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ABSTRACT

Estimating multiple physical parameters in subsurface using full-waveform inversion
(FWI) methods suffers from parameter crosstalk challenge. The inherent ambiguities among
different physical parameters make the inverse problems much more non-linear. The pa-
rameter resolution is highly influenced by the parameterization selected for describing the
subsurface elastic and anisotropic medium. Quantify the parameter resolution for determin-
ing the optimal parameterization in multi-parameter FWI becomes essential for reducing
the parameter crosstalk difficulty. In recent years, researchers devote significant effort for
evaluating the resolving abilities of different parameterizations for elastic and anisotropic
full-waveform inversion based on the analytic solutions of the Fréchect derivative wave-
fields (so called "scattering" or "radiation" patterns). However, these studies may not be
able to evaluate the resolving abilities of different parameter classes completely because
of the inherent defects of the scattering patterns. The goal of this research is to develop
new strategies for quantifying the parameter resolution for multi-parameter elastic and
anisotropic full-waveform inversion. We find that the multi-parameter Hessian, the second-
order derivative of the misfit function, provides direct and complete measurements of the
inter-parameter trade-off. The investigations based on scattering patterns can be interpreted
as an asymptotic approximation of the multi-parameter Gauss-Newton Hessian. With the
block-diagonal approximation of the multi-parameter Gauss-Newton Hessian, we are able
to assess the parameter resolution by taking the geometrical spreading and complex model
into consideration. Furthermore, with the adjoint-state technique, we are able to calcu-
late one column of the multi-parameter Hessian (multi-parameter point spread function),
defined as parameter resolution kernel in this research, with which we can evaluate the
inter-parameter mapping of different parameters at adjacent positions locally by consider-
ing finite-frequency effects. With the help of random probing technique, we can infer the
characteristics of the multi-parameter Hessian within the whole model at affordable com-
putation cost for large-scale inverse problems. Thus, with the multi-parameter Hessian, the
parameter resolution can be assessed more completely.

INTRODUCTION

In recent decades, researchers have devoted significant effort to the development of full-
waveform inversion (FWI) techniques, which promise to provide high-resolution estimates
of subsurface elastic and anisotropic properties (Lailly, 1983; Tarantola, 1984; Pratt et al.,
1998; Virieux and Operto, 2009). In mono-parameter FWI, researches focus on overcoming
cycle-skipping difficulty for recovering P-wave velocity due to the lack of low frequencies
and inaccurate initial model (Ma and Hale, 2012; Warner and Guasch, 2014; Wu et al.,
2014; Li and Demanet, 2016; Zhu and Fomel, 2016; Pan et al., 2016b). If anisotropy and
elasticity are ignored, the model estimations will be contaminated by the mappings from
elastic and anisotropic effects in the data. It is also necessary to reconstruct the subsurface
elastic and anisotropic parameters for reservoir characterization. However, simultaneously
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reconstructing multiple physical parameters is much more challenging. The parameter
crosstalk artifacts involved by the inherent ambiguities (or coupling effects) among dif-
ferent physical parameters significantly increase the non-linearity of the inverse problems
(Operto et al., 2013; Innanen, 2014a).

For mitigating the parameter crosstalk difficulty in multi-parameter FWI, a lot of studies
have been carried out for the parameter resolution analysis based on the analytic solutions
of the Frechéct derivative wavefields ("scattering" or "radiation" patterns) for different pa-
rameter classes (Tarantola, 1986; Gholami et al., 2013b,a; Alkhalifa and Plessix, 2014;
Kamath and Tsvankin, 2014; Podgornova et al., 2015). Coupling effects appear between
two different physical parameters, if the scattered wavefileds due to the perturbations of
the two physical parameters overlap at the range of scattering (or azimuthal) angle. These
analyses are essential for determining the optimal parameterization, acquisition geometry
and inversion strategies for multi-parameter FWI. Gholami et al. (2013a) investigated the
scattering patterns of parameters resulting from various parameterizations of the acoustic
FWI. Similar types of analyses have been used to identify an optimal parameterization for
acoustic VTI FWI. (Alkhalifa and Plessix, 2014) highlights the power of the horizontal P-
wave velocity in reducing the number of parameters for VTI FWI. Podgornova et al. (2015)
analyzed the resolution limits of multi-parameter inversion based on the singular value de-
composition of far-filed linearized inversion operator in the wavenumber domain. The
analysis of amplitude variations of the scattering patterns help to understand the parameter
crosstalk (or trade-off) between parameters. The parameter resolution in multi-parameter
FWI is highly influenced by the parameter class in the inversion process. It is important to
determine an optimal parameterization for elastic and anisotropic FWI for avoiding the pa-
rameter crosstalk. So the studies on parameter resolution analysis lies at the center of elastic
and anisotropic FWI. Köhn et al. (2015) studied the resolution ability of the 21 elastic con-
stants in triclinic anisotropic media taking into consideration various acquisition systems
and configurations. For elastic orthorhombic media, they conclude that it will be vary hard
to recover all of the parameters needed to describe such anisotropy. Studies focused on
the ability of full-waveform inversion in recovering anisotropic properties. However, the
multi-parameter FWI for anisotropic media is prone to entrapment in local minimum be-
cause we invert for a large number of parameters from given seismic data, which results
in possible trade-off between parameters (Bergslid et al., 2015). For transverse isotropy
with a horizontal symmetry axis (HTI media), the simplest azimuthal anisotropic model
for describing vertical cracks, reflection seismic signatures can be described by five inde-
pendent elastic constants (Rüger, 1997; Tsvankin, 1997b,a). The HTI media can also be
described by P-wave velocity, S-wave velocity, density and Thomsen parameters ε, δ and γ.
Inverting azimuthally anisotropic parameters are essential important for fractured reservoir
characterization. In this research, we focus on resolving abilities of azimuthally anisotropic
parameters in full-waveform inversion.

We find that these parameter resolution studies based on scattering patterns suffer from
a number of inherent drawbacks: (1) the background model is assumed to be isotropic
and homogeneous; (2) incident plane-wave with far-field approximation is employed; (3)
finite-frequency effects are ignored; (4) the parameter crosstalk due to different physical
parameters at different locations, which is especially important when low frequencies are
deficient, are not considered; (5) the parameter crosstalk due to higher-order scattering
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effects are not considered; (6) the travel time information is not considered. One goal of
this research is to develop new techniques for parameter resolution analysis in elastic and
anisotropic media.

The Hessian operator describes the geometry of the objective function in terms of cur-
vature or convexity (Fichtner and van Leeuwen, 2015). Hessian provides the most direct
measurements of resolution and trade-offs as it describes the change of the misfit when m
is slightly perturbed to m + ∆m (Fichtner and van Leeuwen, 2015). The multi-parameter
Hessian has a block structure. The off-diagonal element in the diagonal block Hθθ (x, x′)
defines the spatial correlation of the same model parameter mθ at position x and x′. The
diagonal element Hθϑ (x, x) of the off-diagonal block measures the coupling of model pa-
rameter mθ and model parameter mϑ at the same position x. The off-diagonal element
in the off-diagonal block measure the coupling of the model parameter mθ at x and the
model parameter mϑ at position x′. It has been proved that the multi-parameter Hessian
can be employed to suppress the parameter trade-off for multi-parameter FWI (Innanen,
2014b; Pan et al., 2016a). We also notice that the resolving abilities of different param-
eter classes can be quantified with multi-parameter Hessian. A further study reveals that
the parameter resolution studies based on scattering patterns is actually equivalent to an
asymptotic approximation of the multi-parameter Gauss-Newton Hessian with a perfect
acquisition survey. Overlapping the scattering patterns due to different physical parameters
can be considered as the diagonal element in the off-diagonal blocks of the multi-parameter
Gauss-Newton Hessian. In this research, we propose to analyze the parameter resolution
for multi-parameter FWI using the multi-parameter Hessian.

However, the Hessian is a large and dense matrix. It is impractical to construct multi-
parameter Hessian explicitly for large-scale inverse problems. We can extract partial in-
formation from Hessian for analysis. The diagonal elements of the off-diagonal blocks in
multi-parameter Gauss-Newton Hessian, which can be constructed by adjoint-state tech-
nique explicitly, measure the geometrical spreading and the finite-frequency effects for
parameter resolution analysis at the same location. To quantify the coupling effects of
different physical parameters at different locations, we need one column (or row) of the
multi-parameter Hessian. In this paper, we will show that one column of multi-parameter
Hessian is proportional to multi-parameter point spread function, which can be constructed
by spike probing technique with adjoint-state method. What’s more, the multi-parameter
full Hessian also considers the parameter crosstalk due to second-order scattering effects.
The multi-parameter point spread functions can only quantify the parameter resolution lo-
cally. To measure the parameter trade-off in the whole model, a random probing technique
can be employed (An, 2012; Trampert et al., 2013; Fichtner and van Leeuwen, 2015).
Fichtner and van Leeuwen (2015) demonstrated that autocorrelations of random-model
applications to the Hessian yields various resolution measures, including direction- and
position-dependent resolution lengths and the strength of the inter-parameter mappings.

In this paper, we first review the basic principle of full-waveform inversion. Then, we
revisit the parameter resolution issue in multi-parameter FWI and explain the disadvantages
the scattering patterns for parameter resolution studies. We then explain how to quantify
the parameter resolution by probing the multi-parameter Hessian. In this numerical section,
we construct the sensitivity kernels for anisotropic parameters using adjoint-state method.
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We also show the diagonal elements in block matrices of the multi-parameter Hessian in
orthorhombic media. We give numerical examples to show that the column of the multi-
parameter Hessian can be extracted for quantifying the parameter resolution for 3D elastic
and anisotropic full-waveform inversion.

REVIEW OF LEAST-SQUARES WAVE-EQUATION INVERSION

Full-waveform inversion (FWI) seeks to estimate the subsurface (an) elastic and anisotropic
properties by iteratively minimizing the differences between recorded data dobs (xs, xr, t)
and synthetic data dsyn (xs, xr, t; m) simulated from an estimated model m. The misfit
function is formulated as a l-2 norm:

Φ (m) =
S∑
s=1

R∑
r=1

∫ T

0

‖∆d (xs, xr, t) ‖2dt, (1)

where ∆d (xs, xr, t) = dobs (xs, xr, t) − dsyn (xs, xr, t; m) is the data residual, xs (s =
1, ..., S) and xr (r = 1, ..., R) indicate source and receiver locations, S and R are the
maximum source and receiver indexes, and T represents maximum recording time. In
order to solve the inverse problem, the next step is to find the model which minimizes the
adopted cost function. Within the Newton optimization framework, Fréchet derivative of
the misfit function can be written as:

∇mΦ (m) =
S∑
s=1

R∑
r=1

∫ T

0

∫
Ω(x)

∇m(x)d (xs, xr, t; m) [dobs (xs, xr, t)−dsyn (xs, xr, t; m)]d3xdt,

(2)
where ∇m(x)d (xs, xr, t; m) indicates the Fréchet derivative wavefield (or Jacobian matrix)
recorded at the receiver locations due to model perturbation at position x. Generally, for
the large-scale inverse problems in seismic tomography, constructing the Jacobian matrix
explicitly is considered to be unaffordable. The adjoint-state method is always employed to
construct the gradients by cross-correlating the forward modelling wavefield and backward
propagated data residual wavefield. Considering the general anisotropic model, character-
ized by ρ and cijkl, where ρ and cijkl (i, j, k, l = 1, 2, 3) denote density and elastic constant
tensor with Einstein summation convention, the perturbed nth displacement field due to
model perturbation ∆ρ and ∆cijkl at position x is expressed as:

∇m(x)dn (xs, xr, t′) =−
∫ T

0

∫
Ω(x)

[∆ρ (x)Gni (x, xr, T − t′) ∂2
t′ui (x, xs, t′)

+ ∆cijkl (x) ∂′jGni (x, xr, T − t′) ∂′kul (x, xs, t′)]d3xdt′,
(3)

where Gni (x, xr, T − t′) is the Green’s tensor. Substituting equation (3) into equation (7)
gives the gradients of the model parameters:

∇mΦ (m) =−
S∑
s=1

N∑
r=1

∫ T

0

[dobsi (xs, xr, t)− dsyni (xs, xr, t)]

×
∫ t

0

∫
Ω(x)

[δρ (x)Gni (x, xr, T − t′) ∂2
t′ui (xs, x, t′)

+ ∆cijkl (x) ∂′jGni (x, xr, t− t′) ∂′kul (xs, x, t′)]d3xdt′dt.

(4)
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Considering the reciprocity of the Green’s tensor, we can define the adjoint wavefield as:

u†k (x′, t′) =

∫ t′

0

∫
Ω

Gki (x′, x; t′ − t) f †
i (x, t) d3xdt, (5)

where f †
i (x, t) is the adjoint source:

f †
i (x, t) =

S∑
s=1

R∑
r=1

[dobsi (xs, xr, T − t)− dsyni (xs, xr, T − t)]δ (x− xr) . (6)

The Fréchet derivative of the misfit function can be re-written as:

∇mΦ (m) =

∫
Ω(x)

[Kρ (x) ∆ρ (x) +Kcijkl∆cijkl (x)]d3x, (7)

The 3-D waveform misfit kernels Kρ and Kcjklm represent Fréchet derivatives with respect
to density and the elastic parameters are defined by

Kρ (x) = −
∫ T

0

∆ρ (x) u† (x, T − t) · ∂2
t u (x, t) dt, (8)

Kcjklm (x) = −
S∑
s=1

R∑
r=1

∫ T

0

∫
∂jGni (xr, x, T − t) ∆cijkl (x) ∂kul (x, xs, t) dt, (9)

In general anisotropic media, the gradients for the 21 elastic constants are listed in Ap-
pendix A. In 3D HTI media, 5 elastic constants (c11, c13, c33, c44 and c55) are needed for
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describing the media. Gradients for the 5 elastic constants can be expressed as:

Kc11 (x) = −
S∑
s=1

R∑
r=1

∫
∂xGnx (xr, x, T − t) ∆c11 (x) ∂xux (x, xs, t) dt,

Kc13 (x) = −
S∑
s=1

R∑
r=1

∫
[∂xGnx (xr, x, T − t) (∂yuy (x, xs, t) + ∂zuz (x, xs, t))

+ (∂yGny (xr, x, T − t) + ∂zGnz (xr, x, T − t)) ∂xux (x, xs, t)] ∆c13 (x) dt,

Kc33 (x) = −
S∑
s=1

R∑
r=1

∫
(∂yGny (xr, x, T − t) + ∂zGnz (xr, x, T − t))

× (∂yuy (x, xs, t) + ∂zuz (x, xs, t)) ∆c33 (x) dt,

Kc44 (x) = −
S∑
s=1

R∑
r=1

∫
[2∂zGnz (xr, x, T − t) ∂yuy (x, xs, t)

+2∂yGny (xr, x, T − t) ∂zuz (x, xs, t)− (∂yuz (x, xs, t) + ∂zuy (x, xs, t))
× (∂yGnz (xr, x, T − t) + ∂zGny (xr, x, T − t))] ∆c44 (x) dt,

Kc55 (x) = −
S∑
s=1

R∑
r=1

∫
(∂zGnx (xr, x, T − t) + ∂xGnz (xr, x, T − t))

× (∂zux (x, xs, t) + ∂xuz (x, xs, t))] (∂yGnx (xr, x, T − t) + ∂xGny (xr, x, T − t))
× (∂yux (x, xs, t) + ∂xuy (x, xs, t))] ∆c55 (x) dt,

Kρ (x) = −
S∑
s=1

R∑
r=1

∫ (
∂2
t ux (x, xs, t)Gnx (xr, x, T − t)

+ ∂2
t uy (x, xs, t)Gny (xr, x, T − t) +∂2

t uz (x, xs, t)Gnz (xr, x, T − t)
)

∆ρ (x) dt.
(10)
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We can also describe the 3D HTI media using the velocity parameterization (α, β, ρ, ε, δ
and γ). The gradients for these parameters can be obtained with the chain rule:

Kα (x) = 2ραKc33 (x)

+ 2ρα (2ε+ 1)Kc11 (x) + 2ρ
2δα3 − δαβ2 + 2ρα (α2 − β2)√

2δα2 (α2 − β2)2 + (α2 − β2)2
Kc13 (x) ,

Kβ (x) = 2ρβKc55 (x) +
2ρβ

(2γ + 1)
Kc44 (x)

+
−2δρα2β − 2ρβ (α2 − β2)√
2δα2 (α2 − β2) + (α2 − β2)2

Kc13 (x)− 2ρβKc13 (x) ,

Kε (x) = 2ρα2Kc11 (x) ,

Kδ (x) =
ρα2 (α2 − β2)√

2α2δ (α2 − β2) + (α2 − β2)2
Kc13 (x) ,

Kγ (x) = − 2ρβ2

(1 + 2γ)2Kc44 (x) ,

K ′
ρ (x) = Kρ (x) + α2Kc33 (x) + β2Kc55 (x) +

β2

1 + 2γ
Kc55 (x)

+

(√
2α2δ (α2 − β2) + (α2 − β2)2 − β2

)
Kc13 (x) .

(11)

Within the Newton framework, the search direction ∆m can be obtained by solving the
following Newton linear system:

H∆m = −∇Φ, (12)

where H is the Hessian matrix, the second derivative of the misfit with respect to the model
parameters:

H =

∫
Ω(x)

∫
Ω(x′)

∆ρ (x)Hρρ (x, x′) ∆ρ (x′) + ∆ρ (x′)Hρcijkl (x, x′) :: ∆cijkl (x′)

+ ∆cijkl (x)Hcijklci′j′k′l′
(x, x′) :: ∆ci′j′k′l′ (x′) d3xd3x′.

(13)

The Hessian matrix measures the amount of inter-parameter "blurring" produced by the
adjoint operator. The Hessian matrix works like a blurring filter to the model perturba-
tion, which form the blurred updates (gradient vectors) for the model parameters. The
inverse Hessian matrix works as de-blurring filter to the gradient and remove the finite-
frequency effects (Pratt et al., 1998; Pan et al., 2014b,a, 2015). In multi-parameter FWI,
the multi-parameter Hessian has a block structure. The multi-parameter Gauss-Newton
Hessian H̃ has a similar structure with multi-parameter full Hessian but only considers the
first-order scattering effects and ignores the second-order scattering effects. For the general
anisotropic media, the multi-parameter Gauss-Newton Hessian can be expressed as:

H̃ρρ (x, x′) =
S∑
s=1

R∑
r=1

∫ ∫ ∫
Gni (xr, x, t− t′) ∂2

t′ui (x, xs, t′)

×Gni′ (xr, x′, t− t′′) ∂2
t′′ui′ (x′, xs, t′′) dt′dt′′dt,

(14)
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H̃ρc (x, x′) =
S∑
s=1

R∑
r=1

∫ ∫ ∫
Gni (xr, x, t− t′) ∂2

t′ui (x, xs, t′)

∂jGni′ (xr, x′, t− t′′) ∂kul (x′, xs, t′′) dt′dt′′dt,

(15)

H̃cρ (x, x′) =
S∑
s=1

R∑
r=1

∫ ∫ ∫
∂jGni (xr, x, t− t′) ∂kul (x, xs, t′)

Gni′ (xr, x′, t− t′′) ∂2
t′′ui′ (x′, xs, t′′) dt′dt′′dt,

(16)

H̃cc (x, x′) =
S∑
s=1

R∑
r=1

∫ ∫ ∫
∂jGni (xr, x, t− t′) ∂kul (x, xs, t′)

∂j′Gni′ (xr, x′, t− t′′) ∂k′ul′ (x′, xs, t′′) dt′dt′′dt,

(17)

where when x = x′, we can obtain the off-diagonal elements in the block matrices and
when x 6= x′, we can obtain the diagonal elements of the block matrices.

Considering a 3D subsurface model with M = Nx ×Ny ×Nz nodes and NP physical
parameters (m1, m2, ..... mP ) are assigned to describe the properties of each node. The
multi-parameter Hessian is a M ×NP by M ×NP square and symmetric matrix with NP

diagonal blocks and NP (NP − 1) off-diagonal blocks. Each block is a M by M square
matrix. Figure 1 describes the structure the multi-parameter Gauss-Newton Hessian.

FIG. 1. The schematic diagram of multi-parameter Gauss-Newton Hessian.
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The elements in the multi-parameter Gauss-Newton Hessian matrix can be classified
into 4 types. Each element in the multi-parameter Gauss-Newton Hessian can be denoted
as H̃mpmq (x, x′), where x and x′ represent the row and column indexes of the element.
When mp = mq and x = x′, we can obtain the diagonal elements in the diagonal blocks,
which measure the geometrical spreading, as indicated in the red grids of Figure 12 (e.g.,
H̃m1m1 (x1, x1)). When mp = mq and x 6= x′, we can obtain the off-diagonal elements
in the diagonal blocks, which measure the space trade-off, as indicated by the white grids
of Figure 12 (e.g., H̃m1m1 (x1, xM)). When mp 6= mq and x = x′, we obtain the diagonal
elements in the off-diagonal blocks, which measure the parameter trade-off, as indicated by
the blue grids in Figure 12 (e.g., H̃m1m2 (x1, x1)). When mp 6= mq and x 6= x′, we obtain the
off-diagonal elements in the off-diagonal blocks, which measure the space and parameter
trade-off, as indicated by the light blue grids in Figure 12 (e.g., H̃m1m2 (x1, xM)). One
row/column in multi-parameter Gauss-Newton Hessian indicates the correlation of Fréchet
derivative wavefield due to one physical parameter at a specific position with the Fréchet
derivative wavefields due to other physical parameters at other locations. For example,
the third column in the multi-parameter Gauss-Newton Hessian shown in Figure 1 can be
written as:

H̃m3 (x3) =
R∑
r=1

S∑
s=1

P∑
p=1

∫
Ω(x)

∇mP (x)d (xs, xr, t)∇m(x3)d (xs, xr, t) d3xdt (18)

The following figure show the physical interpretation of the elements in multi-parameter
Gauss-Newton Hessian.

FIG. 2. Physical interpretation of the multi-parameter Gauss-Newton Hessian. (a) and (b) show the
off-diagonal and diagonal elements in the diagonal blocks of the multi-parameter Gauss-Newton
Hessian. (c) and (d) show the off-diagonal and diagonal elements in the off-diagonal blocks of the
multi-parameter Gauss-Newton Hessian.

PARAMETER CROSSTALK DIFFICULTY IN MULTI-PARAMETER FWI

Reconstructing multiple physical parameters using FWI suffers from parameter crosstalk
difficulty. Perturbation of one physical parameter will map into the updates for other phys-
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ical parameters resulting from the coupling effects between these different physical pa-
rameters, which increase the non-linearity of the inverse problem significantly. For under-
standing the parameter crosstalk artifacts in multi-parameter FWI, we can first review the
Newton equation system for multi-parameter inverse problem. Considering that two differ-
ent physical parameters mθ and mϑ are inverted simultaneously, the search directions ∆mθ

and ∆mϑ can be obtained by solving the following equation (19): Hθθ Hθϑ

Hϑθ Hϑϑ


 ∆mθ

∆mϑ

 = −

 ∇θΦ

∇ϑΦ

 , (19)

where ∇θΦ and ∇ϑΦ represent the corresponding gradient vectors. As we can see, the
multi-parameter Hessian consists of four block matrices. The two diagonal blocks Hθθ

and Hϑϑ measure the spatial correlations of the same physical parameter. The off-diagonal
blocks Hθϑ and Hϑθ measure the trade-offs between model parameters θ and ϑ. Equation
(19) can be re-written in an integral formulation:

∇θΦ = −
∫

Ω(x)

∫
Ω(x′)

Hθθ (x, x′) ∆mθ (x′) dx′dx−
∫

Ω(x)

∫
Ω(x′)

Hθϑ (x, x′) ∆mϑ (x′) dx′dx,

(20)

∇ϑΦ = −
∫

Ω(x)

∫
Ω(x′)

Hϑθ (x, x′) ∆mθ (x′) dx′dx−
∫

Ω(x)

∫
Ω(x′)

Hϑϑ (x, x′) ∆mϑ (x′) dx′dx.

(21)

We observe that the model perturbation ∆mϑ maps into the gradient update ∇θΦ and the
model perturbation ∆mθ maps into the gradient update ∇ϑΦ, as indicated by the second
and first terms in equations (20) and (21) respectively. As we can see, the gradient updates
suffer from parameter crosstalk artifacts, which are formed by blurring the model perturba-
tion with the off-diagonal blocks of the multi-parameter Hessian. Features that seem well
reconstructed may be accidental artifacts due to other parameters.

Different parameterizations have different resolving abilities. It is necessary and essen-
tial to quantify the resolving ability of a parameter class for avoiding parameter crosstalk.
The parameterization with weakest ambiguities should be selected for reconstructing the
multiple physical parameters.

Parameter resolution analysis with scattering patterns

In recent years, researchers devote intensive efforts for understanding the resolution
abilities of different parameterizations for multi-parameter FWI. These studies are carried
out based on the so called "scattering pattern". The scattering pattern evaluates the am-
plitude variation of the Fréchet derivative wavefield due to the perturbation of one type of
physical parameter with varying the scattering or azimuthal angles. Identical or nearly iden-
tical variations are one of the key mechanisms of parameter crosstalk in multi-parameter
FWI (Operto et al., 2013). The overlapping the scattering patterns due to different physical
parameters are used to evaluate the ambiguity between these two types of parameters.
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However, these parameter resolution studies based on scattering patterns suffer from
several drawbacks because of its inherent defects. First, the background model is assumed
to be isotropic and homogeneous (as shown in Figure 3), which means that the complex
geological structures and complex physics are not considered. Second, it assumes that the
an incident plane-wave with far-filed approximation is scattered due to a local point het-
erogeneity or a horizontal reflector. This means that it does not consider the influences
of geometrical spreading and complex model perturbations. Third, only the amplitudes of
the analytic Fréchet derivative wavefields due to different physical parameters at the same
location are considered. Thus, the finite-frequency effects and travel time information are
ignored. Furthermore, these studies ignore the parameter crosstalk due to different phys-
ical parameters at adjacent locations, which actually are especially important when low
wavenumber components of the model parameters are deficient. Further studies reveal that
the parameter resolution studies based on scattering patterns can be interpreted as con-
structing an asymptotic approximation of the multi-parameter Gauss-Newton Hessian with
a perfect survey. Overlapping the scattering patterns due to different physical parameters
at position x is equivalent to correlating two Fréchet derivative wavefields at position x,
which is equivalent to one element in the diagonal elements of the off-diagonal blocks in
multi-parameter Gauss-Newton Hessian, as shown in Figure 1. However, we also observe
that the scattering patterns analysis only consider the coupling effects in the wavefield level,
which are measured by the off-diagonal blocks of the multi-parameter Gauss-Newton Hes-
sian. It is more appropriate to measure the coupling effects in the objective function level,
which are measured by the multi-parameter full Hessian. In this condition, the parameter
crosstalk due to multi-parameter second-order scattering effects should also be evaluated.

FIG. 3. The schematic diagram of scattering pattern.

To evaluate the resolution abilities of different parameter classes accurately and fully,
in this research, we propose to quantify the parameter resolution with the multi-parameter
Hessian, as discussed in the following section.

Quantify the parameter resolution with multi-parameter Hessian

As discussed in the previous sections, the off-diagonal blocks of the multi-parameter
full Hessian measure the parameter trade-off for multi-parameter FWI. To quantify the
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space and parameter resolution completely, a multi-parameter full Hessian matrix is needed.
However, constructing the multi-parameter full Hessian explicitly is considered to be unaf-
fordable for large-scale inverse problems especially for 3D model. In this section, we will
show how to extract partial Hessian information for quantifying the parameter resolution.

Block diagonal approximation of the multi-parameter Gauss-Newton Hessian

Employing the adjoint-state technique, we can construct the diagonal elements of the
off-diagonal blocks in the multi-parameter Gauss-Newton Hessian explicitly for a specific
model, which can be defined as the block diagonal approximation of a multi-parameter
Gauss-Newton Hessian H̃D. The elements of this type of multi-parameter Hessian approx-
imation measures correlations of the Fréchet derivative wavefields due to different physical
parameters at one location in the interested model. Compared to the analysis based on the
scattering patterns, the block diagonal approximation H̃D take the geometrical spreading,
finite-frequency, and complex model into consideration.

Furthermore, it can also be used as an effective preconditioner, which can help to com-
pensate the geometrical spreading and mitigate the parameter crosstalk artifacts in the in-
version process (Innanen, 2014b). Obtaining the block diagonal approximation H̃D needs
constructing the receiver-side Green’s functions from all of the receivers explicitly, which
is also an expensive task. A better choice is to ignore the receiver-side Green’s functions
and the source-side Green’s functions can be calculated in the forward modelling process
without additional cost.

Multi-parameter point spread function

Even though, we are able to construct the diagonal elements of the block matrices in a
multi-parameter Gauss-Newton Hessian directly. It is still not able to quantify the param-
eter crosstalk due the perturbations of different physical parameters at adjacent locations.
Considering an arbitrary element Hθϑ (x, x′) in multi-parameter Hessian:

Hθϑ (x, x′) = ∇θ(x)∇ϑ(x′)Φ, (22)

which measures the coupling effects of model parameter mθ at position x and model pa-
rameter mϑ at position x′ in the misfit function level. The column in the multi-parameter
Hessian corresponding to model parameter mθ at position x can be written as:

Hθϑ (x) =

∫
Ω(x′)

Hθϑ (x, x′) d3x′, (23)

which measures the coupling effects of model parameter mθ at x with the model parameter
mϑ at all other positions in the interested volume Ω. Considering equations (20) and (21),
suppose that one point perturbation of model parameter mθ is located at position x̃ (∆mθ =
δ (x− x̃)) and there is no perturbation for model parameter mθ (∆mϑ = 0). The above
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equations become:

∇θΦ = −
∫

Ω(x)

∫
Ω(x′)

Hθθ (x, x′) δ (x′ − x̃) d3x′d3x = −
∫

Ω(x)

Hθθ (x, x̃) d3x = −Hθθ (x̃) ,

∇ϑΦ = −
∫

Ω(x)

∫
Ω(x′)

Hϑθ (x, x′) δ (x′ − x̃) d3x′d3x = −
∫

Ω(x)

Hϑθ (x, x̃) d3x = −Hθϑ (x̃) .

(24)

The gradient vectors are blurred representations of the model perturbations with limited
wavenumber content and resolution. As we see, gradient update ∇θΦ due to the point-
localized perturbation ∆mθ at position x̃ is an conservative estimate of spike model per-
turbation blurred by the diagonal block Hθθ of the multi-parameter Hessian. Thus, it only
suffers from spatial trade-off. However, for the gradient update ∇ϑΦ, it is a blurred es-
timation by off-diagonal block Hθϑ for model parameter mϑ. Because there is no model
perturbation in model parameter mϑ, the point-localized model perturbation in mϑ maps
into the gradient update for mϑ, which is defined as parameter crosstalk artifacts. The
off-diagonal blocks in multi-parameter Hessian introduce unwanted updates of the model
parameters that have initially not been perturbed.

Furthermore, we notice that the gradient vectors∇θΦ and∇ϑΦ due to a point-localized
model perturbation is proportional to one column in the multi-parameter Hessian specified
by the position x̃, which is known as multi-parameter point spread function (MPSF) in seis-
mic tomography. Here, in this research, we employ the multi-parameter point spread func-
tion, defined as parameter resolution kernel, to quantify the resolution abilities of different
parameterizations. Point spread functions corresponding to different physical parameters
at different locations will be quite different. These phenomenons will not be described by
the block diagonal Hessian approximation, which does not consider the energy away from
the center of the point scatter.

FIG. 4. The schematic diagram of spike probing.

One problem of the multi-parameter PSF is its local signature, which means that we can
only quantity the parameter resolution at a local position. If the full blurring effects are to be
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understood, then a spike test for each model parameter would need to be run independently,
and the results collated. A single spike test of this sort would retrieve the information
equivalent of only one column or row of the Hessian matrix H. Ideally, for a specific
model, the PSFs should be computed for every model parameter at every position within
the volume of interest, which will be prohibitively expensive. Reviewing the following
equation:

∇Φ = −
∫
H (x, x′) ∆m (x′) dx′dx. (25)

The volume of the inter-parameter point spread functions describe the strength of apparent
heterogeneities in one parameter that result from trade-offs from other parameter, and vice
versa. We notice that the above integral is equivalent to sampling the Hessian with the
model perturbation vector. The Hessian can be sampled by a point-localized heterogene-
ity or a series of discrete model perturbations. Thus, applying the Hessian to the whole
model perturbation vector can be approximated by applying the Hessian to a small number
of model perturbations. By sampling Hessian with a suitable set of model perturbations,
we can gather as much second-derivative information as needed for our purposes, though
at the expense of potentially prohibitive computational requirements. It is therefore the
purpose of this paper to develop a sampling strategy of the Hessian that operates with
as few model perturbations as possible while leading to an approximation of Hessian that
physically meaningful and interpretable (Fichtner and van Leeuwen, 2015; Zhu and Fomel,
2016).

The multi-parameter Hessian has the ability to quantify both spatial and inter-parameter
resolution. The power of the point spread functions lies in its applicability to infinite-
dimensional model spaces that we typically encounter in tomographic problems where we
seek quantities that are continuously distributed in space.

NUMERICAL EXPERIMENTS

In this numerical section, we first calculate the sensitivity kernels for the elastic and
anisotropic parameters. Then, we construct the diagonal elements in the block matrices of
the multi-parameter Gauss-Newton Hessian. We also give the 3D multi-parameter point
spread functions of anisotropic parameters.

Sensitivity kernels of the model parameters in elastic and anisotropic media

In this example, we calculate the 3D sensitivity kernels for the anisotropic and elastic
parameters in 3D HTI media based on adjoint-state method. We assume the anisotropic
model parameters are: P-wave velocity α = 3500m/s, S-wave velocity β = 2000m/s,
density ρ = 2000kg/m3, ε = −0.14, δ = −0.18 and γ = −0.15. The initial model is
isotropic: P-wave velocity α = 3200m/s, S-wave velocity β = 1800m/s, density ρ =
1800kg/m3. Figure 5 shows the 3D view of acquisition geometry. One source is location
at (400m, 400m, 40m). One receiver is located at (400m, 400m, 760m). We use finite-
difference method for solving the anisotropic and elastic wave equation with a standard
stagger grid method. A CPML boundary condition is applied on all of the boundaries of the
model. Note that in numerical experiments presented in this research, we used the pressure
source for forward modelling and different types of sources should lead to different results.
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Figures 6a-6c show the observed data (z component displacement field), synthetic data and
adjoint source. Figures 7a-7f show the sensitivity kernels Kα, Kβ , Kρ, Kε, Kδ and Kγ for
P-wave velocity, S-wave velocity, density, ε, δ and γ respectively.

FIG. 5. The 3D acquisition geometry. The red star and blue circle represent the positions of source
and receiver.

Diagonal elements of the block matrices in multi-parameter Gauss-Newton Hessian

As discussed in previous section, the diagonal elements in the diagonal blocks and
off-diagonal blocks of the multi-parameter Gauss-Newton Hessian can be constructed ex-
plicitly using adjoint-state technique. Here, we give numerical examples to show the di-
agonal elements of the block matrices in multi-parameter Gauss-Newton Hessian for 3D
anisotropic FWI. The first numerical example is gradients and diagonal Hessian for the
elastic constants in 3D orthorhombic media. The 3D orthorhombic media is homogeneous
with the elastic constants of c11 = 25.34 GPA, c12 = 12.26 GPA, c13 = 13.26 GPA,
c22 = 17.4 GPA, c23 = 11.58 GPA, c33 = 24.5 GPA, c44 = 5.68 GPA, c55 = 6.78 GPA,
c66 = 5.56 GPA. Figures 8a-8i show the diagonal elements of the diagonal blocks H̃c11c11 ,
H̃c22c22 , H̃c33c33 , H̃c12c12 , H̃c13c13 , H̃c23c23 , H̃c44c44 , H̃c55c55 ,and H̃c66c66 for multi-parameter
Hessian in orthorhombic media. Figures 9a-9i show the diagonal elements of the off-
diagonal blocks H̃c11c33 , H̃c22c33 , H̃c12c33 , H̃c13c33 , H̃c23c33 , H̃c44c33 , H̃c55c33 ,and H̃c66c33 , which
measure the parameter trade-off of c33 with other elastic constants. Note that here we ig-
nore the receiver-side Green functions and the amplitudes of the diagonal Hessian elements
are normalized at the same depth slice.

From Figures 8 and 9, we can see that the energy distribution for different elastic con-
stants in the diagonal elements of the multi-parameter Hessian are quite different. The en-
ergy distributions should match the scattering patterns of these elastic constants (Pan et al.,
2016a). The diagonal elements of the multi-parameter Gauss-Newton Hessian are able to
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FIG. 6. (a), (b), and (c) show the observed data (z component displacement field), synthetic data
and adjoint source.

FIG. 7. (a), (b), (c), (d), (e) and (f) show the sensitivity kernels of P-wave velocity, S-wave velocity,
density, ε, δ and γ.

quantify the parameter resolution by taking geometrical spreading and finite-frequency ef-
fects into consideration. They are not able to evaluate the parameter trade-off due different
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FIG. 8. (a)-(i) show the diagonal elements of the diagonal blocks H̃c11c11 , H̃c22c22 , H̃c33c33 , H̃c12c12 ,
H̃c13c13 , H̃c23c23 , H̃c44c44 , H̃c55c55 ,and H̃c66c66 .

physical parameters at different locations, which can be achieved by the columns or rows
of the multi-parameter Hessian, as shown in the following examples.

Multi-parameter point spread function

In this section, we will first illustrate the parameter resolution kernels for elastic and
isotropic parameters. Figure 10 shows the acquisition geometry. The model is isotropic
and homogeneous with P-wave velocity α=2000 m/s, β=1400 m/s and α=1200 kg/m3. A
total of 64 sources are distributed regularly along the 4 boundaries of the model with a
spacing of 60 m. A total of 192 receivers are arranged along 4 boundaries of the model
regularly with a spacing of 60 m.

To calculate the columns of the multi-parameter Hessian, we first apply a +10% point
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FIG. 9. (a)-(h) show the diagonal elements of the off-diagonal blocks H̃c11c33 , H̃c22c33 , H̃c12c33 ,
H̃c13c33 , H̃c23c33 , H̃c44c33 , H̃c55c33 ,and H̃c66c33 .

perturbation of P-wave velocity at x=(0.5 km, 0.5 km) and calculate the gradients for all
of the three parameters, which forms the multi-parameter point spread functions Hαα (x),
Hαβ (x) and Hαρ (x). We then apply a +10% point perturbation of S-wave velocity at
x=(0.5 km, 0.5 km) and calculate the gradients, which correspond to Hβα (x), Hββ (x) and
Hβρ (x). Finally, we apply point perturbation of density and calculate the gradients, which
are Hρα (x), Hρβ (x) and Hρρ (x). We rearrange the multi-parameter point spread func-
tions, as shown in Figures 11a and 11b. Figure 11c show the point spread functions after
normalization, from which we are able to evaluate the inter-parameter mapping for elastic
FWI. We conclude that the mapping from P-wave velocity to S-wave velocity and density
are weak. Positive P-wave perturbation produces negative artifacts in S-wave velocity and
density. Positive S-wave velocity perturbation results in strong and negative mappings in P-
wave velocity and density models. Positive density perturbation produces positive artifacts
in P-wave velocity and S-wave velocity. These predictions are verified by the numerical
examples in Pan and Innanen (2016).

0 km 1 km
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FIG. 10. The acquisition geometry for constructing the PSFs. Red stars and blue circles represent
the locations of the sources and receivers.
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FIG. 11. (a), (b) and (c) show the multi-parameter point spread functions in elastic and isotropic
media.

In the next example, we design a 3D HTI model for examining the multi-parameter
point spread functions. The model parameters are: P-wave velocity α = 3200m/s, S-wave
velocity β = 1800m/s, density ρ = 1800kg/m3, ε = −0.14, δ = −0.18 and γ = −0.15.
Figure 12 shows the acquisition survey with a plan view. The positions of sources and
receivers are denoted by red stars and blue circles. Nine sources at a depth of 32m are
excited simultaneously. A total of 1681 receivers are arranged regularly with a depth of
32m.

FIG. 12. The 3D acquisition geometry. The red stars and blue circles represent the positions of
sources and receivers.

We next carry out numerical experiments for constructing the multi-parameter point
spread function. Considering that the model perturbation of P-wave velocity is point lo-
cated at position x̃=(200 m, 200 m, 200 m), the gradient of the point scatter leads to the
determination of one column of the multi-parameter Hessian. The z, x, and y components
of the data residuals due the point perturbation of P-wave velocity are illustrated in Figures
13a, 13b, and 13c respectively. Note that because we only applied +5% perturbation of
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P-wave velocity, the data residuals are contaminated by artifacts.

FIG. 13. Data residuals due to perturbation of P-wave velocity. (a) z-component; (b) x-component;
(c) y-component.

A P-wave velocity perturbation located at x̃ will map into a blurred S-wave velocity
heterogeneity with the shape of Hαβ (x̃), a blurred density heterogeneity with the shape of
Hαρ (x̃), a blurred ε heterogeneity with the shape of Hαε (x̃), a blurred δ heterogeneity with
the shape of Hαδ (x̃) and a blurred δ heterogeneity with the shape of Hαγ (x̃).

Figure 14a shows the point spread function Hαα (x̃). Figures 14b-14f show the multi-
parameter point spread functions Hαβ (x̃), Hαρ (x̃), Hαε (x̃), Hαδ (x̃) and Hαγ (x̃), which
indicate the inter-parameter mappings due to model perturbation ∆m (x̃) to model param-
eters β, ρ, ε, δ and γ respectively. There are several aspects for understanding the inter-
parameter trade-offs with the multi-parameter point spread functions: the strength of the
point spread function, the polarity of the point spread function and the spreading range of
the point spread function.

As we can see from Figure 14, the perturbation of model parameter ∆mα(x) results in
parameter crosstalk artifacts in other parameters. However, we observe that strength, po-
larity, spreading width of the parameter crosstalk artifacts for different parameters are quite
different. Positive P-wave velocity perturbation results in negative and positive parameter
crosstalk artifacts in S-wave velocity and density. However, the strength of artifacts are
very weak, which means that the parameter cross-talk artifacts due to P-wave velocity may
not be significant for S-wave velocity and density. However, parameter crosstalk artifacts
in the anisotropic parameters ε, δ and γ are very strong, which will make it quite difficult
to invert anisotropic parameters.

We then calculate the multi-parameter point spread functions due to the model pertur-
bation ∆mβ(x̃) for investigating the influences of S-wave velocity on the inversion of other
model parameters. Figures 15a-15c show the z component, x component and y component
of the data residuals due to model perturbation of S-wave velocity. Figures 16a-16f show
the multi-parameter point spread functions Hβα (x̃), Hββ (x̃), Hβρ (x̃), Hβε (x̃), Hβδ (x̃),
Hβγ (x̃) due to the model perturbation ∆mβ(x̃). We notice that the parameter crosstalk
artifacts introduced by S-wave velocity perturbation are very strong, which means that the
S-wave velocity perturbations make it difficult to invert P-wave velocity, density and the
anisotropic parameters.
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FIG. 14. (a), (b), (c), (d), (e) and (f) show the multi-parameter point spread functions Hαα (x̃),
Hαβ (x̃), Hαρ (x̃), Hαε (x̃), Hαδ (x̃), Hαγ (x̃).

FIG. 15. Data residuals due to perturbation of S-wave velocity. (a) z-component; (b) x-component;
(c) y-component.

Figures 17, 19, 21 and 23 show the data residuals due to model perturbations of density,
anisotropic parameters ε, δ and γ respectively. Using similar approaches, we can calculate
the multi-parameter point spread functions due to density, anisotropic parameters ε, δ and γ,
as shown in Figures 18, 20, 22, and 24. From our observations, we conclude that Thomsen
parameters ε, δ and γ will not produce significant parameter crosstalk artifacts for P-wave
velocity, S-wave velocity and density. However, P-wave velocity, S-wave velocity and
density perturbations will make these anisotropic parameter difficult to be inverted.

DISCUSSION

It is known that the multi-parameter Hessian can help to reduce the parameter crosstalk
artifacts. However, it is extremely extensive to construct the Hessian matrix explicitly
for large-scale inverse problems. The Hessian-free methods provide effective strategies of
applying inverse Hessian to precondition the gradient (Pan et al., 2017). In these types of
methods, only Hessian-vector products are required and the search direction is obtained by
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FIG. 16. (a), (b), (c), (d), (e) and (f) show the multi-parameter point spread functions Hβα (x̃),
Hββ (x̃), Hβρ (x̃), Hβε (x̃), Hβδ (x̃), Hβγ (x̃).

FIG. 17. Data residuals due to perturbation of density. (a) z-component; (b) x-component; (c)
y-component.

solving the Newton equation iteratively with an conjugate-gradient algorithm (Pan et al.,
2017). Most of Gauss-Newton FWI applications are implemented in frequency domain.
From my personal experience, for frequency domain Hessian-free Gauss-Newton FWI,
only a limited number of inner iterations are affordable. Time domain Gauss-Newton FWI
should be more stable. In this research, we propose to quantify the parameter resolution
for multi-parameter FWI in elastic and anisotropic media via probing the multi-parameter
Hessian. Furthermore, we notice that the probing technique can be used to construct the
Hessian-vector products in time domain, which can to used to implement Gauss-Newton
FWI in time domain.

CONCLUSION

In this report, we analyze the disadvantages of scattering patterns for parameter reso-
lution analysis in multi-parameter FWI. To quantify the parameter resolution more com-
pletely, we propose to employ Hessian information. With the adjoint-state technique, we
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FIG. 18. (a), (b), (c), (d), (e) and (f) show the multi-parameter point spread functions Hρα (x̃),
Hρβ (x̃), Hρρ (x̃), Hρε (x̃), Hρδ (x̃), Hργ (x̃).

FIG. 19. Data residuals due to perturbation of ε. (a) z-component; (b) x-component; (c) y-
component.

are able to calculate the diagonal elements of the block matrices in multi-parameter Hessian
explicitly. We can also extract one column from multi-parameter Hessian, which is named
as the multi-parameter point spread function, with the spike probing technique. Thus, it is
possible to evaluate the parameter crosstalk of different parameters at different locations.
In the numerical modelling section, we give numerical examples to verify our ideas.

Gradients of the elastic constants in general anisotropic media In this appendix, we give
the gradient expressions for the 21 elastic constants in general anisotropic media. Equation
(26) illustrates the gradient expression

Kcijkl (x) = −
R∑
r=1

S∑
s=1

∫ T

0

∂jGni (xr, x, T − t) δcijkl (x) ∂kul (x, xs, t) dt (26)
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FIG. 20. (a), (b), (c), (d), (e) and (f) show the multi-parameter point spread functions Hεα (x̃),
Hεβ (x̃), Hερ (x̃), Hεε (x̃), Hεδ (x̃), Hεγ (x̃).

FIG. 21. Data residuals due to perturbation of δ. (a) z-component; (b) x-component; (c) y-
component.

The gradients for the 21 elastic constants can be written explicitly as:

Kc11 (x) = −
R∑
r=1

S∑
s=1

∫ T

0

∆c11 (x) ∂xGnx (xr, x, T − t) ∂xux (x, xs, t) dt,

Kc12 (x) = −
R∑
r=1

S∑
s=1

∫ T

0

∆c12 (x) (∂xGnx (xr, x, T − t) ∂yuy (x, xs, t)

+∂yGny (xr, x, T − t) ∂xux (x, xs, t)) dt,

Kc13 (x) = −
R∑
r=1

S∑
s=1

∫ T

0

∆c13 (x) (∂xGnx (xr, x, T − t) ∂zuz (x, xs, t)

+∂zGnz (xr, x, T − t) ∂xux (x, xs, t)) dt,

Kc14 (x) = −
R∑
r=1

S∑
s=1

∫ T

0

∆c14 (x) (2∂xGnx (xr, x, T − t) ∂yuz (x, xs, t)

+2∂yGnz (xr, x, T − t) ∂xux (x, xs, t)) dt,

(27)
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FIG. 22. (a), (b), (c), (d), (e) and (f) show the multi-parameter point spread functions Hδα (x̃),
Hδβ (x̃), Hδρ (x̃), Hδε (x̃), Hδδ (x̃), Hδγ (x̃).

FIG. 23. Data residuals due to perturbation of γ. (a) z-component; (b) x-component; (c) y-
component.

Kc15 (x) = −
R∑
r=1

S∑
s=1

∫ T

0

∆c15 (x) (2∂xGnx (xr, x, T − t) ∂xuz (x, xs, t)

+2∂xGnz (xr, x, T − t) ∂xux (x, xs, t)) dt,

Kc16 (x) = −
R∑
r=1

S∑
s=1

∫ T

0

∆c16 (x) (2∂xGnx (xr, x, T − t) ∂xuy (x, xs, t)

+2∂xGny (xr, x, T − t) ∂xux (x, xs, t)) dt,

Kc22 (x) = −
R∑
r=1

S∑
s=1

∫ T

0

∆c22 (x) ∂yGny (xr, x, T − t) ∂yuy (x, xs, t) dt,

Kc23 (x) = −
R∑
r=1

S∑
s=1

∫ T

0

∆c23 (x) (2∂yGny (xr, x, T − t) ∂zuz (x, xs, t)

+2∂yGny (xr, x, T − t) ∂zuz (x, xs, t)) dt,

(28)
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FIG. 24. (a), (b), (c), (d), (e) and (f) show the multi-parameter point spread functions Hγα (x̃),
Hγβ (x̃), Hγρ (x̃), Hγε (x̃), Hγδ (tildex), Hγγ (x̃).

Kc24 (x) = −
R∑
r=1

S∑
s=1

∫ T

0

∆c24 (x) (2∂yGny (xr, x, T − t) ∂yuz (x, xs, t)

+2∂yGnz (xr, x, T − t) ∂yuy (x, xs, t)) dt,

Kc25 (x) = −
R∑
r=1

S∑
s=1

∫ T

0

∆c25 (x) (2∂yGny (xr, x, T − t) ∂xuz (x, xs, t)

+2∂xGnz (xr, x, T − t) ∂yuy (x, xs, t)) dt,

Kc26 (x) = −
R∑
r=1

S∑
s=1

∫ T

0

∆c26 (x) (2∂yGny (xr, x, T − t) ∂xuy (x, xs, t)

+2∂xGny (xr, x, T − t) ∂yuy (x, xs, t)) dt,

Kc33 (x) = −
R∑
r=1

S∑
s=1

∫ T

0

∆c33 (x) ∂zGnz (xr, x, T − t) ∂zuz (x, xs, t) dt,

Kc34 (x) = −
R∑
r=1

S∑
s=1

∫ T

0

∆c34 (x) (2∂yGnz (xr, x, T − t) ∂zuyz (x, xs, t)

+2∂zGnz (xr, x, T − t) ∂yuz (x, xs, t)) dt,

(29)
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Kc35 (x) = −
R∑
r=1

S∑
s=1

∫ T

0

∆c35 (x) (2∂zGnz (xr, x, T − t) ∂xuz (x, xs, t)

+2∂xGnz (xr, x, T − t) ∂zuz (x, xs, t)) dt,

Kc36 (x) = −
R∑
r=1

S∑
s=1

∫ T

0

∆c36 (x) (2∂xGny (xr, x, T − t) ∂zuz (x, xs, t)

+2∂zGnz (xr, x, T − t) ∂xuy (x, xs, t)) dt,

Kc44 (x) = −
R∑
r=1

S∑
s=1

∫ T

0

∆c44 (x) 4∂yGnz (xr, x, T − t) ∂yuz (x, xs, t) dt,

Kc45 (x) = −
R∑
r=1

S∑
s=1

∫ T

0

∆c45 (x) (4∂yGnz (xr, x, T − t) ∂xuz (x, xs, t)

+4∂xGnz (xr, x, T − t) ∂yuz (x, xs, t)) dt,

(30)

Kc46 (x) = −
R∑
r=1

S∑
s=1

∫ T

0

∆c46 (x) (4∂yGnz (xr, x, T − t) ∂xuy (x, xs, t)

+4∂xGny (xr, x, T − t) ∂yuz (x, xs, t)) dt,

Kc55 (x) = −
R∑
r=1

S∑
s=1

∫ T

0

∆c55 (x) 4∂xGnz (xr, x, T − t) ∂xuz (x, xs, t) dt,

Kc56 (x) = −
R∑
r=1

S∑
s=1

∫ T

0

∆c56 (x) (4∂xGnz (xr, x, T − t) ∂xuy (x, xs, t)

+4∂xGnz (xr, x, T − t) ∂xuy (x, xs, t)) dt,

Kc66 (x) = −
R∑
r=1

S∑
s=1

∫ T

0

∆c66 (x) 4∂xGny (xr, x, T − t) ∂xuy (x, xs, t) dt.

(31)
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