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ABSTRACT

Based on the modified patchy-saturated porous model, according to the method Biot
used for the foundation of elastic wave equations in porous media, we established the
stress-strain relations and obtained the dissipation function and kinetic energy in
patchy-saturated porous media. By applying the Lagrange’s equations, we derived the
elastic wave equations in modified patchy-saturated media. Through changing the
equations to first-order stress-velocity equations, we deduced the 3D high-order finite
difference schemes and numerically solved the equations in the complex domain.
Numerical results show that there are two kinds of P-waves and one S-wave in patchy
saturated media. The energy of the slow P-wave is very weak in the “solid” phase of the
patchy saturated porous media and can hardly be seen, even though it is stronger in the
fluid phase. The fast P-wave and S-wave are clear both in the solid phase and the fluid
phase. The slow P-wave has a high dispersion. The velocities of the three waves are
consistent with the theoretical results. All these results show that our numerical method is
correct and effective.

INTRODUCTION

As we all know, seismic attenuation and velocity dispersion are important properties
which may be used both in exploration geophysics and development geophysics.
Therefore, many scientists have studied seismic attenuation and velocity dispersion based
on different models (e.g., Biot, 1956a, 1956b, 1962; Dutta and Odé¢, 1979a, 1979b;
Mavko and Nur, 1979; Lopatnikov and Gurevich, 1988; Berryman, 1988; Chapman et al.,
2006; Miiller et al., 2010; Gurevich and Makarynska, 2012; Kuteynikova et al., 2014; Qi
et al., 2014; Tisato and Quintal, 2014; Yao et al., 2015; Zhang and He, 2015; Spencer and
Shine, 2016). The main basic models are the Biot model (Biot, 1956a, 1956b), the BISQ
model (Dvorkin and Nur, 1993; Dvorkin et al., 1994) and the patchy-saturated model
(White, 1975). The Biot model is the earliest model that considers the relative motion
between solid and fluid. It is the relative motion between matrix and fluid that causes the
presence of the slow P-wave. Due to its high attenuation and dispersion, it is difficult to
observe in reality. However, scientists do verify its existence both in the laboratory (Plona,
1980; Mou, 1996) and through numerical modeling (Wang 1990; Zhu and McMechan,
1991; Zeng et al., 2001; Arntsen and Carcione, 2001; Zhang et al., 2004; Miiller et al.,
2011). Unfortunately, the attenuation expected from the Biot model is much smaller than
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that measured in real sandstones (Grant, 1994). In order to better describe the wave
propagation in fluid-containing rocks, the squirt mechanism (Mavko and Nur, 1979) is
also considered besides Biot flow, and the BISQ model was established (Dvorkin and Nur,
1993). However, attenuation computed from the BISQ model is still underestimated
within the seismic band (Yang et al., 2007; Nie et al., 2012; Ling et al., 2013; Li et al.,
2013). Since White (1975) proposed a model for seismic wave attenuation which was
shown to cause high attenuation coefficients in the exploration frequency
band(10-150Hz), more and more scientists began to study seismic wave attenuations
based on the White model (e.g., Dutta, N. C., and A. J. Seriff, 1979; Dutta and Odé,
1979a, 1979b; Carcione et al., 2003). In fact, the White model is a patchy-saturated
model, where rock pores are saturated with different types of fluids and mesoscopic flow
can occur. Pride et al. (2004) showed that the squirt flow mechanism does not adequately
describe attenuation in the seismic frequency range, whereas the mesoscale flow model
can account for the attenuation in the low frequency range. Mesoscopic flow can occur
within a wide range of scales in typical sedimentary rocks, from the largest pore size to
the smallest wavelength, and therefore can cause attenuation over a broad range of
frequencies (Miiller et al., 2010). Hence, the White model is an ideal representation of a
patchy-saturated model with mesoscopic fluid flow.

Based on the White model, we (Zhang and He, 2015) established a patchy saturated
model, called the modified patchy-saturated model, and derived its P-wave equations on
the basis of Biot’s equations and Johnson’s bulk modulus. We derived the seismic wave
attenuation coefficients by solving the equations, and analyzed the characteristics of wave
attenuation at low frequencies. The results show that there is a high attenuation and
velocity dispersion in modified patchy-saturated porous media within the seismic band.
This indicates that the modified patchy-saturated model may better describe seismic
waves in real rocks. In order to fully understand seismic waves in modified
patchy-saturated model, it is necessary to establish elastic wave equations in which the
S-wave is also included.

In this paper, we will establish elastic wave equations in a modified patchy-saturated
model following the method of Biot’s equations established in 1962 (Biot, 1962). As
numerical simulation is a useful way to study wave propagation in fluid-containing rocks,
especially in complicated media, such as patchy-saturated media, we will numerically
solve the equations by using a high-order finite difference method and simulate the wave
propagations in modified patchy-saturated media.
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ESTABLISHMENT OF ELASTIC WAVE EQUATIONS IN MODIFIED
PATCHY-SATURATED MODEL

The modified patchy-saturated model is illustrated in Figure 1(Zhang and He, 2015).
In this model, some regions were fully saturated with one fluid and others were fully
saturated with another fluid.

(a) (b

FIG.1. Modified patchy-saturated model for porous media

Figure 1a shows the rock skeleton and two kinds of fluids where the dots represent for
fluid 1 and dashes represent for fluid 2. For convenient calculation, we consider Figure 1a
as Figure 1b, which consists of two concentric spheres with radii R, and Rj. In the
smaller sphere, there are pores saturated with fluid 2(gas pocket in White model). In the
larger sphere, there is the rock skeleton and the pores filled with fluid 1. In this model, we
assumed that: The seismic wavelength is much larger than the gas pocket size and there is
no interaction between two gas pockets (which is also White’s assumption), and there is
no movement between fluid 1 and the skeleton, but there is relative movement between
fluid 2 and the skeleton.

First, we discuss the stress-strain relations in a modified patchy-saturated medium.

Biot analyzed the strain energy of a porous elastic medium and established the
corresponding stress-strain relations (Biot, 1962). By using the same method, we can
obtain the stress-strain relations in a modified patchy-saturated medium, as follows:

o, =2u(ou | ox)+ A6 +2yDe, (1)
o, =2u(0u,l 0y)+ A0 +2yDe, ()
o..=2uCou_l 0z)+ 10 + 2y D¢, 3)
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o, =ul(0u, / 8z)+(Ou, / o)), 4)
o.=u[(0u_/0z)+(Ou, /x)] (5)
o, =ul(u, / 8y)+(8u, / &x)], (6)
s=2yDO+2De¢. (7)
If we let
I ou 1 ou. Ou, 1 ou ou |
L () ()
Ox 2 0y Ox 2 0z Ox
0 0 0
e = l(%+ﬁ) My l(ﬂJr%) , (8)
12 0y ox oy 20z Oy
1 ou_ou 1 Ou, ou ou
S(Feaey (el :
|2 0z ox 2 0z oy oz ]

then, equations (1) - (6) can be written using the following abbreviated notation
o, =2ue, +8,(A0+2yDe), ©)

where, u u,, u_ are the displacement components of the “solid”( frame rock containing

fluid 1) of the patchy-saturated porous rock; & is the volume strain of the “solid”, and

0=V -uwith u= (ux,uy,uz); & 1is the volume strain of fluid 2 relative to “solid”, and
&=V-w with w=¢U —ii), where Uis the displacement of fluid 2, and ¢ is the
porosity of the rock; o, (i, j = x,y,z) are the total stress components of the porous rock;

s is the stress component of fluid 2; &, is delta function; u,4,y,D are elastic

coefficients of the rock and they satisfy the following relations

H=/1+2u=K+§,u, (10)
K
12 (11)
YR,
K[, 56z o] (12)
D 5 {7/+KfZ (K K‘fz)} s
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where H is the plane-wave modulus of partially-saturated rock, K and u are bulk

and shear moduli of the patchy-saturated rock, respectively; K, and K, are the bulk
moduli of the skeleton containing fluid 1, but excluding fluid 2 and the frame filled with

fluid 1, respectively; K, and S,are the bulk modulus and saturation of fluid 2,

respectively.
Then, we examine the dissipation function of a modified patchy-saturated medium.

If we define the rate of flow of fluid 2 by the time derivative of the volume flow
vector:

ow

5 = (i) (13)
then, the dissipation function in per unit volume of the patchy-saturated rock is
F, = 5772 (0, + rzzwy2 +rgw, + 2r W W, + 21 W, + 21, W, W), (14)

where 77, 1is the viscosity of fluid 2.

The symmetric matrix

TSP T
|:ry']: Ho Ty T3 (15)
N Iz Iy

Kll K12 K13

[lﬂj]l:[’(y]: Ko Ky Ky | (16)

KIS K23 K33

also symmetric, represents a “permeability matrix.” (Biot, 1962)

When the medium is isotropic,

K

11 K=Ky =K

(17)

Ky =K3=K,; =0,

and Equation (14) becomes
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Fy =t 4 4002, (18)
2k

where the quantity x is the permeability of the medium.
Next, we discuss the kinetic energy of a unit volume of the porous medium.

At low frequencies, Biot gave the vector o which determines the components of the
relative microvelocity field in the pores:

O, =apW, +apWw, +a; W,
O, =y W, +anW, +d;W, (19)

L, =a,Ww, + a32wy +a;w,,
where the coefficients 4, depend on the coordinates in the pores and the pore geometry.
The kinetic energy of a unit volume of the patchy-saturated medium is given by
T = %pl (i, +u,* +.”) +%pf2 _m [, +0,)° + (@, +0,)* + (1, +0,)* 1dQ. (20)
o
In this expression, p, represents the mass density of the “solid”(frame rock with fluid

1),and p, represents the mass density of fluid 2 in patchy-saturated medium.

After some derivation, equation (20) can also be written as
T—l ) -2 .2+ .. - . .. 1 2 2 de (21)
_Ep(ux +u,” +u, ) tp, (uw, +u,w, +uzwz)+§,0f2 J.J.J-(Ux +ou,”+0.7)d
Q
where p is the total mass of the porous medium per unit volume.
From equation (19), we derive
P[] @2+, +0.2)dQ=Y" mv,, (22)
Q /2
with
m;=py, Jﬂ (2 a,a,)dQ. (23)
Q k

It is obvious that we have
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m.=m . (24)

g Jt
For a medium with statistical isotropy of the microvelocity field, the coefficients m,

reduce to

m;=mo,;. (25)
Then, we get the kinetic energy of a unit volume
T_l .2+.2+.2+ ++ +l .2+.2+.2 (26)
= 2p(ux u, +u )kp, (uow, +uw +uw,) 2m(wx WS+ w.").

Finally, by applying Lagrange’s equations, we can derive the elastic wave equations in
modified patchy-saturated medium.

The Lagrange’s equations are written as

Z%_d[@T}
> 8xj dt\ ou

os d(or) @F,
a_xi:Z(an o,

27)

These also are the general dynamical equations when gravity forces are neglected.

For the isotropic medium, substituting expressions (18) and (26) for , andT, and

substituting the stress-strain relations (7) and (9) into equation (27), we obtain the elastic
wave equations in a modified patchy-saturated medium

82
Z—(#e )+—(w+ 27De)= < (pu,+ Py
(28)
2
—(2}/D6’+2D5)— 0 (pfu +mw)+ 8W’
K Ot

In equation (28), the parameter p is the total mass of the modified patchy-saturated

porous medium per unit volume, which satisfy the following

p=~1=9)p, +¢Slpfl +¢S2pf2 ) (29)
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where p is the mass of the pure solid per unit volume, s, and p  are saturation and

mass density of fluid 1 in modified patchy-saturated medium, respectively.

For the elastic coefficients constant in an isotropic medium, the above equations can
be written as

2
1NV u+(H - u)VO+2yDVe =%(pu +p,W)
2 o (30)

V(2yDO+2Ds) =%(pfzﬁ+m%)+ia_w

K o
HIGH-ORDER FINITE DIFFERENCE SOLUTION OF ELASTIC WAVE
EQUATIONS

Computational accuracy and efficiency are important factors of forward modeling for
a wave field. The simulation of elastic waves involves more computation than P-waves,
which leads to lower computational efficiency. In order to improve the efficiency of

computation, we change equation (30) to the formula expressed by stress and velocity,
i.e., first-order stress-velocity equations

ov ow. Gax 60)@, 802 31
Ltp, = + (€29)
ot 2 0ot ox oy 0z

ov, ow, B oo 80",, oo

Jo)

L y_ 7w w o 32
P "Pr7a " o o oz (32)
ov oW. 0o, 0o, oo
z+ z _ xz+ Z+ zz, 33
Pt "Pra o o oz 33)

ov ow,. n, Os
ey = 34
Pr, ot " o k & ox (34)

ov, W, m, o

s G 35
Prae "o Tk o (33)
ov ow. mn, Os
. Iom—=+=W =—. 36
Pree ™™o Tk (36)

In the above equations, v, v, ,V,are components of velocity of the “solid” vinx, y,

z directions; W:a_w and w,_, w,, W, are components of wWin x, y,z directions,
ot -

respectively.

Then, by applying the partial derivative to ¢ in equations (1) - (7), we can change the
form of the stress-strain relations to stress-velocity equations
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0 0 oW,
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ot ox Oy o oz
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ot 6)’ 6)/ 82

(37)

(38)

39)

(40)

(41)

(42)

(43)

We define V,, V,, V, as the components of the velocity of fluid 2 Vin three

directions, then equations (31) - (36) can be written as

(0% =mpY o= gp, v g, v 4 o STy a;y D)
(7 - p) =90, v, 40, 2V, 4 p, 2—;— m(a;j’ + ag;" + aa“ ) @3)
(P2 —mp) aav; 00, v —dp, V4, S 8; +9%2), o)
om0 B0 v, =V, p S T e By )
(mp-p;) a;; = ¢Pn—K2Vy —¢Pn_;Vy + PZ—;—pf2 (a;:y + a;yy + agzyz )s (48)
(mp-p;, aar? = ¢p"—K2VZ —¢p77—K2VZ +p%—Pf2 (a;f + agy” + 8;7; )- (49)
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Meanwhile, equations (37) - (43) can be written as

oo
6V 5V 0V
H-2 2vD
+( =2y ¢ ay A ),
60‘
GVV ov.
~+—),
0z
0o,
6t aV (52)
y +6VZ),
ay Oz
oo ov. v
E = L —2), 53
Py H( . 6y) (53)
oo ov. ov
Xz _ x4 z , 54
a et >4
oo oy Ov
2= L+ —2), 55
Py u( & ax) (55)
ov, ov,
9 _yp-20g) e+ D, Vey o py e Sy L OV (56)
ot ox 0Oy Oz ox oy Oz

In equations (44) — (56), the elastic coefficient H , which represents the modulus of
plane wave, is complex in a modified patchy-saturated medium, since the bulk modulus
K is complex in a patchy-saturated medium. The bulk modulus K is computed
according to the bulk modulus Johnson (2001) established in a patchy-saturated medium,
see our previous paper (Zhang and He, 2015). Therefore, we should solve the equations
in the complex domain (see Appendix).
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FIG. 2. Staggered- grid of modified patchy-saturated medium

Figure 2 is the staggered-grid we established. The position of each component in
elastic wave field see Table 1.

Table 1. Positions of each component in elastic wave field

Staggered
) 1 2 3 4 5 6 7
gri
C O-xxre > nyre >
omponents

f elasti O zrer sre ’ U,VZ” e O-xzre > Gx)”’ e? vxre > I/xre > v}”” e’ yre? Vzre 4 szre >

OT elastic
wave field O_xxim s o-}{v[m b Uyzim szim xyim inm oV sim vyim sV yim vz[m y V;im

O-zzim ’ S[m

Since we cannot compute unlimited regions, artificial boundary reflections inevitably
exist, which will interfere with the wave field and affect our analysis. In order to absorb
boundary reflections, the perfectly matched layer (PML) boundary conditions (Berenger,
1994) are used in this paper.
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NUMERICAL SIMULATION OF MODIFIED PATCHY-SATURATED POROUS
MEDIA

According to the parameters Johnson (2001) and Huang et al. (2012) used, we perform
the numerical simulation of modified patchy-saturated porous media. The elastic
parameters we used are in Table 2, in which the fluid 2 is oil. In Table 2, we introduce
some parameters not previously introduced, which are used for computing the plane wave
modulus A, referring to our previous paper (Zhang and He, 2015). Here, we just

illustrate the physical meaning of the parameters. K and K, are bulk moduli of fluid 1
and fluid 2 in a modified patchy-saturated medium, respectively; 7, is the viscosity of

fluid 1; K and K, are the moduli of pure solid and skeleton with pores (i.e. dry solid),

respectively; S (sis used instead in our previous paper) is a structure constant that
depends on the pore structure and orientation.

Table 2. Elastic parameters in modified patchy-saturated media

Parameters values Parameters values
¢ 0.284 K, 38x10° Pa
S, 0.7 K, 16x10° Pa
S, 0.3 P, 2650 kg-m™
K, 2.25x10° Pa P 1000 kg -m™
K, 1.0x10" Pa Py, 800 kg-m™
m 1.0x10°Pa-s K 1.0x107 " m?
m, 1.0x10"Pa-s R, 4.642cm
H 14.61x10° Pa R, 10cm
2
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In this paper, we only study the wave propagation in isotropic homogeneous media.
Therefore, a 2D homogeneous model is enough to test our computation method. The
simulation results are shown in Figure 3. The model size we used here is 500500 with
5m grid spacing. The source is shear wave source, which is put in the centre of the model.
The time interval is 0.5ms and the wavelet dominant frequency is 40Hz.

X 5
g 5
x5m x5m
(a) (b)
X X
W W
= =
X5m x5m
(c) (d)

FIG. 3. The wave field snapshots of modified patchy-saturated porous medium (t=250ms):

(a) v, component, (b) v, component, (c) ¥ component, (d) ., component

From Figure 3a and 3b, we can see that the fast P-wave and the S-wave are very clear
while the slow P-wave is too weak to be seen. However, from Figure 3¢ and 3d, the two
kinds of P-waves and S-wave can all be seen clearly and the velocities of the two
P-waves and S-wave are equal to the theoretical results. Furthermore, we can see that the
slow P-wave has a high dispersion which is also in accordance with the theoretical result.
All these results illustrate that our numerical method is correct.
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Figure 4 is a synthetic seismogram of the modified patchy-saturated porous model.
From Figure 4a and 4b, we can also see the three direct waves clearly which verifies our
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numerical modeling method.

Figure 5 is shown to illustrate our absorbing boundary conditions. Figure S5a is the

snapshot of V_component without absorbing boundary conditions, from which we can

see a strong boundary reflection. Figure 5b is the snapshot of J_component using PML

absorbing boundary conditions. The boundary reflections are completely absorbed in
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FIG .4. Synthetic seismograms of modified patchy-saturated model: (a)

Figure 5b which confirms our boundary condition’s effectiveness.
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we X
we X

x5m x5m

(@) (b)

FIG. 5. lllustration of PML absorbing boundary conditions:(a) snapshot of Vi

component without using any absorbing boundary conditions, (b) snapshot of

V. component after using PML absorbing boundary conditions.

CONCLUSIONS

When seismic energy propagates in underground media, especially in fluid-containing
media, high attenuation and velocity dispersion will appear. Mesoscopic fluid flow in
patchy-saturated media is the main cause for high seismic attenuation and velocity
dissipation. However, the elastic wave equations in patchy saturation media have not
been previously established. Based on the modified patchy-saturated porous model
established in our previous paper, we derived stress-strain relations according to the
method Biot used to construct elastic wave equations in porous media. After derivation,
we obtained the dissipation function and kinetic energy in patchy-saturated porous media.
By substituting the stress-strain relations and dissipation function and kinetic energy into
the Lagrange’s equations, we derived the elastic wave equations in modified
patchy-saturated media.

For the purpose of examining our equations and studying wave propagations in
partially saturated media, we perform numerical simulation of the elastic wave equations
we established. In order to improve the computational precision and efficiency, we
change the equations to first-order stress-velocity equations and deduced the 3D
high-order finite difference schemes in the complex domain because of the complex bulk
modulus in patchy saturated media. The PML boundary conditions are used to absorb the
pseudo reflections from artificial boundaries. Numerical results show that: (1) There are
two kinds of P-waves and one S-wave in patchy saturated media. (2) The energy of the

CREWES Research Report — Volume 28 (2016) 15
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slow P-wave is too weak to be seen in the “solid” phase of the patchy saturated porous
media while it clearly exists in the fluid phase. (3) The high dispersion of the slow
P-wave is apparent. (4) The fast P-wave and S-wave are obvious both in the solid phase
and fluid phase. (5) The velocities of the three waves are consistent with the theoretical
results. (6) The PML boundary conditions are effective in modified patchy-saturated
porous media. All the above confirmed the correctness and effectiveness of our numerical
method.
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APPENDIX

NUMERICAL SOLUTION OF ELASTIC WAVE EQUATIONS IN MODIFIED
PATCHY-SATURATED MEDIA

Let v,V ..V, stand for the real parts ofv,, v and v,_, respectively; v, ,
Vyim> Vamstand for the imaginary parts ofv,, v and v,, respectively; V.. V.. V..,
represent for the real parts of V,, ¥ and V_, respectively; v, v, ., V,, represent

the imaginary parts of V., V, and V,, respectively; o, (i=x,y,z; j=x,y,z) and

ijre

(o}

ijim

(i=x,y,z; j=x,y,z) are the real and imaginary parts of oy (i=x,y,2;

j=x,y,z), respectively; s ands, are the real and imaginary parts of s, respectively;

re

H}"

(4

and H,, represent for the real and imaginary parts of H , respectively. Then,

equations (45) — (56) can be written as

0

v
(P, —mp)—2
o (A-1)
_772 772 asre 8 o-xxre a nyre a o}
=g, —=Vv_,—¢p, —=V_ . +p, - +
0y, k7 wr, Kk Pr, ox m ox oy 0z
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Elastic wave equations

av re
(pj, =mp)—
; ) (A2)
772 772 S re xyre o yyre yzre
=gp, L2y _gp Ly 4 —m + :
¢p 1 P yre ¢p 1o P yre p 1o ay ( ax ay 82 )
ov
2 —-m zre
(py, —mp) Py s
77 2 772 aSre 6 O-xzre 6 O-yz re a Uzzre
= 2 ==V  + —m + + ,
¢pfz P ¢pfz i Pr, Oz ( Ox oy Oz )
ov.
(m/o—pf-z)ﬁ
(A-4)
77 2 77 2 aSre a O-xxre O-Xy"e 8 O-xzre
—gp ey _gply 4 - + :
¢p P xre ¢p i xre p ax pr( ax ay 82 )
_ 2. yre
(mp /0,2)—a ;
; ) (A-5)
772 77 2 A im O-xyre yyre o yzre
=go—=Vv, . —pp—V  + - + ,
o=V, —9p e tp o Py ( Fe o . )
ov.
(mp—p}) ==
a G O 0 (8-6)
772 772 Sre szre yzre O-zzre
= 1% =V  + - + + ,
¢p zre ¢p zre p 62 IO fz( a 8_)} 82 )
ov._,
(P}, —mp) 22
(A-7)
7, m, 0. im aO-chim O-xyim aO-)czim
=dp, v —gp, 2V . —m + ,
wr, K 7y sn P, ox ( ox oy 0z )
6‘/ im
(P, ~mp)—"
3 5 5 (A-8)
772 772 S,'m O-xyim nyim O-yzim
- 2V i — : + + ,
¢'0f2 PReL ¢'0f vim T P, dy m( Ox dy oz )
ov.
(0, ~mp) P2
)
P P Sim O viim yzim O im
= V.. — . —V + - -—m + + 9
"y, k" %y, k" Pr, 0z ( ox oy 0z )
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According to equations (A-1) — (A-26), we derive the 3D high-order finite difference
schemes as follows
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The schemes of other components can also be derived according to the same method.
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