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ABSTRACT

Frequency domain finite difference (FDFD) wave propagation is often used in full
waveform inversion (FWI) research. The major cost in FDFD is the factorization of a
large, sparse matrix. This means that solving the problem for an additional source term is
inexpensive, but also raises challenging problems for parallelization. Parallelization over
source terms offers negligible benefits as no re-factorization of the matrix is required. Par-
allelization over different frequencies is possible, but limited by the number of frequencies
considered, which may be small. This work focuses on using the MUMPS solver, which
allows for massive parallelization of the factorization itself.

INTRODUCTION

Much research in full waveform inversion (FWI) is done using frequency domain finite
difference wave propagation (e.g. Pratt et al., 1998; Metivier et al., 2013). This approach
is appealing for a number of reasons, for small models it is very fast approach, it naturally
allows for consideration of specific frequencies in a multi-scale approach, and it easily
allows for treatment of attenuation and dispersion, which require the use of convolutional
operators in the time domain (Casula and Carcione, 1992). Although frequency domain
finite difference (FDFD) wave propagation is impractical for very large models, research
in FWI using FDFD on small scales has provided useful insights on FWI (e.g. Pratt et al.,
1998; Metivier et al., 2013).

Parallelization is often used in FWI in order to bring more computational power to
bear on the problem and decrease the time required to obtain solutions. In the time domain,
parallelization can be easily implemented by forward propagating each source on a different
CPU simultaneously. Given the large number of sources typically considered in seismic
experiments, this allows for a large degree of parallelism. If even greater parallelism is
desired, this can be achieved by decomposing the model into sub-domains, each of which
can be solved largely independently.

FDFD wave propagation is more difficult to parallelize. Parallelizing over sources pro-
vides little benefit due to the relatively small cost of solving for another source once the
Helmholtz matrix is factorized. Parallelizing over frequencies is effective, but in the FWI
problem only a few frequencies are typically considered at any given iteration, severely
restricting the level of parallelism that can be achieved in this way. A more effective way
of employing parallel computation is to parallelize the factorization of the Helmholtz ma-
trix. This process is quite complicated, and can be challenging to implement. One existing
tool for parallelizing factorization of large, sparse matrices is the MUItifrontal Massively
Parallel sparse direct Solver (MUMPS) (Amestoy et al., 2000). MUMPS has been used suc-
cessfully in FWI research to decrease compute times required (e.g. Metivier et al., 2013).
This report outlines the motivation behind using the MUMPS solver.
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THEORY

The goal in FWI is to recover a subsurface model which reproduces the observed data.
This is typically done by minimizing a measure of the discrepancy between synthetic and
measured data, called the objective function. This minimization procedure can require
calculation of the objective function, its gradient and second derivative terms. Due to the
presence of the synthetic data in the objective function, all of these values require wavefield
modeling, typically done using finite differences. This wavefield modeling dominates the
cost of the FWI procedure.

Computational costs associated with FWI are very large, causing the procedure to be
very time consuming. If sufficient computational resources are available, computation
times can be improved by making use of parallel computing, where different computa-
tions are performed simultaneously on different machines. Parallel computing is effective
if computationally demanding steps can be broken into independent sub-problems. The
cost of FWI largely arises from the minimization procedures used, but these are iterative,
so each step requires information produced at the previous step. Parallelism in FWI, then,
must employ parallel computing within each step of the procedure. Given the large cost
of wavefield modeling, the greatest benefits are gained by parallelizing this portion of the
algorithm. This report focuses on the details of this parallelization when using frequency
domain finite difference wave propagation.

Frequency domain finite difference wave propagation

Frequency domain modeling is useful in FWI research for several reasons. Firstly, it
is usually necessary to employ a multiscale approach in FWI (Bunks et al. (1995)), where
early iterations consider only low frequency information and high frequency information is
gradually introduced at later iterations. The frequency domain lends itself to this approach,
as it allows for efficient methods which only model the frequencies that are used at each
iteration. Secondly, constant Q attenuation of the form often considered is difficult to model
in the time domain, requiring the use of convolutional operators, whereas in the frequency
domain it is relatively simple to introduce these attenuation terms. In this report, we use as
an example anacoustic wave propagation of the form

[w?s(r) + V] u(r,w) = f(r,w) , (1)

where the model parameter s is given by

09 = o {1 * 30 [ - os (wi)] } ’ @

c is the acoustic wave velocity, () is the quality factor, wy is a reference frequency, u is the
pressure field, and f is a source term. This equation can be solved for u by the frequency
domain finite difference (FDFD) method. In FDFD, the x second derivative operators are
discretized as

6211 . Up—1,5 — 2uh7j + Uh+1,5 (3)
or? Ax? ’
where Az is the x spacing of the model, and wy, ; denotes the pressure field at the hth x
position and jth z position (Franklin (2005)). The expression for the discretization of the z
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second derivative operators is similar. With the discretized derivative operators, equation 1
can be restated as

Up—1,j — 2Upj + Upy1, n Upj—1 — 2Upj + Up j4+1
Ax? Az2

= fh,j . “4)

2
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If positions are mapped to a single 1D index k via k = (h — 1) x N + j, we can follow
Franklin (2005) and restate eq. 4 as

Mu=f |, (5)

where u and f are vectors, and M is a sparse matrix. Equation 5 can then be solved for u.

Parallelizing over sources

Solving equation 5 typically consists of factorizing M, and performing back-substitution
to solve for u. For a model of NV elements, the factorization procedure requires approxi-
mately O(N?) operations, while the back-substitution requires O(N?) operations. Solv-
ing the system for a different f does not require a new factorization, only a new back-
substitution. Consequently, parallelizing this computation over sources can only reduce
the time associated with the O(NgN?) computation associated with one back-substitution
for each of Ng sources. In exploration seismology many sources are used, but necessarily
there are many more finite difference grid points than there are sources, so the cost of this
back-substitution will not dominate the total cost.

Parallelizing over frequencies

FDFD in FWI offers the opportunity to consider only the frequencies desired at each
iteration. The number of frequencies considered is usually kept as small as possible to
increase efficiency. Each frequency considered requires that the matrix M in equation 5
be changed, and re-factorized. This is the major cost in FDFD wave propagation, and so
doing this factorization in parallel for each frequency can offer significant improvements
to speed. The small number of frequencies considered, however, severely limits the speed
increases which can be achieved with this approach.

MUMPS

The MUMPS solver allows for parallel computation to be used in factorizing the matrix
M. Like parallelization over frequencies, this reduces the time needed for the most costly
part of the FWI procedure. Unlike parallelization over frequencies, however, a large num-
ber of processors can be used in parallel for solving this problem. By employing MUMPS,
we expect to be able to accelerate FWI computations, allowing for larger models to be
considered in future research.

CONCLUSIONS

Frequency domain FWI is a challenging problem to efficiently parallelize to a large
degree. Parallel computation over different sources provides little decrease in compute
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time, while parallelization over different frequencies can only offer limited parallelism.
MUMPS provides a means of implementing frequency domain FWI with a large degree of
parallelism, which should decrease compute times, and make research on larger synthetic
models feasible.
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