
SEG-Y Update

 CREWES Research Report — Volume 29 (2017) 1

CREWES Matlab® toolbox SEG-Y Input/Output update

Kevin W. Hall and Gary F. Margrave

ABSTRACT
The ability to read and write SEG-Y files into Matlab® using the CREWES toolbox has

been evolving for a long time. Along the way, at least six separate attempts to code SEG-Y
input/output (I/O) have been written by many people. None of this code was able to
effectively deal with trace headers, custom trace headers, or with very large SEG-Y files.
In addition, outputs were incompatible so that, for example, trace headers read from disk
by one set of CREWES code could not be written to an output SEG-Y file using an
unrelated set of CREWES code. This lead to user frustration. A major re-write has been
undertaken that combines ideas from legacy code in an object-oriented way that can handle
very large datasets, trace headers and custom trace headers. Coding has also begun to
support SEG-Y revision 2 which was released in January of 2017. Legacy code in the
CREWES toolbox is being removed from the toolbox or being re-written as wrappers that
call the new code for backwards compatibility. This report provides an overview of the
current state of the new code, with examples of how to use it.

INTRODUCTION
The ability to read and write SEG-Y files into Matlab® using the CREWES toolbox has

been evolving for a long time. Along the way, at least six separate attempts to code SEG-Y
input/output (I/O) have been written and modified by many people, some of whom
documented their efforts (Hogan, 2004, Lloyd, 2010). All versions of SEG-Y code were
stored concurrently in the CREWES toolbox, but none of it was compatible. This lead to,
for example, a SEG-Y file read from disk by one set of CREWES code could not be written
to an output SEG-Y file using an unrelated set of CREWES code.

SEG-Y revision 0 (Barry et al., 1975) and revision 1 (Norris and Faichney, 2002) files
were fairly well supported by CREWES code with the exception of trace header values.
New code developed in 2010 was able to read trace headers (Lloyd et al., 2010), but was
never optimized for speed. These codes were able to read IBM floating-point data, but not
able to write it. CREWES code up to this point typically tried to read entire SEG-Y files
into RAM, which was all right for small files but no good for files that were larger than the
available memory on a given computer.

SEG-Y revision 2 (Hagelund and Stewart, 2017) as released in January of 2017, which
prompted another look at these issues. A major re-write has been undertaken that combines
ideas from legacy code in an object-oriented way that can handle very large datasets, trace
headers and custom trace headers. This code aims to be more efficient, more robust, more
flexible, and easier to maintain than past code.

Legacy code in the CREWES toolbox is being removed from the toolbox or being re-
written as wrappers that call the new code for backwards compatibility. When this project
is complete it will no longer be possible to read data with CREWES SEG-Y code only to
be unable to write that data using a different set of CREWES SEG-Y code.

Hall and Margrave

2 CREWES Research Report — Volume 29 (2017)

This report provides an overview of the current state of the new code. Rather than
attempt to exhaustively document all features of code that is still under development, we
show code examples that have been tested in Matlab® 2016b and 2017a. These examples
can be copied from this document and pasted onto the Matlab® command line. All
examples shown in this report are available in the file crewes/segy/examplecode.m

The example code that follows is organized by topic and numbered sequentially by the
order in which the item appears in a SEG-Y file. For example, the textual file header
examples in Example sections number 1.# and the binary file header examples are in
sections 2.#, where # refers to 0) header definition information, 1) new header definition
cell array, 2) new header value struct, 3) convert between struct and double, 4) file read
and 5), file write.

The educational release of the CREWES Matlab® toolbox can be downloaded from
https://www.crewes.org/ResearchLinks/FreeSoftware. The CREWES sponsor release can
be downloaded from https://www.crewes.org/ForOurSponsors/Software/matlab/crmatlab.

CLASSES AVAILABLE IN EDUCATIONAL RELEASE
SegyTextHeader
Usage is: thdr = SegyTextHeader(filename,permission,byteorder,segyrevision,gui). See
the Appendix for more details.

SegyTextHeader is a class for creating, reading and writing SEG-Y textual file headers.
When a SegyTextHeader object is created for an existing SEG-Y file, the code attempts to
guess if the text header is ASCII or EBCDIC format. The guess can be manually overridden
setting the SegyRevision property after creating a SegyTextHeader object.

%TextHeader
%% Example 1.2: Create new textual file header
disp('*** Example 1.2: Create new textual file header ***')
thdr = SegyTextHeader; %Create a new SegyTextHeader object
txthdr=thdr.new; %Create a new SegyRevision 1 (default) textual file
header
thdr.SegyRevision = 0; %Update SegyRevision
txthdr=thdr.new; %Create a new SegyRevision 0 textual file header
thdr.SegyRevision = 2; %Update SegyRevision
txthdr=thdr.new; %Create a new SegyRevision 2 textual file header

%% Example 1.4: Read textual file header from disk
disp('*** Example 1.4: Read textual file header ***')
thdr = SegyTextHeader(insgyfile); %Create a new SegyTextHeader object,
TextFormat is guessed from file
txthdr = thdr.read; %Read textual file header from disk
thdr.TextFormat = 'ascii'; %Update TextFormat
txthdr = thdr.read; %Read textual file header from disk
thdr.TextFormat = 'ebcdic'; %Update TextFormat
txthdr = thdr.read; %Read textual file header from disk

%% Example 1.5: Write textual file header
disp('*** Example 1.5: Write textual file header ***')

https://www.crewes.org/ResearchLinks/FreeSoftware
https://www.crewes.org/ForOurSponsors/Software/matlab/crmatlab

SEG-Y Update

 CREWES Research Report — Volume 29 (2017) 3

thdr = SegyTextHeader(outsgyfile,'w'); %Create a new SegyTextHeader
object with write permission
thdr.write(thdr.new); %Create and write a new textual file header to
disk
thdr.Permission = 'r'; %Update Permission
txthdr = thdr.read; %Read textual file header from disk

SegyBinaryHeader
Usage is: bhdr = SegyBinaryHeader(filename,permission,byteorder,segyrevision,gui). See
the Appendix for more details.

SegyBinaryHeader is a class for creating, reading and writing SEG-Y binary file
headers. When a SegyBinaryHeader object is created for an existing SEG-Y file, it guesses
if the disk file is big (‘b’) or little (‘l’) endian byte-order by examining the data sample
format code, which should be in the range 1-16. If the byte-order is incorrect, the format
code will be read as a number greater than 255. This guess can be manually overridden by
setting the ByteOrder property after creating a SegyBinaryHeader object.

Reading and writing a binary header word structure is governed by a binary header
definition cell array with four columns, where the first column contains character strings
that will be turned into struct fieldnames. The second column contains character strings
specifying the data type for the SEG-Y header word. The data type can be any of the
following: ‘uint8’, ‘uint16’, ’uint24’, ‘uint32’, ’uint64’, ’int8’, ’int16’, ’int24’, ‘int32’,
int64’, ’ibm32’, ’ieee32’, and ’ieee64’ where ‘u’ means unsigned, ‘int’ means integer, ibm
means IBM floating point, ieee means IEEE floating point and the trailing number is the
number of bits (8 bits in 1 byte) used to store the value. The third column contains the byte
location (numeric) of the SEG-Y header word relative to the beginning of the binary file
header. Note that the SEG-Y standard starts counting at byte 1, so the first header word,
‘Job Identification Number’, is at byte 1 in the standard, but this code starts counting at
byte zero, so the start byte will be 0 in this case. The fourth column contains a long
description of the header word as a character string

%% Binary Header
%% Example 2.0: Get binary header definition information
disp('*** Example 2.0: Get binary header definition information ***')
bhdr = SegyBinaryHeader; %Create a new SegyBinaryHeader object
bhdr.SegyRevision = 2; %Update SeGYRevision
bhdr.HdrDef; %Display current header definition cell array
[hwname, byteloc, idx] = bhdr.byte2word(20); %Return information about
header word closest to byte 20
bhdr.HdrDef(idx,:); %Display header word definition for row number idx

%% Example 2.1: Create a new binary header definition
disp('*** Example 2.1: Create new binary header definition ***')
bhdr = SegyBinaryHeader; %Create a new SegyBinaryHeader object
bindef = bhdr.newDefinition; %Create a new SegyRevision=1 (default)
header definition
bindef = bhdr.newDefinition(0); %Create a new SegyRevision 0 header
definition
bindef{50,1} = 'NewField'; %Update header word name for row 50 of the
definition
bhdr.HdrDef = bindef; %Update object's header definition

Hall and Margrave

4 CREWES Research Report — Volume 29 (2017)

bhdr.HdrDef(50,:); %Display row 50 of object's definition

%% Example 2.2: Create a new binary header
disp('*** Example 2.2: Create new binary header ***')
bhdr = SegyBinaryHeader; %Create a new SegyBinaryHeader object
binhdr = bhdr.new; %Create a new binary header struct, using object
defaults
bhdr.SamplesPerTrace = 500; %Override number of samples per trace
bhdr.SampleInterval = 1000; %Override sample interval
[binhdr,bindef] = bhdr.new; %Create a new binary file header struct and
header definition

%% Example 2.4: Read binary file header
disp('*** Example 2.4: Read binary file header ***')
bhdr = SegyBinaryHeader(insgyfile); %Create a new SegyBinaryHeader
object, ByteOrder is guessed from file
binhdr = bhdr.read; %Read binary file header from disk
bhdr.ByteOrder = 'l'; %Update ByteOrder: 'l' is little-endian
binhdr = bhdr.read; %Read binary file header from disk
bhdr.ByteOrder = 'b'; %Update ByteOrder: 'b' is big-endian (SEG_Y
revision 0 and 1 standard)
binhdr = bhdr.read; %Read binary file header from disk

%% Example 2.5: Write binary file header to disk
disp('*** Example 2.5: Write binary file header to disk ***')
thdr = SegyTextHeader(outsgyfile,'w'); %Create a new SegyTextHeader
object with write permission
thdr.write(thdr.new); %Create a new text header and write it to disk
bhdr = SegyBinaryHeader(outsgyfile,'a'); %Create a new SegyBinaryHeader
object with append permission
nsamp = 10; %Samples per trace
sampint = 1000; %Sample interval in microseconds
bhdr.write(bhdr.new(nsamp,sampint)); %Write a new binary file header to
disk, override bhdr.SamplesPerTrace and bhdr.SampleInterval
bhdr.Permission = 'r'; %Update Permission
bhdr.read; %Read binary file header from disk

SegyExtendedTextHeader
This is a stub. No code has been written or tested for creating, reading or writing

extended textual file headers (if any) for SEG-Y revision 1 and 2 files.

SegyTrace
Usage is: trc = SegyTrace(filename,permission,fmtcode,byteorder,segyrevision,gui). See
the Appendix for more details.

SegyTrace is a class for creating, reading and writing SEG-Y trace headers and trace
data. When a SegyTrace object is created it uses a temporary SegyBinaryHeader object to
get basic information from the binary file header which enables calculation of the number
of traces in the file. Some of this information, for example, the number of samples per trace
may be incorrect in the binary header. These properties be overridden before conducting
read operations. If the files Segy Revision number is 0 and the binary header data sample
format code is 1 (4-byte floating point), the class constructor tests the trace data to guess if

SEG-Y Update

 CREWES Research Report — Volume 29 (2017) 5

it is IBM or IEEE floating point. If the latter, the objects FormatCode is updated to 5 (IEEE
4-byte floating point; see Hall, 2017) At this time, this class does not handle variable length
traces, although they can still be read by manually overriding properties such as OFFSET
and SamplesPerTrace.

Reading and writing trace headers words is governed by a cell array, similar to the
SegyBinaryHeader class, however, a trace header definition cell array has five columns.
The first column contains header word name character strings that will be turned into struct
fieldnames. The second column contains character strings specifying the data type for the
SEG-Y header word. Data types can be any of the following: ‘uint8’, ‘uint16’, ’uint24’,
‘uint32’, ’uint64’, ’int8’, ’int16’, ’int24’, ‘int32’, int64’, ’ibm32’, ’ieee32’, and ’ieee64’
where ‘u’ means unsigned, ‘int’ means integer, ibm means IBM floating point, ieee means
IEEE floating point and the trailing number is the number of bits (8 bits in 1 byte) used to
store the value. The third column contains the byte location (numeric) of the SEG-Y header
word relative to the beginning of the trace header. Note that the SEG-Y standard starts
counting at byte 1 so the first header word, ‘Trace Number in Line’, is at byte 1 in the
standard, but this code starts counting from zero so the start byte will be 0 in this example.
The fourth column contains the name of the scalar header word that will be applied to the
current header word if the ApplyCoordScalars property is set to 1 (default). The scalar
header word name must also exist in column 1. The fifth column contains a long description
of the header word as a character string.

%% Trace
%% Example 4.0: Get trace header definition information
disp('*** Example 4.0: Get trace header definition information ***')
trc = SegyTrace; %Create a new SegyTrace object
trc.HdrDef; %Display the current trace header definition cell array
[hwname, byteloc, idx] = trc.byte2word(20); %Get info about header word
closest to byte 20
trc.word2byte('EnsembleNum'); %Get byte number for a given header word
name
trc.HdrDef(idx,:); %Display header word definition for row number idx

%% Example 4.1: Create new trace header definition cell array
disp('*** Example 4.1: Create new trace header definition ***')
trc = SegyTrace; %Create a new SegyTrace object
trc.HdrDef{80,1} = 'NewField'; %Update field name for row 80 of the
definition
trc.HdrDef(80,:) %Display row 80 of HdrDef
trcdef = trc.newDefinition(0); %Create a new SegyRevision 0 header
definition
trcdef = trc.newDefinition(2); %Create a new SegyRrevision 2 header
definition
%Modify trcdef manually or by using uiSegyDefinition (not shown)
trc.HdrDef = trcdef; %Override object's header definition

%% Example 4.2: Create new trace header struct, data array and
definition
disp('*** Example 4.2: Create new trace header struct, data array and
definition ***')
trc = SegyTrace; %Create a new SegyTrace object
trcdef = trc.newDefinition(); %Return a new trace header definition

Hall and Margrave

6 CREWES Research Report — Volume 29 (2017)

[trchdr, trcdat, trcdef] = trc.new(ntrace, nsamp, sampint); %Return new
trace header, trace data and trace definition
trc.SegyRevision = 0; %Update SegyRevision
trcdef = trc.newDefinition(); %Create a new SegyRevision 0 trace header
definition
[trchdr, trcdat, trcdef] = trc.new (ntrace, nsamp, sampint); %Return
new trace header, trace data and trace definition
trc.SegyRevision = 2; %Update SegyRevision
trcdef = trc.newDefinition; %Create a new SegyRevision 2 trace header
definition
[trchdr, trcdat, trcdef] = trc.new (ntrace, nsamp, sampint); %Return
new trace header, trace data and trace definition

%% Example 4.3: Convert between trace header struct and array of
doubles
disp('*** Example 4.3: Convert between trace header struct and array of
doubles ***')
[hdrvals,fieldnames,datatypes] = trc.struct2double(trchdr); %Convert
trace header struct to array of doubles
trchdr = trc.double2struct(hdrvals,fieldnames,datatypes); %Convert
array of doubles to a trace header struct

%% Example 4.4: Read trace headers and data
disp('*** Example 4.4: Read trace headers and data ***')
trc = SegyTrace(insgyfile); %Create a new SegyTrace object
[trchdr,trcdat,trcdef] = trc.read; %Read all trace headers and trace
data and return trace definition used
[trchdr,trchdr,trcdef] = trc.read(10:20); %Read traces 10-20
[trchdr,trchdr,trcdef] = trc.read(20:-1:10); %Read traces 10-20 in
reverse order
[trchdr,trchdr,trcdef] = trc.read([1,5,8]); %Read traces 1, 5 and 8
trchdr = trc.read([1,5,8],'headers'); %Read trace headers only
trcdat = trc.read([1,5,8],'data'); %Read trace data only
tnl = trc.read(1:100,'TrcNumLine'); %Read header word TrcNumLine from
traces 1-100
trc.SegyRevision = 1; %Update SegyRevision
trc.ByteOrder = 'b'; %Update ByteOrder
trc.SamplesPerTrace = 1001; %Update SamplesPerTrace
[trchdr,trcdat] = trc.read; %Read all trace headers and trace data and
return trace definition used
%NOTE, SegyRevision, ByteOrder and SamplesPerTrace are incorrect,
trchdr and trcdat will be garbage!

%% Example 4.5: Write trace headers and data to disk
disp('*** Example 4.5: Write trace headers and data to disk ***')
thdr = SegyTextHeader(outsgyfile,'w'); %Create a new SegyTrace object
with write permission
thdr.write(thdr.new); %Create a new text header and write to disk
bhdr = SegyBinaryHeader(outsgyfile,'a'); %Create a new SegyBinaryHeader
object with append permission
bhdr.write(bhdr.new(nsamp,sampint)); %Create and write a new binary
header to disk
trc = SegyTrace(outsgyfile,'a'); %Create a new SegyTrace object with
append permission
[trchdr,trcdat] = trc.new(ntrace, nsamp, sampint); %Create new trace
header and trace data
trc.write(trchdr, trcdat); %Write trace header and trace data to disk

SEG-Y Update

 CREWES Research Report — Volume 29 (2017) 7

SegyDataTrailer
This is a stub. No code has been written or tested for creating, reading or writing data

trailers for SEG-Y revision 2 files.

SegyFile
Usage is sf = SegyFile(filename,permission,segyrevision,sampint,nsamps,segfmt,…

txtfmt,bytorder,bindef,trcdef,gui)

The SegyFile class provides a convenient interface for SegyTextHeader,
SegyBinaryHeader, SegyExtendedTextHeader, SegyTrace and SegyDataTrailer. If the
SegyRevision or ByteOrder properties are changed at the top level in a SegyFile object,
the change is propagated to all sub-objects.

%% SegyFile
%% Example 6.2: Create new file headers and trace data array
disp('*** Example 6.2: Create new file headers, trace data array, and
header definitions ***')
sf = SegyFile; %Create a new SegyFile object
[txthdr, binhdr, exthdr, trchdr, trcdat, bindef, trcdef] = sf.new;
%Create new file and trace headers, trace data and header defintions
[txthdr, binhdr, exthdr, trchdr, trcdat] = sf.new(ntrace, nsamp,
sampint); %Create new file and trace headers, trace data and header
defintions over-riding nsamp and sampint
%NOTE that exthdr will be empty ([])

%% Example 6.4: Read an existing SEG-Y file
disp('*** Example 6.4: Read SEG-Y file ***')
%In the following examples, exthdr will always be empty (exthdr = []).
This
%is a placeholder for when the ExtendedText Header class has been fully
written and tested.u
if exist('uiSegyFile.m','file')
 sf = uiSegyFile(insgyfile); %Create a new SegyFile object and
inspect SEG-Y file with GUI (sponsors toolbox release only)
end
sf = SegyFile(insgyfile); %Create a new SegyFile object
[txthdr, binhdr, exthdr, trchdr, trcdat, bindef, trcdef] = sf.read;
%Read entire file
[txthdr, binhdr, exthdr, trchdr, trcdat, bindef, trcdef] =
sf.read(1:2); %Read traces 1 and 2
txthdr = sf.TextHeader.read; %Read just the textual file header
binhdr = sf.BinaryHeader.read; %Read just the binary header
exthdr = sf.ExtendedTextHeader.read; %Read just the extended text file
header(s)
trchdr = sf.Trace.read(1,'headers'); %Read trace header 1
trchdr = sf.Trace.read([],'headers'); %Read all trace headers
trcdat = sf.Trace.read(1:2:10,'data'); %Read data from traces 1-10 by
two's
trcdat = sf.Trace.read([],'data'); %Read all trace data
[trchdr,trcdat] = sf.Trace.read; %Read all trace headers and trace data

%% Example 6.5: Write a new SEG-Y file: PROBLEMS
disp('*** Example 6.5: Write new SEG-Y file ***')

Hall and Margrave

8 CREWES Research Report — Volume 29 (2017)

sf = SegyFile(insgyfile); %Create a new SegyFile object
[txthdr, binhdr, exthdr, trchdr, trcdat, bindef, trcdef] = sf.read;
%Read entire file
gui=1; %Command line prompts
% gui=[]; %GUI prompts
sf2 = SegyFile(outsgyfile,'w',sf.SegyRevision,sf.SampleInterval,...
 sf.SamplesPerTrace,sf.FormatCode,sf.TextFormat,sf.ByteOrder,...
 bindef,trcdef,gui); %Create a new SegyFile object with write
permissions
sf2.write(txthdr, binhdr, exthdr, trchdr, trcdat, ...
 bindef, trcdef); %Write SEG-Y file to disk

Wrappers
A number of wrapper functions are provided for convenience and for backwards

compatability:

%% Wrappers
%% Example 7.0: Get trace header information
disp('*** Example 7.0: Get trace header information ***')
tracebyte2word(232); %Get header name closest to byte 20, revision 1
trace header definition (default)
tracebyte2word(232,0); %Get header name closest to byte 20, revision 0
trace header definition
tracebyte2word(232,2); %Get header name closest to byte 20, revision 2
trace header definition
traceword2byte('Unassigned01'); %Get byte location for header name,
revision 1 trace header definition (default)
traceword2byte('Unassigned14',0); %Get byte location for header name,
revision 0 trace header definition
traceword2byte('TrcHdrName',2); %Get byte location for header name,
revision 2 trace header definition
traceheaderdump(trchdr); %List all header names in trchdr struct that
contain non-zero values
[dump,words,inotempty]=traceheaderdump(trchdr); %Return all header
values, names and indices in trchdr struct for non-zero values
traceheaderdump_g(trchdr); %Display GUI that can plot values for up to
three separate header words

%% Example 7.4: Read an SEG-Y file
disp('*** Example 7.4: Read SEG-Y file ***')
%Read SEG-Y file with no overrides, display uiSegyFile() GUI if it
exists
[trcdat,segyrev,sampint,fmtcode,txtfmt,bytord,txthdr,...
 binhdr,exthdr,trchdr,bindef,trcdef] = ...
 readsegy(insgyfile);
%Read SEG-Y file using all available overrides
%Update input paramters:
trcrange = []; %Empty => all traces
gui = 1; %Command line prompts, no GUI
nsamps = []; %Empty => Determine number of samples per trace from file
on disk
%Read SEG-Y file using all overrides, display uiSegyFile() GUI if it
exists
[trcdat,segyrev,sampint,fmtcode,txtfmt,bytord,txthdr,binhdr,exthdr,trch
dr,...

SEG-Y Update

 CREWES Research Report — Volume 29 (2017) 9

 bindef,trcdef] =
readsegy(insgyfile,trcrange,segyrev,sampint,nsamps,...
 fmtcode,txtfmt,bytord,bindef,trcdef,gui);

%% Example 7.5: Write a new SEG-Y file
disp('*** Example 7.5: Write SEG-Y file ***')
writesegy(outsgyfile,trcdat); %Write Seg-Y revision 1 file using just
trcdat and defaults
writesegy(outsgyfile,trcdat,segyrev,sampint,fmtcode,txtfmt, ...
 bytord,txthdr,binhdr,exthdr,trchdr,bindef,trcdef); %Write SEG-Y
file using all overrides

ADDITIONAL CODE AVAILABLE IN SPONSOR RELEASE
Two graphical user interfaces (GUI) have been written to aid setting properties for

SegyFile() objects. These are called uiSegyFile() and uiSegyDefinition().

uiSegyDefinition
Usage is hdrdef = uiSegyDefinition() or hdrdef = uiSegyDefinition(hdrdef).

The uiSegyDefinition GUI displays a binary file header or trace header definition cell
array in an editable table (Figure 1). Users may check the validity of the definition at any
time by clicking the ‘Check Definition’ button. If the definition is not valid, the ‘Continue’
button will be disabled and changed from green to a red background color. Three pull-
down menus are provided: 1) ‘File’ allows you to save the current displayed definition to
a .mat file on disk, and to read it back into the table, 2) ‘New’ replaces the current definition
with a new one, and 3) ‘Edit’ allows insertion, deletion and sorting (based on the valued of
Start Byte) of rows in the table. The GUI returns the edited table as a header definition cell
array when the ‘Continue’ button is clicked.

uiSegyFile
Usage is sf = uiSegyFile(filename) or uiSegyFile()

The uiSegyFile GUI (Figure 2) allows interactive inspection of an existing SEG-Y disk
file and returns a SegyFile object when the ‘Continue’ button is clicked or if ‘Close’ is
selected from the ‘File’ pull-down menu. Three pull-down menus are available, 1) ‘File’
allows you to open a different SEG-Y file, 2) ‘Edit’ calls uiSegyDefinition for either the
current binary header definition or the current trace header definition, and 3) ‘Plot’ plots
either a single trace header word or trace data values for up to 100 traces on either side of
the current trace, using plotimage(). ‘Plot’ takes into account the radio buttons for ‘Time’,
‘Frequency’, ‘Gain Correction’, and ‘Bandpass Filter’ on the ‘Trace Display’ panel. ‘Gain
Correction’ applies an automatic envelope correction using the aec() function in the
CREWES toolbox. ‘Bandpass Filter’ applies a 10-15-55-60 Hz Ormsby filter using the
filtorm() function in the CREWEs toolbox. Bandpass frequency limits are not customizable
at this time.

Figures 2 through 7 show some examples of using uiSegyfile() for a correlated Vibroseis
source gather file.

Hall and Margrave

10 CREWES Research Report — Volume 29 (2017)

FIG. 1. GUI displayed for >> trcdef = uiSegyDefinition(sf.Trace.HdrDef)

FIG. 2. Textual file header (table) and trace one data (right) are displayed.

SEG-Y Update

 CREWES Research Report — Volume 29 (2017) 11

FIG. 3. Binary file header (table) and trace one data read correctly using little-endian byte order.

FIG. 4. Binary file header (table) and trace one data read incorrectly using big-endian byte order.

Hall and Margrave

12 CREWES Research Report — Volume 29 (2017)

FIG. 5. Trace 221 header (table) and data read correctly using little-endian byte order, trace data
displayed in frequency rather than time.

FIG. 6. Trace 200 trace header and trace data displayed with gain correction and bandpass filter.

SEG-Y Update

 CREWES Research Report — Volume 29 (2017) 13

FIG. 7. Traces 100-300 plotted with gain correction and bandpass filter using the Plot->Traces pull-
down menu,

CONCLUSIONS AND FUTURE WORK
New object-oriented code to read and write SEG-Y files has been written and tested,

but is not yet complete. However, it is more internally consistent, robust, useable and
maintainable than any previous code released via the CREWES Matlab® toolbox.
Development is on-going. All SEG-Y revision 0, 1 and 2 trace data formats are supported
for reading and writing except for format code 4 (Fixed point with gain). Variable trace
lengths in a file are not yet supported. SEG-Y revision 1 and 2 extended textual file headers
are not yet supported. SEG-Y revision 2 extended trace headers and data trailers are not
yet supported.

Future work includes writing code to address the issues listed above, removing
incompatible code from the CREWES toolbox and writing wrappers for some older code
for backwards compatibility (eg. altreadsey() and altwritesegy()).

ACKNOWLEDGEMENTS
The authors would like to thank everyone who has previously worked on SEG-Y I/O

for the CREWES toolbox, including, Henry Bland, Chad Hogan, Heather Lloyd and Carla
Osborne. We thank the sponsors of CREWES for continued support. This work was funded
by CREWES industrial sponsors and NSERC (Natural Science and Engineering Research
Council of Canada) through the grant CRDPJ 461179-13.

REFERENCES
Barry, K. M., Cavers, D. A. and Kneale, C. W., 1975, Report on recommended standards for digital tape

formats: Geophysics, 40, no. 02, 344-352.
Hagelund, R., and Stewart, A.L., Eds., SEG Technical Standards Committee, 2017, SEG-Y _r2.0: SEG-Y

revision 2.0 Data Exchange Format: SEG, Tulsa, OK, www.seg.org.
Hall, K.W., 2017, Everything you never wanted to know about IBM and IEEE floating point numbers,

CREWES Research Report, this volume.
Hogan, C., 2004, SEGY Matlab Tool Documentation, CREWES internal documentation.

http://www.seg.org/

Hall and Margrave

14 CREWES Research Report — Volume 29 (2017)

Lloyd, H., Hall, K., Margrave, M., 2010, New Matlab® functions for reading, writing and modifying SEG-
Y files, CREWES research report, 22, 58.

Norris, M.W. and Faichney, A.K., Eds., SEG Technical Standards Committee, 2002, SEG-Y rev 1 Data
Exchange Format: SEG, Tulsa, OK, www.seg.org.

APPENDIX
The following are class summaries that were auto-generated for the SegyTextHeader,

SegyBinaryHeader SegyTrace and SegyFile classes by Matlab® based on help and
comment lines contained within the code.

http://www.seg.org/

SEG-Y Update

 CREWES Research Report — Volume 29 (2017) 15

Hall and Margrave

16 CREWES Research Report — Volume 29 (2017)

SEG-Y Update

 CREWES Research Report — Volume 29 (2017) 17

Hall and Margrave

18 CREWES Research Report — Volume 29 (2017)

SEG-Y Update

 CREWES Research Report — Volume 29 (2017) 19

Hall and Margrave

20 CREWES Research Report — Volume 29 (2017)

SEG-Y Update

 CREWES Research Report — Volume 29 (2017) 21

Hall and Margrave

22 CREWES Research Report — Volume 29 (2017)

SEG-Y Update

 CREWES Research Report — Volume 29 (2017) 23

Hall and Margrave

24 CREWES Research Report — Volume 29 (2017)

SEG-Y Update

 CREWES Research Report — Volume 29 (2017) 25

	CREWES Matlab® toolbox SEG-Y Input/Output update
	abstract
	introductioN
	classes available in educational release
	SegyTextHeader
	SegyBinaryHeader
	SegyExtendedTextHeader
	SegyTrace
	SegyDataTrailer
	SegyFile
	Wrappers

	additional code available in SPONSOR release
	uiSegyDefinition
	uiSegyFile

	conclusions and future work
	acknowledgements
	references
	Appendix

