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ABSTRACT

In this paper, we will solve for the exact solutions for reflection coefficients of the
elastic wave equation in 1D, 2D, and 3D. The velocities in which we are most interested
have a transition zone, or a portion of the velocity which is non-constant. As such, we will
discuss what occurs at the start and end of the transition zone. In particular, we will find
that certain continuity conditions are required. We will also discuss the case when the plane
wave is orthogonal to the transition zone as well as the non-normal incidence case in 2D
and 3D. This work is a extension of a paper by Hardeman and Lamoureux written in 2016.
Finally, using the general solution for the reflection coefficients we find in the 1D and 2D
cases, we will compare the results of the exact solution to numerical solutions of the elastic
wave equation in 1D and 2D.

INTRODUCTION

Real world problems in seismic imaging are often difficult to solve analytically. As
such, it is necessary to use numerical methods to model these real world problems. In
numerical methods, an error term is always present as numerical solutions are only an
approximation of the exact solution. It is of interest to test the accuracy of these numerical
models.

One popular method from numerical analysis utilized in solving seismic imaging prob-
lems is the finite difference method. In this paper, we will employ finite difference methods
to model 1D and 2D solutions to the elastic wave equation

ρ(x)
∂2u

∂t2
=

∂

∂x

(
K(x)

∂u

∂x

)
(1)

where ρ(x) = c(x)α−2 is the density and K(x) = c(x)α is the bulk modulus for velocity
c(x) and parameter α. In order to model these solutions for comparison to the exact solu-
tion, we begin by finding the reflection and transmission coefficients for exact solutions to
the Eqn. 1 in 1D, 2D, and 3D. We focus on specific traits for the velocity field c(x).

In next section, we describe the specific traits of velocity fields for which we found
exact solutions of Eqn. (1) in 1D, 2D, and 3D. In the following sections, we find general
equations for the reflection coefficients and transmission coefficients given specific velocity
fields in 1D, 2D, and 3D. In the section on the numerical results, we solve for the numerical
solutions in 1D and 2D using finite difference methods. In 2D, we consider the case when
the wave hits the velocity field a normal incidence. Finally, we discuss future research and
conclude.
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REFLECTION PROBLEM

With regards to the velocity field, we focus on a velocity field with two specific traits.
First, we are interested in velocities varying only in the z-direction. We restrict the velocity
to one-dimension, the z-direction, as that is the traditional downward direction in geo-
physics, in order to limit the complexity of the problem. As the dimension of the model in-
creases, the more complicated the problem becomes; limiting to the one-dimension makes
the problem nicer for computational purposes.

The second trait of interest is when a velocity field has a transition zone. As discussed
previously, a velocity c(z) has a transition zone if a portion of c(z) is non-constant. For
instance, in (Hardeman and Lamoureux, 2016), we considered a velocity field

c(z) =


c1 z < η;

f(z) η ≤ z ≤ η +D;

c2 η +D < z;

(2)

where c1, c2, η are constants, f(z) is an arbitrary continuous function of z, and D is the
length of the transition zone. The velocity varies for some function f(z) for η ≤ z ≤ η+D.
As such, we denote this region as our transition zone. For z < η, we denote this as the top
region as it is above the transition zone; for η+D < z, we have the bottom region because
it is below the transition zone. As an illustration, we will consider a velocity jump in each
dimension.

With this in mind, we consider what occurs in a general reflection problem. We model
this problem using regional solutions. In the top region, there is a plane wave and reflection
from the start of the transition region which we write as

utop = uinc + uref. (3)

The incident wave uinc = u(x, z, t) for some solution u of the elastic wave equation

ρ(z)utt = ∇(K(z) · ∇u) (4)

where ρ(z) = cα−2(z) and K(z) = cα(z) for some parameter α. Note that x will be
dependent on the dimension we are discussing. For instance, if we are focusing on the 1D
case, then u(x, z, t) = u(z, t). In 2D, u(x, z, t) = u(x, z, t), and etc. We should note that
uinc is positive in z-direction as that is conventionally chosen as the downward direction
in geophysical problems. The reflection

uref = Ru(x,−z, t) (5)

where R is the reflection coefficient. As opposed to uinc, uref will be negative in the
z-direction. Hence, we can consider

utop(x, z, t) = u(x, z, t) +Ru(x,−z, t). (6)

We designate what occurs in the transition region as

utrans(x, z, t) = u(x, z, t). (7)
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We employ Separation of Variables to solve the elastic wave equation which separates the
PDE into ODEs for each variable. Typically, the solutions to the z-ODE would be of the
form Z(z) = AZ1(z) +BZ2(z) for arbitrary A, B and functions Z1(z) and Z2(z).

In the bottom region, we have the portion of the wave which is transmitted through the
transition zone

ubottom(x, z, t) = Tu(x, z, t) (8)

where T is the transmission coefficient.

The solution u in each of these regional solutions is the portion of the exact solution u
of the elastic wave equation corresponding to that particular region.

Given that we are considering piecewise functions, we must enforce some continuity
conditions. In particular, we wish to have displacement continuity:

utop = utrans at z = η (9)

utrans = ubottom at z = η +D (10)

and continuity of force:

Ktop(utop)z = Ktrans(utrans)z at z = η (11)

Ktrans(utrans)z = Kbottom(ubottom)z at z = η +D. (12)

After applying these continuity conditions to the regional solutions, we will get a system
of equations which we use to solve for the reflection coefficient R.

ONE DIMENSIONAL REFLECTION COEFFICIENTS

In one dimension, we will denote the solutions to the 1D elastic wave equation

ρ(z)utt = (K(z)uz)z (13)

as u(z, t). For the reflection coefficients in the 1D case, we will extend the work in (Lam-
oureux et al., 2012) and (Lamoureux et al., 2013) to general solutions.

1D Velocity Jump

In (Lamoureux et al., 2013), the authors found the reflection coefficients when there is
a velocity jump

c(z) =

{
c1 z < η;

c2 z > η
(14)

where η = 0. We consider the case for any η. Solving the 1D elastic wave equation with
this velocity jump gives the solution

u(z, t) =

{
eiω(±z/c1−t) z < η;

eiω(±z/c2−t) z > η.
(15)
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In this case, there is not a transition zone. As such, we define the regional solutions to be

utop(z, t) = eiω(z/c1−t) +Reiω(−z/c1−t); (16)

ubottom(z, t) = Teiω(z/c2−t). (17)

The continuity conditions for this problem are

utop = ubottom at z = η; (18)

Ktop(utop)z = Kbottom(ubottom) at z = η; (19)

thus, the system of equations reduces to

eiωη/c1 +Re−iωη/c1 = Teiωη/c2 (20)

cα−11

(
eiωη/c1 −Re−iωη/c1

)
= cα−12 Teiωη/c2 . (21)

Using these equations, we solve to find

R(α) = −ei2ηω/c1 (c1c
α
2 − cα1 c2)

(c1cα2 + cα1 c2)
and (22)

T (α) =
2cα1 c2e

iηω/c1e−iηω/c2

c1cα2 + cα1 c2
. (23)

We will compare this to the results we get in higher dimensions.

1D Velocity Piecewise Ramp

In (Lamoureux et al., 2013), the authors also found the reflection coefficient for the 1D
elastic wave equation when a velocity ramp is present. We will consider for general 1D
velocity ramps:

c(z) =


c1 z < η;

ctrans(z) η ≤ z ≤ η +D;

c2 η +D < z;

(24)

where D is the length of the transition zone. In the 1D case, there is only the normal
incidence case. As such, we find that solutions to the 1D elastic wave equation are of the
form:

u(x, t) =


eiω(±z/c1−t) z < η;

Z(z)e−iωt η ≤ z ≤ η +D;

eiω(±z/c2−t) η +D < z;

(25)

where Z(z) = AZ1(z) + BZ2(z) for arbitrary constants A, B. Given the presence of a
transition zone, the regional solutions are

utop(z, t) = eiω(z/c1−t) +Reiω(−z/c1−t); (26)

utrans(z, t) = AZ1(z)e
−iωt +BZ2(z)e

−iωt; (27)

ubottom(z, t) = Teiω(z/c2−t); (28)
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which gives the following system of equations when we apply the continuity conditions (9)
and (11)

eiω(η/c1−t) +Reiω(−η/c1−t) = (AZ1(η) +BZ2(η))e
−iωt, (29)

(AZ1(η +D) +BZ2(η +D))e−iωt = Teiω((η+D)/c2−t), (30)
iωη

c1
eiω(η/c1−t) − iωη

c1
Reiω(−η/c1−t) = (AZ ′1(η) +BZ ′2(η))e

−iωt, and (31)

(AZ ′1(η +D) +BZ ′2(η +D))e−iωt =
iω(η +D)

c2
Teiω((η+D)/c2−t). (32)

We can reduce this system of equations to give

eiωη/c1 +Re−iωη/c1 = AZ1(η) +BZ2(η), (33)

AZ1(η +D) +BZ2(η +D) = Teiω(η+D)/c2 , (34)
iω

c1
eiω/c1 − iω

c1
Re−iωη/c1 = AZ ′1(η) +BZ ′2(η), and (35)

AZ ′1(η +D) +BZ ′2(η +D) =
iω

c2
Teiω(η+D)/c2 . (36)

We can make this into the matrix problem:
Z1(η) Z2(η) −e−iωη/c1 0

Z1(η +D) Z2(η +D) 0 −eiω(η+D)/c2

Z ′1(η) Z ′2(η)
iω
c1
e−iωη/c1 0

Z ′1(η +D) Z ′2(η +D) 0 − iω
c2
eiω(η+D)/c2



A
B
R
T

 =


eiωη/c1

0
iω
c1
eiωη/c1

0

 . (37)

Solving this equation, we get

R(ω) =
ei2ηω/c1

N1

ω2(Z1(D + η)Z2(η)− Z2(D + η)Z1(η))

− c1c2(Z ′1(D + η)Z ′2(η)− Z ′2(D + η)Z ′1(η))

+ c1ωi(Z1(D + η)Z ′2(η)− Z2(D + η)Z ′1(η))

+ c2ωi(Z
′
1(D + η)Z2(η)− Z ′2(D + η)Z1(η))), and (38)

T (ω) = − i2c2ωe
iω(D+η)/c2eiωη/c1

N1
×

(Z1(D + η)Z ′2(D + η)− Z2(D + η)Z ′1(D + η)). (39)

where

N1 = ω2(Z1(D + η)Z2(η)− Z2(D + η)Z1(η))

+ c1c2(Z
′
1(D + η)Z ′2(η)− Z ′2(D + η)Z ′1(η))

− c1ωi(Z1(D + η)Z ′2(η)− Z2(D + η)Z ′1(η))

+ c2ωi(Z
′
1(D + η)Z2(η)− Z ′2(D + η)Z1(η)). (40)
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TWO DIMENSIONAL REFLECTION COEFFICIENTS

For the two dimensional case, we will denote the solutions to the 2D elastic wave equa-
tion

ρ(z)utt = ∇(K(z)∇u) = K(z)uzz +K ′(z)uz (41)

where ∇ = (∂x, ∂z) as u(x, z, t). In the following sections, we will consider a velocity
jump first and the general case of a piecewise velocity with a transition zone which can be
applied to solutions of the 2D elastic wave equation with piecewise velocities.

2D Velocity Jump

First, we consider a 2D velocity jump

c(z) =

{
c1 z < η;

c2 z > η;
(42)

where c1 and c2 are constant. We discuss this velocity here in order to compare the reflec-
tion provided when a ramp is present versus when one is not present.

For this case, a plane wave moves downward across a velocity jump. Thus, we represent
the wave in the top half by

utop(x, z, t) = eiω(z/c1−t) +Reiω(−z/c1−t) (43)

and the wave which is transmitted across the velocity jump as

ubottom(x, z, t) = Teiω(z/c2−t), (44)

where R is the reflection coefficient and T is the transmission coefficient.

Again, we want to enforce displacement continuity across the jump as well as continuity
of force. As such, we consider the continuity conditions

utop = ubottom at z = η; (45)

Ktop∇(utop) = Kbottom∇(ubottom) at z = η; (46)

resulting in

eiω(η/c1−t) +Reiω(−η/c1−t) = Teiω(η/c2−t); (47)

Ktop

(
iωη

c1
eiω(η/c1−t) − iωη

c1
Reiω(−η/c1−t)

)
= Kbottom

(
T
iωη

c2
eiω(η/c2−t)

)
; (48)

which implies

eiωη/c1 +Re−iωη/c1 = Teiωη/c2 (49)

Ktop

(
eiωη/c1

c1
−Re

−iωη/c1

c1

)
= Kbottom

(
eiωη/c2

c2
T

)
(50)
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Recall that K(z) = cα(z). Then,

eiωη/c1 +Re−iωη/c1 = Teiωη/c2 (51)

cα−11

(
eiωη/c1 −Re−iωη/c1

)
= cα−12

(
Teiωη/c2

)
. (52)

This becomes the matrix problem[
−e−iωη/c1 eiω(η/c2)

cα−11 e−iωη/c1 cα−12 eiωη/c2

] [
R
T

]
=

[
eiωη/c1

cα−11 eiωη/c1

]
(53)

which we can solve to get

R(α) = −ei2ηω/c1 (c1c
α
2 − cα1 c2)

(c1cα2 + cα1 c2)
and (54)

T (α) =
2cα1 c2e

iηω/c1e−iηω/c2

c1cα2 + cα1 c2
. (55)

Given that we are considering the plane wave case in 2D where the wave is orthogonal to
the velocity jump, it follows that the exact solutions for reflection and transmission coeffi-
cients would mimic the 1D case. In fact, the 2D reflection coefficient solution (Eqn. 54) is
identical to the 1D reflection coefficient solution (Eqn. 22) for this case.

2D Piecewise Velocity Ramp

We now consider what occurs for general 2D piecewise velocity ramps

c(z) =


c1 z < η

ctrans(z) η ≤ z ≤ η +D

c2 η +D < z.

(56)

Unlike in the 1D case, we now have to consider what occurs in two directions: the x-
direction and the z-direction. The plane wave can hit the ramp at normal incidence or
non-normal incidence.

In the normal incidence case, the plane wave is orthogonal to the transition zone of the
velocity field. This means that the incident angle θ = 0◦. As such, for the 2D problem of
normal incidence, the plane wave is constant in the x-direction. Hence, the solution to Eqn.
(41) is

u(x, z, t) =


eiω(±z/c1−t) z < η, x ∈ R;
Z(z)e−iωt η ≤ z ≤ η +D, x ∈ R;
eiω(±z/c2−t) η +D < z, x ∈ R;

(57)

where Z(z) = AZ1(z) + BZ1(z) for arbitrary A, B. Then, the regional solutions for this
case are

utop(x, z, t) = eiω(z/c1−t) +Reiω(−z/c1−t); (58)

utrans(x, z, t) = AZ1(z)e
−iωt +BZ2(z)e

−iωt; (59)

ubottom(x, z, t) = Teiω(z/c2−t). (60)
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Applying the 2D continuity conditions, we get the following system of equations

eiωη/c1 +Re−iωη/c1 = AZ1(η) +BZ2(η); (61)

AZ1(η +D) +BZ2(η +D) = Teiω(η+D)/c2 ; (62)

cα1

(
iω

c1
eiωη/c1 − iω

c1
Re−iωη/c1

)
= cα1 (AZ

′
1(η) +BZ ′2(η)) ; (63)

cα2 (AZ
′
1(η +D) +BZ ′2(η +D)) = cα2T

iω

c2
eiω(η+D)/c2 ; (64)

which gives us the matrix problem
Z1(η) Z2(η) −e−iωη/c1 0

Z1(η +D) Z2(η +D) 0 −eiω(η+D)/c2

Z ′1(η) Z ′2(η)
iω
c1
eiωη/c1 0

Z ′1(η +D) Z ′2(η +D) 0 − iω
c2
eiω(η+D)/c2



A
B
R
T

 =


eiωη/c1

0
iω
c1
eiωη/c1

0

 . (65)

Solving the matrix equation, we get

R(ω) = −ie
i2ηω/c1

N2

[c1c2(Z
′
1(D + η)Z ′2(η)− Z ′2(D + η)Z ′1(η))

− ω2ei2ω(D+η)/c2(Z ′1(D + η)Z2(η)− Z2(D + η)Z1(η))

− ic2ω(Z ′1(D + η)Z2(η)− Z ′2(D + η)Z1(η))

− ic1ωei2ω(D+η)/c2(Z1(D + η)Z ′2(η)− Z2(D + η)Z ′1(η))], and (66)

T (ω) =
c2ωe

iω[(D+η)/c2+η/c1]

N2

(1 + ei2ηω/c1)

(Z1(D + η)Z ′2(D + η)− Z2(D + η)Z ′1(D + η)) (67)

where

N2 = ic1c2(Z
′
1(D + η)Z ′2(η)− Z ′2(D + η)Z ′1(η))

+ c1ωe
i2ω(D+η)/c2(Z1(D + η)Z ′2(η)− Z2(D + η)Z ′1(η))

+ iω2ei2ω(D+η)/c2ei2ηω/c1(Z1(D + η)Z ′2(η)− Z2(D + η)Z1(η))

− c2ωei2ηω/c1(Z ′1(D + η)Z2(η)− Z ′2(D + η)Z1(η)). (68)

For the non-normal incidence case, the plane wave hits the transition zone at an angle
θ1 ≥ 0. In normal incidence case, the wave was constant in the x-direction; however, that
is not true for this case. As such, the solution to Eqn. (41) is

u(x, z, t) =


ei(kxx±kzz−ωt z < η;

Z(z)ei(kxx−ωt) η ≤ z ≤ η +D;

ei(kxx±k
′
zz−ωt) η +D < z;

(69)

where Z(z) = AZ1(z) +BZ2(z) with arbitrary A, B. The regional solutions are given by

utop(x, z, t) = ei(kxx+kzz−ωt) +Rei(kxx−kzz−ωt); (70)

utrans(x, z, t) = (AZ1(z) +BZ2(z))e
i(kxx−ωt); (71)

ubottom(x, z, t) = Tei(kxx+k
′
zz−ωt). (72)
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Applying the 2D continuity conditions and reducing, we get the system of equations

eikzη +Re−ikzη = AZ1(η) +BZ2(η); (73)

AZ1(η +D) +BZ2(η +D) = Teik
′
z(η+D); (74)

ikze
ikzη − iRkze−ikzη = AZ ′1(η) +BZ ′(η); (75)

AZ ′1(η +D) +BZ ′2(η +D) = ik′zTe
ik′z(η+D); (76)

which gives the matrix problem:
Z1(η) Z2(η) −e−ikzη 0

Z1(η +D) Z2(η +D) 0 −eik′z(η+D)

Z ′1(η) Z ′2(η) ikze
−ikzη 0

Z ′1(η +D) Z ′2(η +D) 0 −ik′zeik
′
z(η+D)



A
B
R
T

 =


eikzη

0
ikze

ikzη

0

 . (77)

Solving this problem, we get

R(ω) =
eηkz2i

N3

[Z ′2(D + η)Z ′1(η)− Z ′1(D + η)Z ′2(η)

+ ikz(Z
′
1(D + η)Z2(η)i− Z ′2(D + η)Z1(η))

+ ik′z(Z1(D + η)Z ′2(η)− Z2(D + η)Z ′1(η))

+ kzk
′
z(Z1(D + η)Z2(η)− Z2(D + η)Z1(η))], (78)

T (ω) =
−2ikze−ik

′
z(D+η)eiηkz

N3

(Z1(D + η)Z ′2(D + η)− Z2(D + η)Z ′1(D + η)) (79)

where

N3 = Z ′1(D + η)Z ′2(η)− Z ′2(D + η)Z ′1(η)

+ ikz(Z
′
1(D + η)Z2(η)− Z ′2(D + η)Z1(η))

− ik′z(Z1(D + η)Z ′2(η)i− Z2(D + η)Z ′1(η))

+ kzk
′
z(Z1(D + η)Z2(η)− Z2(D + η)Z1(η)). (80)

THREE DIMENSIONAL REFLECTION COEFFICIENTS

For the three dimensional case, we will denote the solutions to the 3D elastic wave
equation

ρ(z)utt = ∇(K(z)∇u) (81)

where∇ = (∂x, ∂y, ∂z) and u = u(x, y, z, t). In the next few sections, we focus on finding
reflection coefficients given a 3D velocity jump and a general 3D velocity ramp.

3D Velocity Jump

First, we consider a 3D velocity jump

c(z) =

{
c1 z < η;

c2 z > η;
(82)
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where c1 and c2 are constant. For this case, a plane wave moves downward across a velocity
jump. Thus, we represent the wave in the top half by

utop(x, y, z, t) = eiω(z/c1−t) +Reiω(−z/c1−t) (83)

and the wave which is transmitted across the velocity jump as

ubottom(x, y, z, t) = Teiω(z/c2−t), (84)

where R is the reflection coefficient and T is the transmission coefficient.

These are the same regional solutions as the 2D velocity jump. See Eqns. (43) and (44).
As such, the reflection and transmission coefficients will be the same for the 3D as in 2D
case. See Eqn. (54). It will be interesting to see if the 3D velocity ramp mimics the 2D
case as well.

3D Piecewise Velocity Ramp

In this section, we will discuss the reflection coefficient given a general 3D piecewise
velocity ramp

c(z) =


c1 z < η;

ctrans(z) η ≤ z ≤ η +D;

c2 η +D < z;

(85)

where ctrans(z) is the velocity ramp and D is the length of the ramp.

In the normal incidence case, we get the solution

u(x, y, z, t) =


eiω(z/c1−t) z < η, x, y ∈ R;
Z(z)e−iωt η ≤ z ≤ η +D, x, y ∈ R;
eiω(z/c2−t) η +D < z, x, y ∈ R;

(86)

where Z(z) = AZ1(z) + BZ2(z) for arbitrary A, B. The regional solutions for this case
are

utop(x, y, z, t) = eiω(z/c1−t) +Re−iω(z/c1−t); (87)

utrans(x, y, z, t) = (AZ1(z) +BZ2(z))e
−iωt; and (88)

ubottom(x, y, z, t) = Teiω(z/c2−t); (89)

where when we apply the 3D continuity conditions, we get

eiω(η/c1−t) +Re−iω(η/c1−t) = (AZ1(η) +BZ2(η))e
−iωt; (90)

(AZ1(η +D) +BZ2(η +D))e−iωt = Teiω((η+D)/c2−t); (91)
iωη

c1
eiω(η/c1−t) − iωη

c1
Re−iω(η/c2−t) = (AZ ′1(η) +BZ ′2(η))e

−iωt; (92)

(AZ ′1(η +D) +BZ ′2(η +D))e−iωt = T
iω(η +D)

c2
eiω((η+D)/c2−t). (93)
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We can reduce this to

eiωη/c1 +Re−iωη/c1 = AZ1(η) +BZ2(η); (94)

AZ1(η +D) +BZ2(η +D) = Teiω(η+D)/c2 ; (95)
iωη

c1
eiωη/c1 − iωη

c1
Re−iωη/c2 = AZ ′1(η) +BZ ′2(η); (96)

AZ ′1(η +D) +BZ ′2(η +D) = T
iω(η +D)

c2
eiω(η+D)/c2 ; (97)

which becomes the matrix problem
Z1(η) Z2(η) e−iωη/c1 0

Z1(η +D) Z2(η +D) 0 −eiω(η+D)/c2

Z ′1(η) Z ′2(η)
iω
c1
e−iωη/c2 0

Z ′1(η +D) Z ′2(η +D) 0 − iω
c2
eiω(η+D)/c2



A
B
R
T

 =


eiωη/c1

0
iω
c1
eiωη/c1

0

 . (98)

This is the same matrix problem as for the 2D case Eqn. (65). As such, the exact solution
for the reflection coefficient will be the same.

In the non-normal incidence case, the 3D solutions to the elastic wave equation are of
the form:

u(x, y, z, t) =


ei(kxx+kyy±kzz−ωt) z < η, x, y ∈ R;
(AZ1(z) +BZ2(z))e

i(kxx+kyy−ωt) η ≤ z ≤ η +D, x, y ∈ R;
ei(kxx+kyy±k

′
zz−ωt) η +D < z, x, y ∈ R.

(99)

Therefore, the regional solutions for this case are

utop(x, y, z, t) = ei(kxx+kyy+kzz−ωt) +Rei(kxx+kyy−kzz−ωt), (100)

utrans(x, y, z, t) = (AZ1(z) +BZ2(z))e
i(kxx+kyy−ωt), and (101)

ubottom(x, y, z, t) = Tei(kxx+kyy+k
′
zz−ωt). (102)

Applying the continuity conditions, we get the system

ei(kxx+kyy−ωt)(eikzη +Re−ikzη) = (AZ1(η) +BZ2(η))e
i(kxx+kyy−ωt);

(103)

(AZ1(η +D) +BZ2(η +D))ei(kxx+kyy−ωt) = Tei(kxx+kyy+k
′
z(η+D)−ωt); (104)

cα1 e
i(kxx+kyy−ωt)(ikze

ikzη − ikzRe−ikzη) = cα1 (AZ
′
1(η) +BZ ′2(η))e

i(kxx+kyy−ωt);
(105)

cα2 (AZ
′
1(η +D) +BZ ′2(η +D))ei(kxx+kyy−ωt) = cα2 ik

′
zTe

i(kxx+kyy+k′z(η+D)−ωt); (106)

which reduces to

eikzη +Re−ikzη = AZ1(η) +BZ2(η); (107)

AZ1(η +D) +BZ2(η +D) = Teik
′
z(η+D); (108)

ikze
ikzη − ikzRe−ikzη = AZ ′1(η) +BZ ′2(η); (109)

AZ ′1(η +D) +BZ ′2(η +D) = ik′zTe
ik′z(η+D). (110)
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We can make this into the matrix problem
Z1(η) Z2(η) −e−ikzη 0

Z1(η +D) Z2(η +D) 0 −eik′z(η+D)

Z ′1(η) Z ′2(η) ikze
−ikzη 0

Z ′1(η +D) Z ′2(η +D) 0 −ik′zeik
′
z(η+D)



A
B
R
T

 =


eikzη

0
ikze

ik′zη

0.

 (111)

Recall this is the same matrix as for the 2D case. See Eqn. (77). Therefore, the equation
for the reflection and transmission coefficients will be the same.

COMPARISON TO NUMERICAL SOLUTIONS

In the geosciences, it is common to model solutions to the elastic wave equation using
numerical methods. In this section, we will compare the exact solutions of the elastic wave
equation given a velocity ramp and some parameter α to numerical solutions modeled using
finite difference methods. We employ the equations we found in the previous sections for
the reflection and transmission coefficients in our finite difference scheme. First, we will
consider the 1D case. Then, we will compare the exact and numerical solutions in the 2D
normal incidence case given a velocity ramp and some parameter α.

1D Numerical Results

Consider a velocity ramp

c(z) =


1 z < 1;

z 1 ≤ z ≤ 2;

2 2 < z.

(112)

For the 1D model, we made a 1001 × 6001 grid for z = −1, ..., 5 and t = 0, ..., 4. We set
parameter α = 2. Using the information from previous sections, we calculated the approxi-
mated solution given the reflection coefficient for the 1D velocity ramp (112). Fig. 1 shows
the real part of the the exact and approximated solutions. Fig. 2 depicts the imaginary part
of the exact and approximated solutions. In both solutions, there is a distortion between
z = 1 and z = 2. This distortion represents the velocity ramp (112).

In Fig. 3, we see the residuals for the real and imaginary parts. The difference between
the exact and approximated solutions in both the real and imaginary parts is a little greater
than 0.03.

2D Numerical Results

For the 2D case, we extend the linear velocity ramp (112) to

c(z) =


1 z < 1;

z 1 ≤ z ≤ 2;

2 2 < z.

(113)
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FIG. 1. (Left) The real part of the exact solution in 1D. (Right) The real part of the approximated
solution in 1D.

FIG. 2. (Left) The imaginary part of the exact solution in 1D. (Right) The imaginary part of the
approximated solution in 1D.

FIG. 3. (Left) The residuals from the real part of the exact and approximated solutions. (Right) The
residuals from the imaginary part of the exact and approximated solutions.
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Given the 2D velocity (113), we consider what occurs when the wave is normal to the
velocity ramp (113) in the 2D case. We created a 3D grid which is 101× 101× 601 where
z = −1, ..., 5, x = −1, ..., 5, and t = 0, ..., 4. We set the parameter α equal to 2.

In Fig. 4 and 5, we see the real part of the exact and approximated solutions to the
2D elastic wave equation at time t = 0, 1, 2, 3, and 4 respectively. Fig. 6 and 7 show the
imaginary part of the exact and approximated solutions to the 2D elastic wave equation
at t = 0, 1, 2, 3, and 4, respectively. In both the real and imaginary parts, we can see the
waves move further apart after passing through the transition zone z = 1 to z = 2 similar
to the distortion that occurred in the transition zone in the 1D case.

FIG. 4. The real part of the exact solutions at (top left) t = 0, (top right) t = 1, (middle left) t = 2,
(middle right) t = 3, and (bottom) t = 4.
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FIG. 5. The real part of the approximated solutions at (top left) t = 0, (top right) t = 1, (middle left)
t = 2, (middle right) t = 3, and (bottom) t = 4.
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FIG. 6. The imaginary part of the exact solutions at (top left) t = 0, (top right) t = 1, (middle left)
t = 2, (middle right) t = 3, and (bottom) t = 4.
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FIG. 7. The imaginary part of the exact and approximated solutions at (top left) t = 0, (top right)
t = 1, (middle left) t = 2, (middle right) t = 3, and (bottom) t = 4.
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Fig. 8 and 9 depicts the difference between the real and imaginary parts of the exact
and approximated solutions at t = 0, 1, 2, 3, and 4. In both cases, we see that the difference
between the exact and approximated solutions is less than 0.2. As such, between 1D and
2D, the error increased by a factor of approximately 7.

FIG. 8. The residuals from the real part of the exact and approximated solutions at (top left),
(middle left), and (bottom left). The residuals from the imaginary part of the exact and approximated
solutions (top right), (middle right), and (bottom right).

FUTURE WORK

Our next step will be to consider what occurs in the 2D case when the wave hits the
velocity ramp at non-normal incidence. From there, we would extend the results to 3D for
both the normal and non-normal incidence cases.
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FIG. 9. The residuals from the real part of the exact and approximated solutions (top left), and
(bottom left). The residuals from the imaginary part of the exact and approximated solutions (top
right), and (bottom right).

CREWES Research Report — Volume 29 (2017) 19



Hardeman et al.

CONCLUSIONS

We found general solutions for reflections and transmission coefficients given a veloc-
ity jump and a piecewise velocity ramp in 1D, 2D, and 3D. For the velocity jump, we found
that the equations were equivalent in all three dimensions. In 2D and 3D, we considered the
results for normal incidence and non-normal incidence when a velocity ramp was present.
We noted that in the 2D and 3D cases the general equations for reflection and transmis-
sion coefficients were equivalent. The main difference would arise from the ODE solutions
Z1(z) and Z2(z) in the different dimensions. Finally, we employed the general equations
for reflection and transmission coefficients as well as the variables A and B in order to
compare the results of exact solutions to the elastic wave equation given a linear velocity
ramp and some parameter α to numerical solutions modeled using finite difference meth-
ods. We also considered the residuals of each case and saw that the residuals increased by
a factor of about 7 between the 1D case and the 2D case.
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