(x), and actual, v(x), wavespeed profile   (from Bleistein 
et. al.(2001)). 

and by equation (2.4) in 3D.    

 1
𝑣𝑣2(𝐱𝐱) =  1

𝑐𝑐2(𝐱𝐱) �1 + 𝛼𝛼(𝐱𝐱)�         (2.4) 

Here c(x) is the background velocity of the medium, and 𝛼𝛼(𝐱𝐱) represents the change in 
speed after a given depth, i.e. at the location(s) where the wave scatters. As well, the 
wavefield 𝑢𝑢(𝐱𝐱,𝒙𝒙𝒔𝒔,𝑖𝑖) can be represented as such: 

 𝑢𝑢(𝐱𝐱,𝒙𝒙𝒔𝒔,𝑖𝑖) =  𝑢𝑢𝐼𝐼(𝐱𝐱,𝒙𝒙𝒔𝒔,𝑖𝑖) +  𝑢𝑢𝑆𝑆(𝐱𝐱,𝒙𝒙𝒔𝒔,𝑖𝑖)  (2.5) 
where  

𝑢𝑢𝐼𝐼(𝐱𝐱,𝒙𝒙𝒔𝒔,𝑖𝑖)  - represents the incident wavefield and 

𝑢𝑢𝑆𝑆(𝐱𝐱,𝒙𝒙𝒔𝒔,𝑖𝑖)  - the scattered field 

Knowing that the Helmholtz equation (2.5) must satisfy the Sommerfeld Radiation 
condition (2.6) 

 𝑟𝑟𝑢𝑢 bounded, 𝑟𝑟 �∂u
𝜕𝜕𝜕𝜕
− 𝑖𝑖𝑖𝑖

𝑣𝑣
𝑢𝑢 �  → 0,𝑎𝑎𝑎𝑎 𝑟𝑟 → 0, 𝑟𝑟 =  |𝐱𝐱|   (2.6) 

a solution for the scattered wavefield, as per Bleistein et. al. (2001, p. 93) can be written 
as follows: 

 𝑢𝑢𝑆𝑆(𝐱𝐱,𝒙𝒙𝒔𝒔,𝑖𝑖) = 𝑖𝑖2 ∫ 𝛼𝛼(𝐱𝐱)
𝑐𝑐2(𝐱𝐱)

[𝑢𝑢𝐼𝐼(𝐱𝐱,𝒙𝒙𝒔𝒔,𝑖𝑖) +  𝑢𝑢𝑆𝑆(𝐱𝐱,𝒙𝒙𝒔𝒔,𝑖𝑖)]𝑔𝑔�𝐱𝐱𝒈𝒈, 𝐱𝐱,𝑖𝑖�𝑑𝑑3𝑥𝑥 𝐷𝐷   (2.7) 

Here D represents the domain of integration, and can be assumed to be the semi-
infinite domain z > 0 while 𝑔𝑔�𝐱𝐱𝒈𝒈, 𝐱𝐱,𝑖𝑖� represents a Green’s function used to arrive at 
this solution. 𝐱𝐱𝒈𝒈 denotes the location of the receivers. 

This can be reduced to  
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 𝑢𝑢𝑆𝑆(𝐱𝐱,𝒙𝒙𝒔𝒔,𝑖𝑖) = 𝑖𝑖2 ∫ 𝛼𝛼(𝐱𝐱)
𝑐𝑐2(𝐱𝐱)𝑢𝑢𝐼𝐼(𝐱𝐱,𝒙𝒙𝒔𝒔,𝑖𝑖)𝑔𝑔�𝐱𝐱𝒈𝒈, 𝐱𝐱,𝑖𝑖�𝑑𝑑3𝑥𝑥 𝐷𝐷   (2.8) 

for near zero-offset geometries with the help of the Born approximation, which specifies 
that a small 𝛼𝛼(𝐱𝐱) will imply a small 𝑢𝑢𝑆𝑆 for near-zero offset geometries.  

Surprisingly, (2.8) also holds for arbitrary offsets, provided that we have high-
frequency data. Bleistein et. al. (2001, pp 99 - 103) point this out by introducing a WKBJ 
trial solution for the Helmholtz equation, and deriving the eikonal and transport 
equations, to prove that for high frequencies the perturbation 𝛼𝛼(𝐱𝐱) will remain small. 

With this in mind, equation 2.8 can then be recast as such: 

  𝑢𝑢𝑆𝑆(𝐱𝐱,𝒙𝒙𝒔𝒔,𝑖𝑖) = 𝑖𝑖2𝐹𝐹[𝑖𝑖]∫ 𝛼𝛼(𝐱𝐱)
𝑐𝑐2(𝐱𝐱)𝑔𝑔(𝐱𝐱,𝒙𝒙𝒔𝒔,𝑖𝑖)𝑔𝑔�𝐱𝐱𝒈𝒈, 𝐱𝐱,𝑖𝑖�𝑑𝑑3𝑥𝑥 𝐷𝐷   (2.9) 

where 𝑢𝑢𝐼𝐼(𝐱𝐱,𝒙𝒙𝒔𝒔,𝑖𝑖) = 𝐹𝐹[𝑖𝑖] 𝑔𝑔(𝐱𝐱,𝒙𝒙𝒔𝒔,𝑖𝑖) (2.10). 

Letting (𝐱𝐱,𝒙𝒙𝟎𝟎,𝑖𝑖)~𝐴𝐴(𝐱𝐱,𝒙𝒙𝟎𝟎)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖(𝐱𝐱,𝒙𝒙𝟎𝟎) , one can again follow the asymptotic derivation 
given by Bleistein et. al. (2001, p.220) to get the traveltime and amplitudes from 𝐱𝐱 to 𝒙𝒙𝟎𝟎, 
and rewrite (2.9) in the following manner: 

 𝑢𝑢𝑆𝑆(𝐱𝐱,𝒙𝒙𝒔𝒔,𝑖𝑖) ≈ 𝑖𝑖2𝐹𝐹[𝑖𝑖]∫𝑑𝑑3𝑥𝑥 𝛼𝛼(𝐱𝐱)
𝑐𝑐2(𝐱𝐱)𝑎𝑎(𝐱𝐱, 𝝃𝝃)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖(𝐱𝐱,𝝃𝝃)  (2.11) 

where  

𝑎𝑎(𝐱𝐱, 𝝃𝝃)  - is the product of the amplitudes contributed by the shots and receivers and 

𝜙𝜙(𝐱𝐱, 𝝃𝝃)  - is the total travel time from source to receiver. 

The general inversion operator for (2.11) will then be 

 𝛼𝛼(𝐲𝐲) = ∫𝑑𝑑𝑖𝑖∫𝑑𝑑2𝜉𝜉𝜉𝜉(𝐲𝐲, 𝛏𝛏)𝑒𝑒−𝑖𝑖𝑖𝑖∅(𝐲𝐲,𝛏𝛏)𝑢𝑢𝑆𝑆�𝐱𝐱𝑔𝑔, 𝐱𝐱𝑠𝑠,𝑖𝑖�  (2.12) 

To determine 𝜉𝜉(𝐲𝐲, 𝛏𝛏)  consider that at x = y, at a partical reflection point, we have a 
critical point, and according to Bleistein et. al. (2001, p. 222) we can write a general 
solution of 𝛼𝛼(𝐲𝐲) as such: 

 𝛼𝛼(𝐲𝐲) ∼ ∫𝑑𝑑3𝑥𝑥𝛿𝛿(𝐱𝐱 − 𝐲𝐲)(𝐱𝐱)  (2.13) 

Now, after combining (2.11) and (2.12), it can be shown that 

 𝛿𝛿(𝐱𝐱 − 𝐲𝐲) ∼ ∫𝑖𝑖2𝐹𝐹[𝑖𝑖]𝑑𝑑𝑖𝑖 ∫𝑑𝑑2𝜉𝜉𝜉𝜉(𝐲𝐲, 𝛏𝛏)𝑒𝑒−𝑖𝑖𝑖𝑖{∅(𝐱𝐱,𝛏𝛏)−∅(𝐲𝐲,𝛏𝛏)} 𝑎𝑎(𝐲𝐲,𝛏𝛏)
𝑐𝑐2(𝐲𝐲)   (2.14) 

Then, doing a Taylor expansion on the phase vector 

 −𝑖𝑖𝑖𝑖{∅(𝐱𝐱, 𝛏𝛏) − ∅(𝐲𝐲, 𝛏𝛏)} ≈ 𝑖𝑖𝒌𝒌 ⋅ (𝐱𝐱 − 𝐲𝐲)  (2.15), 

where 𝒌𝒌 ≡ ω∇𝑦𝑦∅(𝐲𝐲, 𝛏𝛏) ≡ ω∇𝑥𝑥∅(𝐱𝐱, 𝛏𝛏)|𝒙𝒙=𝒚𝒚 (2.16), this leads to the forward/inverse 
Fourier transform like equation: 
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 𝛿𝛿(𝐱𝐱 − 𝐲𝐲) ∼ ∫𝑑𝑑3𝑘𝑘𝜉𝜉(𝐲𝐲, 𝛏𝛏)𝑖𝑖2(𝐤𝐤)𝐹𝐹[𝑖𝑖(𝐤𝐤)] 𝑎𝑎(𝐲𝐲,𝛏𝛏)
𝑐𝑐2(𝐲𝐲) �

𝜕𝜕(𝑖𝑖,𝛏𝛏)
𝜕𝜕(𝐤𝐤) � 𝑒𝑒

−𝑖𝑖𝐤𝐤⋅{𝐱𝐱−𝐲𝐲}  (2.17) 

The inverse of the Jacobian here can be rewritten as 𝑖𝑖2ℎ(𝐲𝐲, 𝛏𝛏), where ℎ(𝐲𝐲, 𝛏𝛏)is known 
as the Beylkin determinant: 

  ℎ(𝐲𝐲, 𝛏𝛏) = 𝑑𝑑𝑒𝑒𝑑𝑑

⎣
⎢
⎢
⎢
⎡
∇𝑦𝑦∅(𝐲𝐲, 𝛏𝛏)
𝜕𝜕
𝜕𝜕ξ1

∇𝑦𝑦∅(𝐲𝐲, 𝛏𝛏)
𝜕𝜕
𝜕𝜕ξ2

∇𝑦𝑦∅(𝐲𝐲, 𝛏𝛏)⎦
⎥
⎥
⎥
⎤
  (2.18) 

This determinant is of paramount importance when assigning proper amplitude 
weights at each point in the seismic data and is the focus of the next section.  

On the other hand, it can be shown that  

 𝜉𝜉(𝐲𝐲, 𝛏𝛏) = 1
8𝜋𝜋3

|ℎ(𝐲𝐲,𝛏𝛏)|𝑐𝑐2(𝐲𝐲)
𝑎𝑎(𝐲𝐲,𝛏𝛏)   (2.19) 

as the integral in (2.17) needs 𝐹𝐹[𝑖𝑖] = 1 in order to ensure that the forward and inverse 
transforms behave in a correct manner. Then, accounting for band and aperture 
limitation, one finally arrives at (2.1). Please refer to Bleistein et. al. (2001, pp. 224-227) 
for a more detailed description of this derivation. 

2.2 The Beylkin determinant  
As mentioned in Section 2.1 above, the Beylkin determinant is of paramount 

importance in determining the proper amplitude weights for the inversion described by 
(2.1). These can be derived for common shot, common receiver and common offset 
surveys, in 2D, 2.5 D and 3D. Here we will only concentrate on the 3D common shot 
derivations, describing how these are made in a constant velocity medium and a v(z) 
medium. 

2.2.1 The Beylkin determinant in a Common Shot medium 
As shown by Bleistein et. al. (2001, Section 5.2.1 and 5.2.2), the Beylkin determinant 

can be written as such for a common shot inversion: 

 ℎ(𝐲𝐲, 𝛏𝛏) = 𝑑𝑑𝑒𝑒𝑑𝑑

⎣
⎢
⎢
⎢
⎡
𝐩𝐩𝑠𝑠 + 𝐩𝐩𝑔𝑔
𝜕𝜕�𝐩𝐩𝑠𝑠+𝐩𝐩𝑔𝑔�

𝜕𝜕ξ1
𝜕𝜕�𝐩𝐩𝑠𝑠+𝐩𝐩𝑔𝑔�

𝜕𝜕ξ2 ⎦
⎥
⎥
⎥
⎤
  (2.20) 

where the two slowness vectors,  𝑝𝑝𝑠𝑠 and 𝑝𝑝𝑔𝑔, are related to the phase term as such: 

𝐩𝐩𝑠𝑠 = ∇𝑦𝑦∅(𝐲𝐲,𝐱𝐱𝒔𝒔), 𝐩𝐩𝑔𝑔 = ∇𝑦𝑦∅�𝐱𝐱𝒈𝒈, 𝐲𝐲� and  𝐩𝐩𝑠𝑠 + 𝐩𝐩𝑔𝑔 = ∇𝑦𝑦∅(𝐲𝐲, 𝛏𝛏). 

They are also each related to the eikonal equation in the following manner 
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 𝐩𝐩𝑠𝑠2 = 𝐩𝐩𝑠𝑠2 = 1
𝑐𝑐2(𝐲𝐲)  (2.21) 

And can each be seen to be orthogonal to the 𝜉𝜉𝑖𝑖 derivatives (Bleistein et. al. 2001, p. 
243).  

Pictorially, these vectors are illustrated in FIG. 2.3 below, with the opening 2𝜃𝜃 being 
the angle between the two vectors. 

 

FIG. 2.3. Geometry of slowness vectors, normal to the reflector surface at point reflection point y 
(Bleistein et. al., p.242, Figure 5.4). 

For a shot migration, (2.20) will simplify to  

 ℎ(𝐲𝐲, 𝛏𝛏) = 𝑑𝑑𝑒𝑒𝑑𝑑

⎣
⎢
⎢
⎢
⎡
𝐩𝐩𝑠𝑠 + 𝐩𝐩𝑔𝑔

𝜕𝜕𝐩𝐩𝑔𝑔
𝜕𝜕ξ1
𝜕𝜕𝐩𝐩𝑔𝑔
𝜕𝜕ξ2 ⎦

⎥
⎥
⎥
⎤
  (2.22) 

as the shot at each location is held constant. 

2.2.2 Constant velocity medium 

Defining 𝑐𝑐(𝐲𝐲) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑑𝑑𝑎𝑎𝑐𝑐𝑑𝑑 and as per the derivation outlined in Bleistein et. al. (2001, 
Section 5.2.3), by simplifying the notation in (2.20), then expanding the Beylkin 
determinant as a triple scalar product, and adjusting for shot migration, it is quite easy to 
see that (2.1) will take the following form: 

 𝛽𝛽(𝐲𝐲) = 2𝑦𝑦3
𝜋𝜋𝑐𝑐2 ∫ 𝑑𝑑

2𝜉𝜉 𝜕𝜕𝑠𝑠
𝜕𝜕𝑔𝑔2
𝑐𝑐𝑐𝑐𝑎𝑎𝜃𝜃 ∙ ∫ 𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑒𝑒−𝑖𝑖𝑖𝑖�𝜕𝜕𝑠𝑠+𝜕𝜕𝑔𝑔� 𝑐𝑐⁄ 𝑢𝑢𝑆𝑆�𝐱𝐱𝑔𝑔,𝐱𝐱𝑠𝑠,𝑖𝑖�  (2.23) 

which is the form shown by Bleistein et. al. (2001, p. 247, eq. 5.2.22) 

2.2.3 v(z) medium 

For a v(z) medium, that is for 𝑐𝑐(𝐲𝐲) varying with y, revisiting the ray theoretical 
description of how data is generated is of paramount importance. As Bleistein et. al. 
(2001) and Zhang et. al (2000), among others, pointed out, in-plane and out of plane 
geometrical spreading needs to be accounted for when dealing with a v(z) medium.  

Hence the amplitude weights as seen in (2.1) are 
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 𝑤𝑤(𝐲𝐲, 𝛏𝛏) = |ℎ(𝐲𝐲,𝛏𝛏)|

𝑎𝑎(𝐲𝐲,𝛏𝛏)�∇�𝑖𝑖𝑠𝑠+𝑖𝑖𝑔𝑔��
2  (2.24) 

where ∇�𝜏𝜏𝑠𝑠 + 𝜏𝜏𝑔𝑔�, the gradient of the travel times, is another way of specifying 
∇𝑦𝑦∅(𝐲𝐲, 𝛏𝛏). Note that this relates to the slowness vectors in the previous section. For a shot 
migration, following similar reasoning to that provided by Bleistein et. al. (2001, Section 
6.1 and 6.2) for 2.5 data, it can then be shown that  

 𝑤𝑤(𝐲𝐲, 𝛏𝛏) =
�𝑐𝑐𝑐𝑐𝑠𝑠(𝛼𝛼𝑠𝑠0)�𝑐𝑐𝑐𝑐𝑠𝑠�𝛼𝛼𝑔𝑔0�

𝑣𝑣0
�𝜓𝜓𝑠𝑠
𝜓𝜓𝑟𝑟
�
𝜎𝜎𝑠𝑠
𝜎𝜎𝑟𝑟

  (2.25) 

Here, the 𝜓𝜓 and  𝜎𝜎 terms indicate in-plane and out-of-plane spreading for both shots and 
receivers respectively, the 𝛼𝛼 terms are the opening and closing angles of the ray along 
which this set of amplitudes will be taken from and 𝑣𝑣0 is the velocity of the first layer in 
the survey. 

The in-plane spreading terms(shown here for the shot) are calculated as follows 

 𝜓𝜓𝑠𝑠= 𝑐𝑐𝑐𝑐𝑎𝑎(𝛼𝛼𝑠𝑠)∫ 𝑣𝑣(𝜁𝜁)
𝑐𝑐𝑐𝑐𝑠𝑠3𝛼𝛼𝑠𝑠(𝜁𝜁)

𝑧𝑧
0 𝑑𝑑𝜁𝜁 = 𝑐𝑐𝑐𝑐𝑎𝑎(𝛼𝛼𝑠𝑠) 𝜕𝜕𝜌𝜌𝑠𝑠

𝜕𝜕𝑝𝑝𝑠𝑠
  (2.26)  

While the out-of-plane spreading term shown here: 

 𝜎𝜎𝑠𝑠= ∫ 𝑣𝑣(𝜁𝜁)
𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼𝑠𝑠(𝜁𝜁)

𝑧𝑧
0 𝑑𝑑𝜁𝜁 = 𝜌𝜌𝑠𝑠

𝑝𝑝𝑠𝑠
  (2.27)  

The 𝛼𝛼𝑠𝑠(𝜁𝜁) terms here represent the angles at each depth point, whereas the 𝑣𝑣(𝜁𝜁) 
values are the specific velocities at each depth point up to the depth in question. 

The actual derivation, although quite straight-forward, is quite detailed and beyond the 
scope of this document. However, a good starting point is to look at the theory of ray 
tracing as described in Shearer (1999) and Krebes (2009) among others. Both sources 
mentioned here describe the simple ray tracing problem, starting with simple v(z) 
medium, showing how travel times and distances along the surfaces are calculated, before 
dealing with the general background for geometrical spreading. 

IMPLEMENTATION OF SHOT MIGRATIONS 
Although the previous discussion on arriving at the formulas for shot record 

migrations in a constant velocity and v(z)  media have been rather detailed, the 
implementation is quite straight forward. 

3.1 Implementation of constant velocity shot migration 
This involved a simple update of the kirk_shot3D.m algorithm in the CREWES 

Matlab toolbox and required an outer loop for each shot, and an inner loop for all the 
receivers. For every inner iteration the total travel time from a shot to a receiver was 
determined, as were the distances, 𝑟𝑟𝑠𝑠 and 𝑟𝑟𝑔𝑔 traveled. The phase shifted traces were then 
summed together in this loop, with the correct weighting applied for every shot/receiver 
pair. The actual data had been phase-shifted before the loop started, to account for the 
data being in the frequency domain as seen by (2.23). To speed things up, summations 
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were done on a trace by trace basis, resulting in a total # of iterations = # of shots * # of 
receivers.  

Note that the aperture included the entire survey, hence resulting in the total number of 
iterations stated here. 

3.2 Implementation of v(z) Shot inversion 
The same iteration will be performed for a v(z) migration. However, there will now be 

different weights at each location in the data, which will need to be accounted for. Also, 
the opening angles of each ray originating from the surface will need to be calculated. 
This can be done by implementing the (Chapman et. al., 1988) formulas for getting travel 
times and offsets per ray parameter p.(Shearer, 1999). The code for this has been 
implemented in the new layerext.m function in the CREWES toolbox. 

Since we can never know what actual p values to use, it was decided to create a P-
table that contained all offsets, in-line, x-line, times, etc. values based on the ray 
parameters ranging from opening angle 0 to 80 degrees. The latter angle needs to be 
picked to ensure that all offsets in the survey are covered. This has been implemented in 
createPTable.m. 

The migration, i.e. inversion, can then be done in much the same manner as the 
migration in kirk_shot3D.m. That is, one calculates the weight for the shot to target, and 
iterates over all the receivers to get the weights for each ray from target location to 
receiver, in order to calculate the integral. 

Naturally, this is incredibly time-consuming. To negate this, the P-Table was created 
first, as the velocity model and the survey would obviously not change. This data is then 
mapped to an offset table, i.e. a table which contains all the unique offsets, which is then 
read per offset for the loop described above. This code can be found in using 
createWeightsFromPTable.m. The value from this table can be loaded at runtime and can 
be used to update the amplitude weights at each point to be migrated. It was found that 
this migration performed almost as quickly as the original kirk_shot3D.m code.  

3.3 Speeding up the inversion 
Despite this, a migration in range of 10201 shots and receivers, with 10 m spacing 

between shots and shot lines, as well as receiver and receiver lines can take up to almost a 
week. To negate this, the kirk_shot3D.m and kirk_shot3D_vz.m codes were split to 
incorporate the parallel functionality of Matlab and the fact that any number of shots can 
be migrated at any one time. Hence, if one has a multi-processor machine, such as the 
CREWES Linux server, Gilgamesh, one can divide the migration across the number of 
workers that one has access too. Hence, if one has 10201 traces to migrate as well as 
10201 receivers, as we do, and divide among 101 workers, each worker would then 
perform 101 migrations as described in Section 3.1 and Section 3.2. These migrated 
traces can then be combined and saved into some kind of persistent data storage(segy 
files in our case). 
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Now, currently, CREWES only has 96 licenses for the entire department, and these 
need to be used by a number of parties, however, even with 16 workers, processing times 
have been reduced by about 85 %, that is from about a week to about a day. More details, 
including the new code kirk_shot3D_par.m, for setting up the parallel implementation, 
and kirk_shot3D_loop.m, for doing the actual migrations on a worker, are available on 
request. 

EXPERIMENTS AND RESULTS 
To show that v(z) media cannot be correctly approximated by a migration assuming 

constant media, two models were created. The main one is a simplified model based on 
the layered model by (Zhang et. al., 2002), containing only one reflector. After that, the 
second model is an AVO model created with the Reflectivity method developed by 
Kennet (1979). It contains two layers, highlighting an AVO 3 response at 150 m. Both of 
these models were used to create shots at different locations in their respective surveys, 
which were then migrated with the constant velocity kirk_shot3D.m method, and the 
newly developed kirk_shot3d_vz.m code.  

Slices of the results and Amplitude vs offset plots are shown to indicate to the user the 
differences between the algorithms. One should expect that the amplitudes for the first 
experiment should tend to 1, while the amplitudes for the second set of experiments 
should tend to their calculated AVO values.  

Note also that, the model shown by Lahr and Margrave (2015) was also investigated. 
However, even though preliminary results, as seen in Section 4.3, look encouraging, 
more investigation into this more complex data set needs to be undertaken.  

4.1 The Flat Layer model  
This model, as mentioned, is based on the model proposed by (Zhang et. al., 2002) and 

derives from the model used by (Cooper, 2010).  It involves placing a reflector of 
amplitude 1 at 150 m in a 500 m x 400 m x 400 m survey. The background velocity is 
2000+0.3z, where z increases from 0 to the depth of 500 m.  

Shots were created around the 400 x 400 m survey, utilizing test_shot_model3D.m in 
the same manner as by Cooper (2010). This involved padding the survey by 100 m on all 
sides, then using a WKBJ algorithm as implemented by shot_model3D.m in the 
CREWES toolbox. Result gathers of these shots at locations x and y = 0, 50, 100 and 200 
m are shown in FIG. 4.1. 
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FIG. 4.1. From top left to bottom right, shot records for a flat reflector at 100 m depth in v(z) = 
2000+0.3z media at location x = y = 0, 50, 100 and 200 m respectively. 

These shots were then migrated with the two algorithms mentioned above, with results 
for all shots shown in FIG. 4.2 to 4.5. 

 

 

FIG. 4.2. Results of migration for flat reflector at shot location x=y = 0 m. Top Row: using v(z) 
algorithm Bottom Row: Using constant Kirchhoff. 
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FIG. 4.3. Results of migration for flat reflector at shot location x = y = 50 m. Top Row: using v(z) 
algorithm Bottom Row: Using constant Kirchhoff. 

 

FIG. 4.4. Results of migration for flat reflector at shot location x= y = 100 m. Top Row: using v(z) 
algorithm Bottom Row: Using constant Kirchhoff. 
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Fig. 4.5. Results of migration for flat reflector at shot location x= y = 200 m. Top Row: using v(z) 
algorithm Bottom Row: Using constant Kirchhoff. 

As can be seen here, amplitude response is definitely better with the v(z) algorithm. 
Also, the amplitude response improves for both algorithms as the shots move towards the 
centre. However, the closer one goes to the edge, the more pronounced the edge effect 
becomes. This will be discussed in further detail in Section 4.4. 

 

 

4.2 The Single Layer AVO Model  
Before going on, note that the data created for the second, single layer AVO model 

being examined in this section and the more complex AVO model originally described by 
Lahr and Margrave (2015), dealt with in Section 4.3, were done with the Reflectivity 
method developed by Kennett (1979). To reiterate, this involves calculating reflection 
and transmission coefficients at the different boundaries in a layered half-space, and has 
been found to give the best seismograms for modelling purposes (Mueller, 1985). 
Simmons and Backus (1994) aptly point out the advantages of this method. 

4.2.1 Creation of simple synthetic AVO model 
As done by Lahr and Margrave (2015), the Hampson-Russell AVO modeling tool, 

was used to create the simple and more complex AVO model. First, a 2D synthetic 
seismogram was created for an upper, background layer of 300 m thickness that turns 
into an AVO 3 layer for the rest of the 2500 m. 

The shot records for this model are shown in FIG. 4.6 for shot location x = y = 0, 50, 
100, and 500 m.  
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FIG. 4.6. From top left to bottom right, shot records for a AVO 3 reflector at 150 m depth at 
location x = y = 0, 100, 250 and 500 m respectively. 

4.2.2 Results of migration for simple synthetic AVO model 
These shots were also migrated with the two Kirchhoff algorithms described in 

Section 3, with results for shots at location x = y = 0 and 250 being shown in Figures 4.7 
to 4.9.  

Also, the amplitudes along the diagonal and across the receiver lines are shown in the 
accompanying figures (4.8 and 4.10). At this point in time, complete results for shots at 
(x,y) location of 100 m and 500 m are not available. However, note that preliminary data 
at these locations confirm the improved results(correct amplitudes) of the v(z) migration. 
Reasons for choosing the particular shot locations for this survey and the survey in 
Section 4.1 will be given in the discussion below.  
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FIG. 4.7. Results of migration for Simple AVO 3 reflector at shot location x= y = 0 m. Top Row: 
using v(z) algorithm Bottom Row: Using constant Kirchhoff. 

FIG. 4.8 is used to show that the amplitudes also fall off as expected in all directions 
as well with the v(z) algorithm in comparison to the v(constant) algorithm.  

 

FIG. 4.8. Amplitude curves of shot at x=y=0m along a. diagonal b. along receiver line at y = 0. 
Left: using v(z) algorithm Right: Using constant Kirchhoff. 

 

 

FIG. 4.9. Results of migration for Simple AVO 3 reflector at shot location x=y =250 m. Top Row: 
using v(z) algorithm Bottom Row: Using constant Kirchhoff. 
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FIG. 4.10. Amplitude curves of shot at x=y=250m along a. diagonal b. along receiver line at y = 0. 
Left: using v(z) algorithm Right: Using constant Kirchhoff. 

Again, migrations/inversions with the v(z) Kirkhoff algorithm show superior results. 
This is especially evident at the x = y = 250 m location, where any kind of edge effects, 
which will be discussed in more details in Section 4.5 have been compensated for. 

4.3 The Complex, Three-Layer AVO, Model  

Encouraging results were also found with the complex AVO model that was originally 
described by Lahr and Margrave (2015). Samples at 0 and 500 m are shown here for 
Event 1, which is where the background medium gives way to the AVO 3 layer at a depth 
of 1000 m. Remember that this layer is now 100 m thick, and will give way to the 
background medium at a depth of 1100 m. 

 

FIG. 4.15. Results of migration for Complex AVO 3 reflector at shot location x=y=0m. Top Row: 
using v(z) algorithm Bottom Row: Using constant Kirchhoff. 

 

FIG. 4.16. Amplitude curves of shot at x=y=500m along a. diagonal b. along receiver line at y = 0. 
Left: using v(z) algorithm Right: Using constant Kirchhoff. 
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FIG. 4.17: Results of migration for Complex AVO 3 reflector at shot location x=y=0m. Top Row: 
using v(z) algorithm Bottom Row: Using constant Kirchhoff. 

 

FIG. 4.18. Amplitude curves of shot at x=y=500m along a. diagonal b. along receiver line at y = 0. 
Left: using v(z) algorithm Right: Using constant Kirchhoff. 

Surprisingly, the advantages of the v(z) migration are not as pronounced as those 
shown in Section 4.1 and 4.2. Most importantly, there seems to be a sinusoidal pattern in 
the migrated patterns. This could possibly be due to interference from the other events. 
But, it is quite clear that the v(z) amplitudes center along the Zoeppritz curve better than 
they do for the v(constant) amplitudes. Also, one can see that the edge effect is more 
pronounced for the v(z) algorithm. As well, the v(z) migrated amplitude seem to match 
the predicted amplitudes for a greater range of offsets than the constant velocity 
amplitudes. 

Despite these advantages, and our opinion that our current v(z) migrations yield the 
best amplitude response, more investigation will need to be done to clarify why these 
results are not as good as expected. 

4.4 Discussion of Results   
There are several things that immediately jump out at one. First of all is that the top-

left corner shot(location x=y=0m) for both the flat reflector and the simple AVO 3 
reflector display a significant edge effect. Upon further investigation of the algorithm, it 
is easy to see that at the 0 location, only ¼ of all the traces contribute toward the final 
migrated point, while at the center, traces from all four quadrants of the survey add to the 
final result. Noting that the weights drop off the further one moves away from the image 
point to be migrated, one can see why there is a gap at the corner point.  

Secondly, it is a bit of a surprise that the results of the v(z) migration for the complex 
AVO shot shown here, and in general, do not show a very significant improvement over 
the constant velocity migrations. However, considering that more interference is to be 
expected due to the proliferation of layers, this seems reasonable.  
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CONCLUSION AND FUTURE WORK 
This report has served to show that shot record migration in a v(z) medium needs to 

account for the changing nature of that medium. It has been helpful in identifying some 
of the issues regarding amplitude preservation seen in our previous reports(Lahr and 
Margrave, 2015), and will aid in the actual study of that report, namely what effect does 
decimation have on amplitudes, even after migration. With that in mind, work is currently 
being done in how to carry out some advanced AVO attribute analysis with the complex 
AVO3 data sets presented here, which will include various degrees of decimation. 
Obviously, the sinusoidal nature of the migrated curves warrants investigation, but so far 
little information in regards to this has been found in the literature. It will definitely 
necessitate more research into the Kirchhoff migration presented here and amplitude 
preservation.  

Eventually, however, further study will involve building a more complicated data 
model, i.e. one that gives a more realistic portrayal of a real-life seismic shoot. Also, as 
part of the research done here, it will be very interesting to redisplay the above amplitude 
plots with regards to angles instead of the offsets shown here.  
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