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ABSTRACT

Full waveform inversion (FWI) has the goal to find the Earth’s model parameters that
minimize the difference of acquired and synthetic shots. It is a powerful tool to automatize
some complex processes. However, when we talk about seismic data, we are talking about
huge datasets, and the FWI shows to be very hard to be applied in large scale, as it requires
a large number of synthetic data and migrations at each iteration. In this work, We are
proposing an approximation for the FWI that is forward modeling-free, requiring only the
migration of the acquired data, which can be pre or post stack, and the optimization driven
by a sonic log calibration. We tested the approximation for acoustic inversion in a syn-
thetic 2D Marmousi survey. It is stable and leads to detailed inverted models with reduced
computational costs.

INTRODUCTION

Seismic inversion techniques are the ones that use intrinsic informations contained in
the data to determine rock properties by matching a model that "explains" the data. Some
examples are the variation of amplitude per offset, or AVO (Shuey, 1985; Fatti et al., 1994),
the traveltime differences between traces, named traveltime tomography (Langan et al.,
1984; Bishop and Spongberg, 1984; Cutler et al., 1984), or even by matching synthetic
data to the observed data, as it is done in full waveform inversion (Tarantola, 1984; Virieux
and Operto, 2009; Margrave et al., 2010; Pratt et al., 1998), among others. These inversions
can compute rock parameters as P and S waves velocities, density, viscosity and others. In
this work I am focused in the inversion of the P wave velocity.

FWI is a least-square based inversion, which objective is to find the model parameters
that minimizes the difference between observed (acquired) and synthetic shots (Margrave
et al., 2011), or the residuals. This is accomplished in an iterative fit method by linearizing
a non-linear problem. It is an algorithm similar to a Ridge Regression (Chipman, 1999),
which minimizes non-linear problems by adding a regularization term to avoid over fitting
(to smooth the model). In seismic processing, I regularize the inversion by convolving the
model with a 2D Gaussian window (Margrave et al., 2010).

The full waveform inversion was proposed in the early 80’s (Pratt et al., 1998) but the
technique was considered too expensive in computational terms. Lailly (1983) and Taran-
tola (1984) simplified the methodology by using the steepest-descent method (or gradient
method) in the time domain to minimize the objective function without calculate, explicitly,
the partial derivatives. They compute the gradient by a reverse-time migration (RTM) of
the residuals. Pratt et al. (1998) develop a matrix formulation for the full waveform inver-
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sion in the frequency domain and present more efficient ways to compute the gradient and
the inverse of the Hessian matrix (the sensitive matrix) the Gauss-Newton or the Newton
approximations. The FWI is shown to be more efficient if applied in a multi-scale method,
where lower frequencies are inverted first and is increased as more iterations are done (Pratt
et al., 1998; Virieux and Operto, 2009; Margrave et al., 2010). An overview of the FWI the-
ory and studies are compiled by Virieux and Operto (2009). Lindseth (1979) showed that
an impedance inversion from seismic data is not effective due to the lack of low frequen-
cies during the acquisition but could be compensated by the match with a sonic-log profile.
Warner and Guasch (2014) use the deviation of the Weiner filters of the real and estimated
data as the object function with great results. Margrave et al. (2010) and Romahn and
Innanen (2016) calibrate the gradient by matching it with sonic logs, estimanting a more
precise step length and avoiding cycle skipping. They also use the Gazdag and Sguazzero
(1984) PSPI migration algorithm with a deconvolution imaging condition (Margrave et al.,
2011; Wenyong et al., 2013) to migrate the residuals faster than the RTM, but preserving
the gradient’s resolution. Guarido et al. (2015) use the PSPI migration to migrate each
frequency content of the residuals independently, generating a pseudo-gradient for each
frequency and then averaging stacking them, using the step length as weight. It resulted on
a highly detailed model, but the computation costs are high. Guarido et al. (2016) apply
an impedance inversion in the gradient to improve the resolution of the inverted model.
Guarido et al. (2016, 2017) propose a simpler approximation for the gradient that does not
require any forward modeling. They just apply a PSPI migration on the acquired data and
compare the result with the current model. The methodology was also extended for a post-
stack depth migration. However, two forward modeling are required to estimate the step
length.

In this report, we are combining the forward modeling-free gradient approximation
(Guarido et al., 2016, 2017) with the well calibration of the gradient (Margrave et al., 2010;
Romahn and Innanen, 2016) to propose a cheap full waveform inversion that is forward
modeling-free and that provides a detailed inverted model.

THEORY

The steepest-descent method

The objective function of the FWI method is (Tarantola, 1984):

C(m) = ||d0 − d(m)||2 = ||∆d(m)||2 (1)

where ∆d is the data residual (the difference between acquired and synthetic shots), m is
the model (in this work, the P-wave velocity) and || represents the norm-2 of the array. The
minimization is done by calculating the Taylor’s expansion of the objective function of the
equation 1 around a perturbation δm of the model and taking the derivative equal to zero
(Tarantola, 1984; Pratt et al., 1998; Virieux and Operto, 2009). The solution is:

mn+1 = mn −H−1
n gn (2)
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where H is the Hessian (or sensitive matrix), g is the gradient computed by back-propagating
the data residual and n is the n-th iteration. It is known as the Newton method. For the
steepest-descent method, the Hessian matrix can be neglected and be equalized to the iden-
tity matrix:

mn+1 = mn − αngn (3)

where α is the step length, which can be determinded by a line search or a least squares
minization (Pica et al., 1990). At this part, the gradient is understood as the reverse-time
migration ot the residuals. We can interpret this step and expand its meaning to say that the
gradient is equivalent to a pre-stack depth migration of the residuals, and we decided to use
a PSPI migration of the residuals with a deconvolution imaging condition (Margrave et al.,
2010, 2011; Wenyong et al., 2013; Guarido et al., 2014).

The forward modeling-free gradient

Computing the gradient requires three very known seismic processing steps: PSDM
of the residuals, stacking and impedance inversion. Let’s understand those steps as the
operators M for migration, S for stacking and I for impedance inversion. Equation 3 can be
re-written as:

mn+1 = mn − αngn

= mn − αnI {S [M (∆d(mn))]}
= mn − αnI {S [M (d0 − d(mn))]} (4)

where ∆d(mn) is the n-th iteration residual d0 − d(mn), d0 is the acquired data, d(mn)
is the synthetic data of the n-th iteration and mn is the n-th iteration inverted model. For
simplification and easier visualization, let’s set d(mn) = dn. Then equation 4 is:

mn+1 = mn − αnI {S [M (d0 − dn)]} (5)

Considering the linearity property of the migration operator (see appendix), the ac-
quired and synthetic shots can be migrated separately:

mn+1 = mn − αnI {S [M (d0)−M (dn)]} (6)

The next step is to use the linearity property of the stacking operator and equation 6
becomes:

mn+1 = mn − αnI {S [M (d0)]− S [M (dn)]} (7)
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For the impedance inversion operator, the first approximation we tried is I(x1 − x2) =

I0
I(x1)
I(22)

. Then equation 7 can be written as:

mn+1 = mn − αnI0
I {S [M (d0)]}
I {S [M (dn)]}︸ ︷︷ ︸

Current model

(8)

where the denominator is the impedance inversion of the stacked depth migrated synthetic
shots should be the velocity model on which the forward modeling algorithm is ran into. In
others words, it is the model of the current iteration mn. Then equation 11 can be simplified
to:

mn+1 = mn − αnI0
I {S [M (d0)]}

mn

(9)

Equation 9 shows to be unstable as it can be divided by zero (as we are inverting for
lower frequencies greater than 3Hz and not capturing the Earth linear trend, it can result on
zeros and even negative impedance). Trying to avoid this we added a stabilization factor
SF:

mn+1 = mn − αnI0
I {S [M (d0)]}

mn + SF
(10)

Choosing a value for the stabilization factor showed to be challenging. A too small
value can lead areas of the gradient to have a huge value compared with its neighbors. A
large value (around 1 and above) can change the denominator significantly. And the value
needed to be changed at each iteration by trial and error. Avoiding the division of equation
10 is the best tactic at this point. So we took the risk to say that the impedance inversion
operator is approximately linear (for that, we assume Earth impedance to follow a linear
trend and a Taylor expansion of the reflection coefficients is used to estimate the update as
a perturbation of Earth’s impedance), we end up with another solution for equation 7:

mn+1 = mn − αn(I {S [M (d0)]} − I {S [M (dn)]}︸ ︷︷ ︸
Current model

) (11)

Again, on the second hand of the gradient approximation we have the model of the
current iteration mn. Then equation 11 is simplified to:

mn+1 = mn − αn(I {S [M (d0)]} −mn) (12)

Equations 12 and 10 understand the gradient as a residual impedance inversion of the
acquired data relative to the current model. The objective function is being minimized on
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the estimation of the step length, that requires 2 forward modeling when using Pica et al.
(1990)’s approximation.

Looking again at equation 12, we understand that we are estimating the gradient by
applying some seismic processing tools. If we think about migration and stack, migrating
the data and stacking should have the same effect as doing the inverted process (stack then
migrate). Then equation 12 is equivalent to:

mn+1 = mn − αn(I {M [S (d0)]} −mn) (13)

This means I can input in the algorithm a stacked section (figure 1) and apply a post-
stack depth migration algorithm (we used a zero-offset based PSPI with a cross-correlation
imaging condition). The stacking velocity used is the same initial model of the others tests.
However it was converted to a rms velocity..

FIG. 1. Stacked section used as input in the post-stack method.

Analyzing the stacked section on figure 1, we noticed the presence of diffractions on the
center area of the model caused by the fault zones. We can also observe a strong horizontal
event close to the surface and also internal multiples are very evident on the deeper areas.
We took note of all those observations and studied how they affected the inversion.

Well calibration

Until now we are assuming Pica et al. (1990)’s approximation to determine the step
length on equations 12 and 13. However, it goes against our seeking for a forward modeling-
free routine, as they still require two forward modeling to estimate the step length. Mar-
grave et al. (2010) and Romahn and Innanen (2016) calibrate the gradient by matching it
with a sonic log at the same spatial location. They estimate a scalar and phase rotation to
create a match filter to convolve with the gradient. This would lead us with a FWI algorithm
100% forward modeling-free. So we decided to implement it.
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To find the scalar α that minimizes the impedance inverted gradient trace Sgrad to the
impedance (sonic log) well trace Swell, we minimize the L2-norm function for α:

Φ = ||Swell − αSgrad||2 (14)

This leads to a simple equation to estimate α:

α =
ST
wellSgrad

ST
gradSgrad

(15)

For the phase rotation, we use the Toolbox code constphase.m that finds the angle ϕ
that makes Sgrad looks like Swell. By finding α and ϕ, we create a matching filter which is
convolved with the gradient to have the model update.

Combining the well tie calibration with the forward modeling-free gradient of equations
12 and 13, we are proposing a new FWI routine that is 100% forward modeling-free. This
reduces significantly the cost of the inversion without the need of the source estimation.

SIMULATION

Post-stack approximation with well calibration

FIG. 2. True Marmousi model. The black line is the well position.

Test are held in the Marmousi model. The well for calibration is selected to be the
column in the center of the model, as shown on figure 2.

For the starting model on figure 3, we use a simulation of a velocity analysis output.

The main difference of the routine now is to replace the Pica et al. (1990)’s algorithm
to estimate the step length by the well calibration. At each iteration we compute the gradi-
ent according to equation 13 and match its central column with the residual well log (the
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FIG. 3. The initial model is a simulation of a velocity analysis output.

difference of the well and current model). Computes a scale factor and phase rotation to
generate a match filter that, by convolving with the gradient, results on a model updated
that is optimized in the well location. The frequency content per iteration is a little differ-
ent than before. Now, for the first iteration, the frequency range to estimate the gradient
is from 4Hz to 9Hz. At each iteration, the frequency range is increased by 1Hz until the
maximum of 30Hz.

FIG. 4. Inverted model for the post-stack method with well calibration.

After running 25 iterations in 8 minutes on a personal laptop, the inverted model of
figure 4 shows impressive resolution (higher resolution than we were expecting) with low
cost. All main structures are recovered and even in the deep area of the model, some layers
started to show their shape. The three large faults in the central part are also visible and
can be used by interpreters. Multiples of the high velocity bodies are present below 2500m
depth. However, the most impressive result is the reduced cost to run the routine. As cited
previously, it took only 8 minutes to be completed. The band-limited impedance inversion
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based gradient of chapter ?? took about 48 hours to complete and it required 48 nodes of
the CREWES supercomputer. Comparing both ending models, the cost reduction came
with some loss in resolution, but models are still comparable.

FIG. 5. Model deviation of the post-stack approximation with well calibration. The convergence is
fast, reached on the very firsts iterations.

As any synthetic shot is generated during the process, the objective function is not mea-
sured at each iteration. But, as we have the true model, we computed the model deviation
per iteration in figure 5 and it is clear that the inversion is stable. The method converges fast,
in about 2 iterations. After that there is a small increment in error that is slowly reduced as
iterations advance.

Pre-stack approximation with well calibration

In the previous section, the post-stack method is combined with a well calibration of
the gradient, providing a fast solution, with surprising high resolution. Now, we are testing
the same method, but with a pre-stack migration. We are losing in cost, but we now, now,
seeking improvements in quality.

By using the same starting model of figure 3, the resulted inversion of figure 6 has
incredible resolution, improving the resolution of the post-stack method (figure 4). The
multiples below 2500m are still visible, but the structures in the central part of the model
are more clear. The high velocity bodies are better placed with closer true velocity. Only
the shallow portion looks to be blurred, when compared to the post-stack method.

The model deviation of figure 7 shows a fast convergence. Basically, the best fit is
reached at the very first iteration. After that the deviation just flies around the minimum.

This model came with some loss in cost, as it took about 6 hours to be completed using
a personal laptop. As surveys get larger, with more shot points and recording time, running
time will increase as well. So, all is a matter of cost/quality trade-off.
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FIG. 6. Inverted model for the post-stack method with well calibration.

FIG. 7. Model deviation of the pre-stack approximation with well calibration. The inverted model
goes closer to the true model.

Velocity models as migration velocities

It is clear as by applying the FWI routine, the starting model is improved and features
of the true model are included to the final inversion. This is very helpful for seismic in-
terpretation. Now, let’s remember that, usually, the starting model of the FWI routine is
the best migration velocity from the seismic processing. So, we are wondering if the FWI
can also improve the subsurface image by providing a better migration velocity. For this
analysis, 3 velocities are chosen to migrate the acquired data: the velocity analysis initial
model (figure 8a), the post-stack forward modeling-free with well calibration (figure 8c),
and the pre-stack forward modeling-free with well calibration (figure 8e). For the pre-stack
migration, we use the PSPI migration, with a deconvolution imaging condition, on the ac-
quired data. As the data does not contain higher frequencies, we migrate the data on the
frequency band from 1Hz to 60Hz. The migrated shots are muted and stacked to form a
subsurface image (figures 8b, 8d and 8f).
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FIG. 8. Using the models a) initial, c) post-stack and e) pre-stack to apply a pre-stack migration of
the acquired data and obtain the respective subsurface images b), d) and f). Migration is improved
as the model is more precise.

Looking at all the migrated images (figures 8b, 8d and 8f), we can say that all the
migration velocities (figures 8a, 8c and 8e) are very similar. Now, looking closely, as we
go deeper in the model, structures have different positions. It is more evident at the high
velocity body in the left size of the model on the depth of 2500m. The post-stack FWI
started to place the structure in a more correct place, as the pre-stack FWI did even a better
job. So, the higher resolution the model has, higher the resolution the subsurface image
have. And it is more evident as deeper as we go.

We are confident that we are proposing a cheap and fast FWI that will improve the
initial model to help in the seismic interpretation of the survey and to provide a clearer
subsurface image by providing a more accurate migration velocity.

CONCLUSIONS

In this work we proposed a new approximation for the full waveform inversion that,
assuming linearity of the seismic processing tools, allows us to obtain the gradient free of
forward modeling, and combining it with the well calibration of the gradient, replacing the
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step length, we have a full waveform inversion that is 100% free of froward modeling and
source estimation. We should consider that for an initial model that is far from the true
model, both the pre and post stack approximations resulted on inverted models with high
level of details, with reduced computing costs. In the future work, we will be extending
the same approximation idea for a multi-parameter FWI (if possible) and for 3D seismic
surveys.
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