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Internal multiple prediction in the time and offset domains 

Andrew Iverson, Kris Innanen and Daniel Trad 

ABSTRACT 
Varying strategies have been implemented to predict and attenuate internal multiples 

(Xio et al. 2003).  One data driven method to predict internal multiples uses the inverse 
scattering series (Weglein et al., 1997).  The method predicts internal multiples where the 
only required inputs for the algorithm are the data itself and a search limiting parameter 
epsilon.  It has been displayed that reformulating the calculation domain such that the input 
and output domains are equivalent allows for the use of a nonstationary epsilon (Innanen, 
2015).  The version of the algorithm in offset-time is outlined where epsilon can vary in 
both spatial and temporal dimensions.  With the domain of calculation in offset-time this 
allows for the testing and determining of an epsilon schedule based on the input seismic 
dataset.  For some geologic models in this domain a single epsilon value is insufficient for 
the prediction of multiples while also minimizing artifacts.  Displayed is a nonstationary 
epsilon implementation that assists in artifact minimization.   

INTRODUCTION 
As a seismic wave propagates through a medium the source wavelet will be altered due 

to mechanisms such as attenuation, short path multiples and various other inelastic effects 
that will change the wavelet shape.  Some of the energy that is traveling though the medium 
will also be scattered or reflected when there is a significant change in medium properties.   
If the wave is reflected off a single boundary and recorded at the surface this is termed a 
primary reflection.  The seismic events that reflect off multiple interfaces prior to reaching 
the surface are termed multiples (Figure 1).  It has been shown that internal multiples can 
negatively impact the interpretation of seismic data (Iverson, 2014).  An issue in processing 
seismic data is removing these unwanted multiple reflections while leaving the primaries 
unaltered in the data. 

 

FIG. 1. (Left) Primary events for a three-layer model plus half-space (Right) First order internal 
multiples for the three-layer model plus half-space  
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Using the Inverse Scattering Series (ISS), the location in time of multiples can be 
predicted solely with the seismic data and a search limiting parameter epsilon.  
Implementing the method on land seismic data continues to be challenging in part due to 
the selection of the epsilon parameter.  Recently the algorithm has been applied in various 
domains with increased success (Sun and Innanen, 2016).  As the algorithm was originally 
written epsilon must be a single value for all space dimensions and time.  There are cases 
though where a stationary epsilon will be insufficient (Innanen, 2017; Innanen and Pan, 
2014).  This could be due to steeply dipping reflections, changes in frequency content of 
the data or any other time variant changes to the wavelet.  It has been shown how in certain 
1.5D domains that epsilon can vary in the transformed spatial dimension such as 
wavenumber (Innanen and Pan, 2014).  This limitation to the spatial domain is due to the 
input data to the algorithm not sharing the same space as the output.  These 1.5D transform 
domains allow for a variation of epsilon in the spatial direction (𝑘𝑘𝑔𝑔) due to the method 
utilizing the 1D version of the algorithm over every spatial step.  Thus, for every 
wavenumber epsilon can change as there is no communication between offsets.  The 
inverse scattering series equation for predicting multiples has been recast in the offset-time 
domain (Innanen, 2015).  It was shown in 1D how improvements in the prediction can be 
made through a nonstationary epsilon (Innanen, 2017).  With the equation in offset-time 
there is now flexibility to vary epsilon in any both spatial and temporal dimensions. 

INVERSE SCATTERING SERIES THEORY IN OFFSET-TIME 
 The inverse scattering series takes the resulting wavefield and a term epsilon to predict 

internal multiples (Weglein et al., 1997).  This was initially written in the wavenumber 
pseudodepth domain.  Giving equation (1) below to predict interbed multiples from the 
seismic data alone.  The term epsilon is used to account for the bandwidth of the data 
through implementation in the integration bounds.  This sets a limit on the distance the 
multiple must have traveled to prevent the algorithm from predicting an event within the 
wavelength of a single wavelet.  This method will only predict long-path multiples 
assuming epsilon is chosen correctly.  The combination of the pseudo-depth terms in the 
integration limits ensures that the lower-higher-lower criteria is met and that no unwanted 
artifacts are in the prediction. 

       𝑏𝑏3�𝑘𝑘𝑔𝑔,𝑘𝑘𝑠𝑠,𝜔𝜔�  
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∞
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−∞    
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−∞         (1) 

Where in equation (1) 

𝑞𝑞𝑥𝑥 =  𝜔𝜔
𝑐𝑐0
�1 − 𝑘𝑘𝑥𝑥2𝑐𝑐02

𝜔𝜔2 ,                           (2) 

𝑏𝑏3 is the interbed multiple prediction, 𝑏𝑏1 is the prepared input data, 𝑞𝑞𝑥𝑥 is the vertical 
wavenumber and 𝜖𝜖 is the depth below free surface of the source (s) and receiver (g), k is 
the Fourier conjugate variable, 𝑧𝑧1, 𝑧𝑧2 and 𝑧𝑧3 are the depths chosen to satisfy the lower-
higher-lower relationship and 𝜀𝜀 is the search limiting parameter (Sun and Innanen, 2014). 
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Multiples are predicted in the Fourier domain through the specific combinations of 
events which obey the lower-higher-lower relationship in the data.  This is done through 
multiplication in the Fourier domain.  In time this is equivalent to a combination of 
convolutions and correlations of the events that obey the selection criteria. It is shown 
schematically how two deeper events can be convolved relative to a shallower event, which 
can be correlated to mimic the equivalent multiple (Figure 2).  The algorithm in the offset-
time domain (Innanen, 2015) will explicitly use these convolutions and correlations to 
compute the multiple prediction. 

 

FIG. 2. Schematic displaying how a multiple can be replicated with a combination of primaries 
through a convolution (*) and correlation (x) 

1.5D offset-time domain 
Equation (1) can be simplified and reduced to a 1.5D domain by assuming a v(z) 

medium.  This is done by assuming that the source and receiver wavenumbers are 
equivalent. 

𝑘𝑘𝑔𝑔 =  𝑘𝑘𝑠𝑠,                    (3) 

Using this assumption alters the vertical wavenumber from equation (2) to give the 
following 

𝑞𝑞𝑔𝑔 + 𝑞𝑞𝑠𝑠 = 2𝑞𝑞𝑔𝑔 = 𝑘𝑘𝑧𝑧 ,                                    (4) 

Giving the 1.5D Version of the algorithm 

               𝑏𝑏3�𝑘𝑘𝑔𝑔,𝜔𝜔� = ∫ 𝑑𝑑𝑧𝑧1𝑒𝑒𝑖𝑖𝑘𝑘𝑧𝑧𝑧𝑧1𝑏𝑏1(𝑘𝑘𝑔𝑔, 𝑧𝑧1)∞
−∞ ∫ 𝑑𝑑𝑧𝑧2𝑒𝑒−𝑖𝑖𝑘𝑘𝑧𝑧𝑧𝑧2𝑏𝑏1(𝑘𝑘𝑔𝑔, 𝑧𝑧2)𝑧𝑧1− 𝜀𝜀

−∞  

× ∫ 𝑑𝑑𝑧𝑧3𝑒𝑒𝑖𝑖𝑘𝑘𝑧𝑧𝑧𝑧3𝑏𝑏1�𝑘𝑘𝑔𝑔, 𝑧𝑧3�,∞
𝑧𝑧2+𝜀𝜀

                                                      (5) 

The input data and method can be altered so that the procedure is carried out in other 
domains which has shown increased multiple prediction accuracy (Sun & Innanen, 2016); 
Innanen, 2017).  The first step is to replace 𝑏𝑏1 in terms of pseudo depth (𝑧𝑧) with 𝑆𝑆1 in terms 
of time (𝑡𝑡) and letting 𝑆𝑆1(𝑘𝑘𝑔𝑔, 𝑡𝑡) be the Fourier transform of 𝑠𝑠1(𝑥𝑥, 𝑡𝑡) over the spatial 
dimension (Innanen, 2015) gives equation (6) 

𝑏𝑏3�𝑘𝑘𝑔𝑔,𝜔𝜔� = ∫ 𝑑𝑑𝑡𝑡𝑒𝑒𝑖𝑖𝜔𝜔𝑖𝑖𝑆𝑆1(𝑘𝑘𝑔𝑔, 𝑡𝑡)∞
−∞ ∫ 𝑑𝑑𝑡𝑡2𝑒𝑒𝑖𝑖𝜔𝜔𝑖𝑖1𝑆𝑆1(𝑘𝑘𝑔𝑔, 𝑡𝑡′)∫ 𝑑𝑑𝑡𝑡′′𝑒𝑒𝑖𝑖𝜔𝜔𝑖𝑖′′𝑆𝑆1(𝑘𝑘𝑔𝑔, 𝑡𝑡′′)∞

𝑖𝑖′+𝜀𝜀
𝑖𝑖− 𝜀𝜀
−∞ , (6) 

For this the output domain is (𝑘𝑘𝑔𝑔,𝜔𝜔) as the convolutions and correlations are applied 
through multiplication in the frequency domain.  This can be equivalently rewritten so that 
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the convolutions and correlations are performed in the time domain.  Giving the (𝑘𝑘𝑔𝑔, 𝑡𝑡) 
version of the algorithm equation (7). 

𝑏𝑏3�𝑘𝑘𝑔𝑔, 𝑡𝑡� = ∫ 𝑑𝑑𝑡𝑡′𝑆𝑆1(𝑘𝑘𝑔𝑔, 𝑡𝑡′ − 𝑡𝑡)∫ 𝑑𝑑𝑡𝑡′′𝑆𝑆1(𝑘𝑘𝑔𝑔, 𝑡𝑡′ − 𝑡𝑡′′)𝑆𝑆1(𝑘𝑘𝑔𝑔, 𝑡𝑡′′)𝑖𝑖− 𝜀𝜀
𝑖𝑖′−(𝑖𝑖−𝜀𝜀)

∞
−∞ ,         (7) 

Then by noting the remanding spatial convolutions applied in frequency this can be written 
fully in the time and space domain. Giving the (𝑥𝑥, 𝑡𝑡) version of the algorithm (Innanen, 
2015). 

                           𝐵𝐵3(𝑥𝑥, 𝑡𝑡) = ∫ 𝑑𝑑𝑥𝑥′∞
−∞ ∫ 𝑑𝑑𝑡𝑡′𝑠𝑠1(𝑥𝑥 − 𝑥𝑥′, 𝑡𝑡′ − 𝑡𝑡)∞

−∞   

∫ 𝑑𝑑𝑥𝑥′′∞
−∞ ∫ 𝑑𝑑𝑡𝑡′′𝑠𝑠1 (x′ − x′′, 𝑡𝑡′ − 𝑡𝑡′′)𝑠𝑠1(𝑥𝑥′′, 𝑡𝑡′′),𝑖𝑖− 𝜀𝜀

𝑖𝑖′−(𝑖𝑖−𝜀𝜀)          (8) 

Then by assuming there is no spatial component in equation (7) 

𝑘𝑘𝑔𝑔 =  0,                     (9) 

The algorithm can be written and reduced to a 1D time version. 

𝐵𝐵3(𝑡𝑡) = ∫ 𝑑𝑑𝑡𝑡′𝑠𝑠1(𝑡𝑡′ − 𝑡𝑡)∫ 𝑑𝑑𝑡𝑡′′𝑠𝑠1(𝑡𝑡′ − 𝑡𝑡′′)𝑠𝑠1(𝑡𝑡′′)𝑖𝑖− 𝜀𝜀
𝑖𝑖′−(𝑖𝑖−𝜀𝜀)

∞
−∞ ,                  (10) 

The inverse scattering series can now be implemented in either time or time and space 
depending on the required number of dimensions.  With the benefit of this being the data 
input and prediction output domains are identical.  Next the process of applying the 
algorithm in practice on a discrete dataset will be discussed. 

Implementing the time domain algorithm 
The first step is to rewrite equation (10) so that the integration limits are applied directly 

to the data with the use of two Heaviside step functions (Innanen, 2015).  This will be the 
equivalent of applying the lower higher lower constraint directly to the data. This is shown 
in equation (11) 

𝐵𝐵3(𝑡𝑡) = ∫ 𝑑𝑑𝑡𝑡′𝑠𝑠1(𝑡𝑡′ − 𝑡𝑡)∫ 𝑑𝑑𝑡𝑡′′[𝑂𝑂(𝑡𝑡, 𝑡𝑡′, 𝑡𝑡′′)𝑠𝑠1(𝑡𝑡′ − 𝑡𝑡′′)]𝑠𝑠1(𝑡𝑡′′)∞
−∞

∞
−∞ ,           (11) 

Where the mask 𝑂𝑂(𝑡𝑡, 𝑡𝑡′, 𝑡𝑡′′), 

𝑂𝑂(𝑡𝑡, 𝑡𝑡′, 𝑡𝑡′′) = 𝐻𝐻[𝑡𝑡′′ −  (𝑡𝑡′ − (𝑡𝑡 − 𝜀𝜀))]𝐻𝐻[𝑡𝑡 −  𝜀𝜀 − 𝑡𝑡′′],                   (12) 
When preforming a convolution on a discrete dataset there are multiple was to implement 
the operation.  It can be performed by tracking indices for the set of multiplications and 
summations.  It can also be completed through the construction of a convolution matrix 
where the convolution is then carried out through matrix multiplication.  Displayed in 
Figure 3 is the matrix multiplication approach of equation (11) (Innanen, 2015).  The 
correlation matrix (MR), convolution matrix (MC) and the input data (s) when multiplied 
through will give the prediction (im). This also has the masking matrix applied to the 
convolution matrix (MC).  The masking matrix is noted by the shaded region of the matrix 
being zeroed from equation (12). 
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FIG. 3. Adapted from (Innanen, 2015) Visually displays the calculation of the convolutions and 
correlations for a given time t(j) through matrix multiplication, with the mask matrix applied to the 
convolution matrix MC. 

The mask noted in equation (11) is created through applying a binary matrix to the 
convolution matrix where the bounds on the mask will ensure that the lower-higher-lower 
criteria is met (Figure 4). Note that the internal multiple prediction is competed for each 
time step as the mask changes relative to the given time to ensuring the lower-higher-lower 
criteria is obeyed for all times. 

 

FIG. 4. Adapted from (Innanen, 2015) displays the mask matrix applied to the convolution matrix 
where the shaded region is set to zero and the bounds are determined such that the lower-higher-
lower criteria is met for the given t(j) 
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For the (𝑥𝑥, 𝑡𝑡) case, with the addition of the spatial dimension the process of applying the 
matrix multiplication is largely the same.  Now the equivalent of a 2D convolution in both 
offset and time must be performed.  The correlation and convolution matrixes are now 
block matrices to compute both the spatial and temporal convolutions (Innanen, 2015) 
(Figure 5).  The input trace (𝑠𝑠1(𝑥𝑥, 𝑡𝑡)) is also altered so that it is now a stacked 1D vector 
for all offsets, similarly for the prediction output vector (im).  The masking matrix is 
applied in a similar manner to the 1D case but for every block in the convolution matrix.  
For the multidimensional case the prediction is also calculated for a single time as the mask 
matrix will be change for every time step (Innanen, 2015). 

 

FIG. 5. Adapted from (Innanen, 2015) Displays the prediction algorithm for the (𝑥𝑥, 𝑡𝑡) case for a 
given time t(j) calculated for all offset with the convolution and correlation matrix, where the mask 
matrix is applied to each convolution matrix in the block matrix MC.  this is applied to the (𝑥𝑥, 𝑡𝑡) trace 
(s) which has been stacked into a single column vector 

In practice with the addition of the spatial dimension relative to the 1D case these matrices 
become large, to the point where it becomes difficult to implement due to computer 
memory limitations. In practice these ideas of masking matrixes and convolution matrices 
can be implemented with the use of 2D convolution functions (e.g. conv2 in MATLAB).  
This will allow the calculation of the 2D convolution without the requirements of storing 
the entire matrix in memory.  Pseudo code of how this can be implemented is displayed in 
Figure 6. 



Internal multiple prediction in time-offset 

 CREWES Research Report — Volume 29 (2017) 7 

 

FIG. 6. Pseudo code displaying the implementation of the (𝑥𝑥, 𝑡𝑡) case with the use of 2D convolution 
functions for a stationary epsilon.  The mask is applied in a similar manner where all values are set 
to zero given that they are either below the calculation time (it) and epsilon number of samples 
above (it). 

Since the mask matrix is calculated for every time slice and as stated previously the 
input and output domains are both (𝑥𝑥, 𝑡𝑡) epsilon can be nonstationary.  If epsilon is varied 
strictly in the time dimension this is completed by having epsilon as a function of time for 
all offsets.  If epsilon is to vary in both time and space, then a 2D epsilon schedule is built 
and the mask which was previously displayed will now vary with respect to offset.  With 
the epsilon model matching the size of the input data.  This is applied directly to the input 
data for each time step shown in Figure 7. 

 

FIG. 7. Pseudo code displaying the implementation of the (𝑥𝑥, 𝑡𝑡) case with the use of 2D convolution 
functions for a nonstationary epsilon in both time and space dimensions 

This is also displayed schematically (Figure 8) where for a given calculation time there is 
a single epsilon for all offsets or one that varies with offset. 
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FIG. 8. Visually displays mask matrix applied to the data (s) prior to the 2D convolution function 
where the bounds are determined such that the lower-higher-lower criteria is met for the given t(j) 
for (Left) epsilon constant with offset (Right) An example of epsilon varying with offset with two 
epsilon values with a harsh cutoff 

OFFSET-TIME INTERNAL MULTIPLE PREDICTION 

To evaluate the (𝑥𝑥, 𝑡𝑡) domain version of the algorithm a simple geologic model is 
used.  Using finite difference modeling the shot record was created in MATLAB using 
afd_shotrec from the CREWES toolbox.  (Figure 9).  

 

FIG. 9. (Left) Geologic model displaying velocities and depths used (Right) Shot record with two 
primaries and first order internal multiple defined 
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Using finite difference, the primaries and all orders multiples are modeled within 
the recorded window.  The 2D model was spatially sampled every 10m and a temporal 
sample rate of 0.002s, this created a grid that is 512x256 samples.  The seismic shot record 
was created by convolving the result with a 30Hz Ricker wavelet.  This geologic model 
has created a shot record which has a strong first order internal multiple.  To use any version 
of the algorithm at a minimum a stationary epsilon must be selected.  Initially two values 
of epsilon are evaluated, a value of 30 and 70 (Figure 10). 

 

FIG. 10. (Left) offset-time multiple prediction with epsilon=30 (Right) offset-time multiple prediction 
with epsilon=30 

For this geologic model with an epsilon of 30 the first order internal multiple has been 
predicted along with higher order multiples.  There is also a steeply dipping event predicted 
which is an unwanted artifact from the prediction.  This issue has been previously noted 
when predicted in the (𝑘𝑘𝑔𝑔, 𝑧𝑧) domain (Innanen and Pan, 2014).  The artifact in that domain 
was due to the steeply dipping event becoming broad in the transformed domain at larger 
values of 𝑘𝑘𝑔𝑔.  Using an epsilon value of 70 has diminished this artifact but epsilon has also 
become sufficiently large that it now impacts the algorithms ability to predict the internal 
multiples.  It was previously shown in the (𝑘𝑘𝑔𝑔, 𝑧𝑧) domain how a 𝑘𝑘𝑔𝑔 varying epsilon could 
mitigate this issue leading to the next epsilon schedule test (Figure 11). 
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FIG. 11. (Left) offset-time multiple prediction with spatially varying epsilon (Right) epsilon schedule 
used for prediction with harsh cutoff 

The two epsilon values of 30 and 70 are combined to produce a spatially variant epsilon.  
The internal multiples are visible in the prediction but a new artifact has now also been 
introduced.  This epsilon schedule was created with a sharp cutoff from the value of 30 to 
70 over a single sample point.  This has assisted in removing the steeply dipping artifact 
previously noted but has also introduced this new issue.  With the sharp contrast in epsilon 
there appear to be two additional internal multiples that are now also being predicted on 
both sides of the first order multiple, which are not present in the input dataset.  Next to 
attempt to mitigate this new issue an epsilon schedule with a smooth linear trend from the 
30 to 70 is utilized (Figure 12). 
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FIG. 12. (Left) offset-time multiple prediction with spatially varying epsilon (Right) epsilon schedule 
used for prediction with linear taper 

This has improved the prediction of the internal multiples relative to the previous harsh 
cutoff model.  The strong first order multiple along with the higher order multiples are 
predicted but with artifacts remaining.  The issues with the prediction near the location of 
the original steeply dipping artifact remain with this model that only varies in space.  The 
last epsilon model to be displayed varies both in space and time.  This was designed to 
overlap the steeply dipping event in the input data and have the liner taper to minimize the 
artifacts that appeared to arise from a harsh cutoff (Figure 13). 
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FIG. 13. (Left) offset-time multiple prediction with spatially varying epsilon (Right) epsilon schedule 
used for prediction varying in both offset and time 

This final schedule which varies in both offset and time is capable of both predicting 
the multiples in the data and minimizing the artifacts.  Though there is still some residual 
artifact present from the steeply dipping event, improvements could possibly be made to 
adjust epsilon to optimize for this model.  With this full flexibility to vary epsilon in any 
dimension.  This now introduces future study of how to derive the optimum epsilon 
schedule for a given input model. 

CONCLUSIONS 
 The method using the inverse scattering series for internal multiple prediction has 

been adapted to be compute in offset-time (Innanen, 2015).  With this change in 
computational domain comes the ability to utilize a non-stationary epsilon.  Displayed was 
an example of how varying epsilon can improve the prediction.  This is completed on a 
model where a stationary epsilon will be insufficient.  Also displayed is the how a sharp 
epsilon boundary can cause new artifacts to be present in the prediction.  Now geologic 
models can be tested with the offset-time algorithm with the flexibility in epsilon schedule 
creation. 
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