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Comparison of traveltime computation and ray tracing methods 

 

Bernard Law and Daniel Trad

 ABSTRACT 

 

     Travel times and ray paths of the propagation of seismic body wave in heterogenous 

media are used in seismic tomography, imaging and inversion processes. In this study, we 

review the seismic ray theory, basic principles of the fast marching, wavefront construction 

and paraxial method. We analyze their differences and similarities to investigate the 

effectiveness of these methods in refraction tomography and seismic imaging. We compare 

the travel times from these method to a finite difference synthetic shot record of the 

Marmousi model and find travel time from all three methods are accurate except at area 

where rays diverge. We also used the travel time from the fast marching method in the 

refraction tomography processing of the Hussar 2D dataset. The CDP stack from the 

refraction tomography processing is more coherent and better resolved than the CDP stack 

with datum static correction only. 

 

INTRODUCTION 

  

     Traveltime computation and ray tracing are important steps in seismic modeling, 

migration, tomographic inversion, velocity model building and many other applications. 

Core principles of most traveltime and ray tracing algorithms are derived from the seismic 

ray theory. 

 

     High frequency approximation of the solution of elastodynamic equation leads to 

solutions in different forms. For kinematic ray tracing, the solution leads to the eikonal 

equation and the ray equations. The high frequency approximation requires the velocity of 

the media to vary smoothly. Vidale (1988,1990) presented a grid based traveltime 

computation scheme that solves the eikonal equation by finite difference approximation. 

Vidale’s work leads to subsequent studies and developments by Qin (1992), Sethian and 

Popovici (1999) and other authors,  and resulted in more robust algorithms that can better 

handle rapid velocity variations. Results of these algorithms are traveltime from source to 

regularly spaced grid points.  Vidale (1988) proposed the construction of the ray paths by 

tracing the steepest traveltime gradient from the receiver back to the source.  Matsuoka 

(1992) presented a ray path reciprocity method that traces the minimum time of summed 

shot and receiver traveltime tables.   Alternate to grid based traveltime computation scheme 

are kinematic and dynamic ray tracing (Cerveny and Hron,1980; Beydoun and Keho,1987), 

and wavefront construction method (Vinje,1993).  These methods involve tracing the ray 

path by computing the solutions to the ray equations at each ray step.  Some geophysical 

applications such as Kirchhoff migration requires only traveltime from a source or receiver 

to a subsurface point; while other applications such as refraction tomography requires both 

first arrival time and ray path between a source and receiver.   The purpose of this study is 

to review the basic principles of the fast marching method, paraxial method and wavefront 

construction method, and to evaluate their accuracy and effectiveness when applied in 

refraction tomography and depth imaging. 
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Seismic ray method and eikonal equation 

 

    Seismic ray method is based on asymptotic high frequency solution of the elastodynamic 

equation. For an inhomogeneous, isotropic and perfectly elastic medium described by 

Lam𝒆́ parameters 𝝀, 𝝁 and density 𝝆, the elastodynamic equation and the stress-strain 

relationship can be written as: 

 

        𝜎𝑖𝑗,𝑗 + 𝑓𝑖 = 𝜌𝑢𝑖̈                                                                                   (1) 

      𝜎𝑖𝑗   = 𝑐𝑖𝑗𝑘𝑙𝑢𝑘,𝑙                                                                           (2) 

            𝑐𝑖𝑗𝑘𝑙  = 𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘)                     (3) 

 

     where 𝒇𝒊  is the body force, 𝝈𝒊𝒋  is the stress tensor, 𝒖 is the displacement vector, 

               𝒄𝒊𝒋𝒌𝒍 is elastic constant tensor and satisfies the following symmetry relationship: 

    𝒄𝒊𝒋𝒌𝒍  = 𝒄𝒋𝒊𝒌𝒍 = 𝒄𝒊𝒋𝒍𝒌 = 𝒄𝒌𝒍𝒊𝒋  

 This symmetry relationship reduces  𝒄𝒊𝒋𝒌𝒍  from 81 components to 21 components.  

 The components of 𝒄𝒊𝒋𝒌𝒍 are often expressed in Voigt notation with two indices                

 instead  of four.  For isotropic media, 𝒄𝒊𝒋𝒌𝒍  in Voigt notation is: 

 

    

[
 
 
 
 
 
𝜆 + 2𝜇 𝜆 𝜆 0 0 0

𝜆 𝜆 + 2𝜇 𝜆 0 0 0
𝜆 𝜆 𝜆 + 2𝜇 0 0 0
0 0 0 𝜇 0 0
0 0 0 0 𝜇 0
0 0 0 0 0 𝜇]

 
 
 
 
 

  

  

        𝜹 is Kronecker delta,  𝜹𝒊𝒋 = 𝟏   𝒇𝒐𝒓 𝒊 = 𝒋,     𝜹𝒊𝒋 = 𝟎   𝒇𝒐𝒓 𝒊 ≠ 𝒋  

 

The measurement units for these quantities are:  𝝈𝒊𝒋 in pascals or 𝒌𝒈 𝒎−𝟏𝒔−𝟐,

𝒇𝒊 𝐢𝐧 𝑵 𝒎−𝟑 or 𝒌𝒈 𝒎−𝟐𝒔−𝟐, 𝝆 𝐢𝐧 𝒌𝒈 𝒎−𝟑 𝐚𝐧𝐝  𝒖𝒊 𝐢𝐧 𝒎.  

Equation (1) is the elastodynamic equation, also known as the equation of motion.  

Equation (2) is the Hooke’s Law for a perfectly elastic medium. Equation (3) relates the 

elastic constant tensor to the Lam𝒆́ parameters for an isotropic medium. 

 

General harmonic wave solution to equation (1) is in the form of: 

 

 𝑢𝑖(𝑥⃗) = 𝐴𝑖(𝑥⃗)exp {−𝑖𝜔[𝑡 − 𝑇(𝑥⃗)]}                                          (4) 

 

   where 𝝎  is the radial frequency, 𝑻(𝒙⃗⃗⃗) 𝒂𝒏𝒅 |𝑨 (𝒙⃗⃗⃗)| are the traveltime and amplitude of 

the body  avew at 𝒙⃗⃗⃗. 

 

   Substitute (2) and (4) into (1), set 𝒇𝒊=0, take the derivatives of 𝒖𝒊 and equating the real 

parts gives: 

      (𝑐𝑖𝑗𝑘𝑙,𝑗𝐴𝑘,𝑗 + 𝑐𝑖𝑗𝑘𝑙 𝐴𝑘,𝑙𝑗) 𝜔
−2 − 𝑐𝑖𝑗𝑘𝑙 𝑇,𝑗𝑇,𝑙𝐴𝑘  = −𝜌𝛿𝑖𝑘𝐴𝑘  

                    (5) 

   For large 𝝎 (high frequency approximation), we drop (𝒄𝒊𝒋𝒌𝒍,𝒋𝑨𝒌,𝒋 + 𝒄𝒊𝒋𝒌𝒍 𝑨𝒌,𝒍𝒋) 𝝎
−𝟐 and 

obtain:  
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 𝑐𝑖𝑗𝑘𝑙 𝑇,𝑗𝑇,𝑙𝐴𝑘 = 𝜌𝛿𝑖𝑘𝐴𝑘                                                               (6) 

  

   Defining 𝐵𝑖𝑘 = 𝑐𝑖𝑗𝑘𝑙 𝑇,𝑗𝑇,𝑙   gives: 

 

 (𝐵𝑖𝑘 − 𝜌 𝛿𝑖𝑘)𝐴𝑘 = 0 or in matrix form [ B − 𝜌I]A = 0              (7) 

 

Equation (7) is an eigenvalue problem and its solution is the eikonal equation: 

  det[ B − 𝜌I] = 0 

 

Evaluating  det[ B − 𝜌I] = 0, we obtain: 

−𝜌3 + (𝑇,𝑘𝑇,𝑘)𝜌
2[(λ + 2μ) + 2μ] − (𝑇,𝑘𝑇,𝑘)

2
𝜌𝜇[2(𝜆 + 2𝜇) + 𝜇] + (𝑇,𝑘𝑇,𝑘)

3
𝜇2(λ + 2μ) = 0     (8) 

Defining P and S wave velocities:       𝛼 = √
𝜆+2𝜇

𝜌
   𝑎𝑛𝑑   𝛽 = √

𝜇

𝜌
      reduces equations 

(8) to (𝑻,𝒌𝑻,𝒌 −
𝟏

𝜶𝟐) (𝑻,𝒌𝑻,𝒌 −
𝟏

𝜷𝟐) = 𝟎                            (9) 

 

Conditions that satisfy equation (9) are: 

𝑇,𝑘𝑇,𝑘 =
1

𝛼2      and    𝑇,𝑘𝑇,𝑘 =
1

𝛽2 

 

This can be written as the following and is referred to as the eikonal equation: 

                                               (𝛻⃗⃗𝑇)
2

=
1

𝑐2   

or       (
𝜕𝑇

𝜕𝑥
)
2

+ (
𝜕𝑇

𝜕𝑦
)
2

+ (
𝜕𝑇

𝜕𝑧
)
2

=
1

𝑐2                                             (10) 

 

where  𝜵⃗⃗⃗𝑻 is the slowness vector and c is 𝜶  𝒐𝒓 𝜷.  

 

Solving equation (10) provides the traveltime T(x,y,z).   

 

Ray equations 

 

    To trace the position of a ray, we have 

to define some properties of rays and 

wavefronts (Figure 1) and to express their 

relationships as a set of ray equations. 

Wavefronts are defined by the surfaces 

T(x,y,z)=constant. Slowness 

vector 𝐪⃗⃗⃗⃗  𝐞𝐪𝐮𝐚𝐥𝐬 𝛁⃗⃗⃗𝑻 and is tangential to 

the ray and normal to the wavefronts.   

 

 
   Figure 1.Relationship between ray and 

wavefront 

From equation (10), we have | 𝒄 𝜵⃗⃗⃗𝑻| = 𝟏 being a unit vector normal to the wavefront.  

Therefore, ray can be defined by a set of normal equations in the form of:   

 

                        
𝑑𝑥⃗

𝑑𝑠
= 𝑐 𝛻⃗⃗𝑇 = 𝑐 𝑞⃗        

 𝑜𝑟                 
𝑑𝑥𝑖

𝑑𝑠
= 𝑐𝑞𝑖 ,    𝑖 = 1,2,3                                (11) 
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           where 
𝒅𝒙⃗⃗⃗

𝒅𝒔
  is a unit vector tangential to the ray. 

 

From  𝑞⃗ =  𝛻⃗⃗𝑇,   we can obtain  
𝑑𝑞⃗⃗

𝑑𝑠
=

𝑑

𝑑𝑠
𝛻⃗⃗𝑇                          (12) 

 

Substitute (11) into (12), we obtain the ray equations for the slowness vectors: 

 

     
𝑑𝑞⃗⃗

𝑑𝑠
=

𝑑

𝑑𝑠
[
1

𝑐

𝑑𝑥⃗

𝑑𝑠
 ] = 𝛻⃗⃗[ 

1

𝑐
 ]                             (13) 

 

Ray equations can also be expressed in terms of T instead of arc length, s : 

 

                    
𝑑𝑥⃗

𝑑𝑇
= 𝑐2 𝑞⃗                                              (14) 

and             
𝑑𝑞⃗⃗

𝑑𝑇
= 𝑐 𝛻⃗⃗[ 

1

𝑐
 ]                         (15) 

 

These equations form the kinematic ray tracing system. Solution of equation (12) or (14) 

represents the trajectory  𝒙⃗⃗⃗, while solution of equation (13) or (15) represents the 

slowness vector 𝒒⃗⃗⃗ along the ray as function of arc length or time.  

 

Finite difference solution to the eikonal equation and grid based method 

 

    Grid based travel time computation algorithms use the eikonal equation (10) to solve 

for T(x,y,z).   Vidale (1988) presented a method that uses first order finite difference 

approximation scheme to propagate geometric rays from three corners to the fourth 

corner of a square grid as shown in figure 2.  Equation (16) and (17) are the average finite 

difference approximation of  
𝜕𝑇

𝜕𝑥
 and 

𝜕𝑇

𝜕𝑧
  respectively.  

 

   (
𝜕𝑇

𝜕𝑥
)
2

+ (
𝜕𝑇

𝜕𝑧
)
2

= 𝑠(𝑥, 𝑧)2            (15) 

   
𝜕𝑇

𝜕𝑥
=

1

2ℎ
 ( 𝑡0 + 𝑡2 − 𝑡1 − 𝑡3)          (16) 

   
𝜕𝑇

𝜕𝑧
=

1

2ℎ
 ( 𝑡0 + 𝑡1 − 𝑡2 − 𝑡3)          (17) 

   

Substitutes equations (16) and (17) into 

equation (15):    

 

𝑡3 = 𝑡0 + √2(ℎ𝑠)2 − (𝑡2 − 𝑡1)2   (18) 

 

Where:  s(x,z) is the slowness, 

   t0, t1 and t2 are computed travel times,  
        𝑡3 is travel time to be computed 

 

 

 

 

  
   Figure 2. Using t0, t1 and t2 to compute t3 
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     The procedure starts at the source and expands outward as square rings (Figure 3).  

Points on the square ring are sorted from minimum traveltime to maximum traveltime, and 

the new traveltime is computed starting from the point with minimum travel time. 

 

 

Expanding wavefront method 

 

       Qin (1992) showed that the expanding square strategy is not appropriate for model 

with moderate to large velocity contrast and can lead to negative value in the square root 

term in equation (18).   Qin proposed an expanding wavefront method that can preserve 

the causality by expanding the wavefront only at points adjacent to the point with global 

minimum traveltime (shown as double circle in Figure 4). This method ensures a ray 

associated with a point to be considered is completely timed up to that point. However, it 

is computationally expensive at 𝟎(𝐍𝟑) algebraic operations, because sorting is required to 

establish the new global minimum after each wavefront point is added. 
 

 
Figure 3.   Double circle shows the source point.            Figure 4. (a)  Filled circles mark the outer cicrumference of  

Empty circles are timed locations.  Filled circles are       timed locations. Double circle shows the location of minimum 

locations to be timed.  Large filled circles are the           time on current timed wavefront. (b) new locations to be timed 

square wavefront to be timed. Points on each edge        (empty circles next to double circle). (c) New locations in (b) 

are timed from location of minimum time to                  are timed and new minimum time of current wavefront is  

maximum time.   (Adapted from Vidale 1988)               marked as double circle.  (Adapted from Qin 1992) 
 

 

Fast marching method 

 

    Sethian and Popovici (1999) showed that propagating a triangular wavefront with unit 

speed using central difference approximation to the travel time gradient results in 

instabilities at the bend of the triangular wavefront.  Rapid changes in velocity can result 

in similar instabilities. These instabilities are resolved by applying entropy-satisfying 

upwind differences schemes introduced by Osher and Sethian (1988) : 

 

  Ψ𝑥
2 ≈ [max(𝐷𝑖

−𝑥 Ψ, 0)2 + min(𝐷𝑖 
+𝑥 Ψ, 0)2 ]                    (19) 

 

A more convenient upwind scheme from Rouy and Tourin (1992) is used in Sethian and 

Popovici’s fast marching method: 
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      Ψ𝑥
2 ≈ max(𝐷𝑖

−𝑥 Ψ,−𝐷𝑖 
+𝑥 Ψ, 0)2                                            (20) 

 
  where   D− and D+are backward and forward difference operators ∶   
 

    𝐷𝑖
−𝑥Ψ = (

Ψi  −Ψi−1

h
)   

    𝐷𝑖
+𝑥Ψ = (

Ψi+1 −  Ψi 

h
) 

 

  Ψi is the value of Ψ at grid point i and h is the grid spacing   

  

 

The upwind scheme chooses grid points in terms of the direction of the flow of information. 

Sethian and Popovici (1999) express the eikonal equation as the following and apply the 

upwind finite difference scheme: 

 

 |∇t(x, y, z)| = 𝑠(𝑥, 𝑦, 𝑧)                                       (21) 

      

    |∇t| ≈ [max(𝐷𝑖𝑗𝑘
−𝑥 𝑡, −𝐷𝑖𝑗𝑘

+𝑥 𝑡, 0)
2

+ max(𝐷𝑖𝑗𝑘

−𝑦
 𝑡, −𝐷𝑖𝑗𝑘

+𝑦
 𝑡, 0)

2
+ max(𝐷𝑖𝑗𝑘

−𝑧 𝑡, −𝐷𝑖𝑗𝑘
+𝑧 𝑡, 0)

2
]

1

2
= 𝑆𝑖𝑗𝑘 (22)                       

                                                                                                                                                                        

          where 𝐒𝐢𝐣𝐤 𝐢𝐬 𝐭𝐡𝐞 𝐬𝐥𝐨𝐰𝐧𝐞𝐬𝐬 𝐚𝐭 𝐠𝐫𝐢𝐝 𝐩𝐨𝐢𝐧𝐭(𝐢, 𝐣, 𝐤). 

 

To solve for 𝒕𝒊𝒋𝒌,we expand equation (22) to a quadratic equation in the form of  

 𝒂𝒕𝟐 + 𝒃𝒕 + 𝒄 = 𝟎  

𝒕𝒊𝒋𝒌 can now be solved explicitly as the root to a quadratic equation using 𝒕 =
−𝒃±√𝒃𝟐−𝟒𝒂𝒄  

𝟐𝒂
 

 

        The fast march algorithm also stores the traveltime values on a heap with the minimum 

time on top of the heap to reduce the sorting effort. This reduces the computationally cost 

to 𝟎(𝐍𝐥𝐨𝐠𝐍 ) algebraic operations.   

 

The fast marching algorithm is outlined in the following steps: 

 

 First compute traveltimes at locations around source point and tag these locations as 

ACCEPTED. Then tag as CLOSE all points one grid point away. Finally, tag as FAR all 

other grid points.  

1) Begin Loop: Let TRIAL be the point in CLOSE with the smallest traveltime 

2) Add the point TRIAL to ACCEPTED; remove it from CLOSE. 

3) Tag as CLOSE all neighbors of TRIAL that are not ACCEPTED. If the neighbor 

is in FAR remove it from that list and add it to the set CLOSE. 

4) Recompute traveltimes at all neighbor according to equation (22). 

5) Return to 1. 
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Figure 5. Fast marching scheme. Filled 

circles are timed locations. X’s are 

CLOSE locations to be tested for 

minimum time. Empty circles are FAR 

locations have not been times. 

Figure 6. Input velocity model and 

minimum traveltime from fast marching 

method. 

 

 

Ray Shooting method 

 

    Ray shooting method (Figure 7) shoots a series of rays through the medium with starting 

vertical angle 𝜽𝒊 and horizontal angle 𝝓𝒊, and uses the ray equations to computes the 

trajectory of the ray paths.   Travel times along the ray paths are then computed by 

integrating through the velocity model.  Finally, the computed travel times are mapped to 

the subsurface grid by interpolation.  

 

Initial value of equations (11) for isotropic medium is: 

     
𝑑𝑥⃗

𝑑𝑠
= (𝑠𝑖𝑛𝜃𝑖  𝑐𝑜𝑠𝑖𝜙, 𝑠𝑖𝑛𝜃𝑖  𝑠𝑖𝑛𝜙𝑖, 𝑐𝑜𝑠𝜃𝑖)                (23)  

 

 The initial value for the ray parameter for isotropic medium is: 

    𝒒⃗⃗⃗ =
𝟏

𝒄(𝑿𝒔,𝒀𝒔,𝒁𝒔)
 
𝒅𝒙⃗⃗⃗

𝒅𝒔
                               (24) 

 

 Trajectory 𝒙⃗⃗⃗  of the ray is computed with the following steps: 

 

   1: Solve ODE (11) for  𝒙⃗⃗⃗ 

   

   2: Solve ODE (13) for  𝒒⃗⃗⃗ . 

 

  Repeat step 1 and 2 for all depth steps. 

 

Repeat for all starting angles  𝜽𝒊 𝒂𝒏𝒅 𝝓𝒊  
 

 



Law and Trad 

8 CREWES Research Report — Volume 29 (2017)  

 
(a)                                                                    (b) 

             Figure 7.  a) Input velocity model and rays,  b) interpolated traveltime. 

 

 

Wavefront Construction 

 

Wavefront construction (WFC) is a natural extension of the ray shooting method.  WFC 

uses localized ray tracing to construct wavefront of constant traveltimes. Amplitude of 

rays can be computed from ratio of cross-sectional area of rays of adjacent wavefronts. 

The initial wavefront is constructed by shooting a series of short ray segments of equal 

time step from the source.  The end points of the ray segments on the wavefront are then 

propagated for another time step to construct a new wavefront. Coordinates of position 

and components of slowness vector of the ray segments are computed using same 

procedure as the ray shooting method.   When the wavefront crosses an interface with 

rapid velocity changes, the ray segments diverge and create a gap or shadow zone.  The 

ray segments can also cross over and create caustics or multi-values (Figure 8a). To 

address the problem of shadow zones and to ensure sufficient ray density, additional ray 

segments can be interpolated (Figure 8b).  For minimum traveltime ray tracing, caustics 

can be removed (Figure 8c). Figure 8d shows gridded minimum traveltime after caustics 

are removed.  

In this example, upgoing rays are disabled for depth imaging.  However, if caustics are to 

be removed, upgoing rays can be enabled for refraction ray tracing.   
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Figure 8. a) Wavefronts without interpolation, b) wavefronts with third-order 

interpolation along wavefronts, c) wavefronts with caustics removed, d) travel time 

gridded from wavefronts. 

 

Paraxial method 

 

    Paraxial method is a dynamic ray tracing method in ray coordinate system (𝛾1, 𝛾2, 𝑢)  

or ray-centered coordinate system ( 𝑞1, 𝑞2, 𝑞3 ). The following discussion refers to the ray 

coordinate system shown in figure 9a.  Paraxial rays are rays in the vicinity of a central 

ray (Figure 9b).  𝛾1 𝑎𝑛𝑑 𝛾2  are ray parameters.  They can be take-off angles 𝑖0 𝑎𝑛𝑑 𝜙0, 

or they can be components of slowness vector. They specify the initial direction of the 

ray in isotropic media. For anisotropic media, they specify the initial direction of the 
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slowness vector.  The third ray parameter 𝑢  is a monotonically changing parameter along 

the ray.  It can be arc length s or travel time T.    

 
(a)                                                                         (b) 

 
Figure 9. a) ray coordinates 𝜁1, 𝜁2;                       9. b) paraxial rays are rays in the vicinity of         

 ray parameters 𝛾1, 𝛾2  and  wavefront 𝑇.         of the central ray. 𝑑𝜎0 is the cross sectional 

          area of the paraxial ray,  𝑟0  is radius of                     

                                                                                   curvature of the wavefront at 𝑀0. Similarly,  

          for  𝑑𝜎1𝑎𝑛𝑑 𝑟1 .

 

Paraxial rays can have different properties than the central ray. These properties can be 

travel times or amplitude.  Paraxial method determines these properties by differentiating 

the ray equations with respect to 𝛾1 𝑎𝑛𝑑 𝛾2.  If we choose u=s, we can start with ray 

equations in the form of: 

  

                        
𝑑𝑥𝑖

𝑑𝑠
= 𝑐 𝑝𝑖                                    (26) 

                        
𝑑𝑝𝑖

𝑑𝑠
= 

𝑑 

𝑑𝑥𝑖
[ 

1

𝑐
 ]                                          (27) 

 

 

Dynamic ray tracing equations 

 

We define: 

                        𝑄𝑖
𝜕𝑥𝑖

𝜕𝛾
, 𝑃𝑖

𝜕𝑝𝑖

𝜕𝛾
                                            (28) 

To derive the dynamic ray tracing equations, we take the derivatives of (26) and (27): 

 

                        
𝜕

𝜕𝛾

𝑑𝑥𝑖

𝑑𝑠
=

𝑑 

𝑑𝑠

𝜕𝑥𝑖

𝜕𝛾
=

𝑑𝑄𝑖

𝑑𝑠
=  

𝜕𝑐

𝜕𝛾
 𝑝𝑖 + 𝑐𝑃𝑖      

    
𝑑𝑄𝑖

𝑑𝑠
 = 

𝜕𝑐

𝜕𝑥𝑘
 
𝜕𝑥𝑘

𝜕𝛾
𝑝𝑖 + 𝑐𝑃𝑖 = 𝑐,𝑘 𝑄𝑘𝑝𝑖 + 𝑐𝑃𝑖         (29) 

 

                        
𝜕

𝜕𝛾

𝑑𝑥𝑝𝑖

𝑑𝑠
=

𝑑 

𝑑𝑠

𝜕𝑝𝑖

𝜕𝛾
=

𝑑𝑃𝑖

𝑑𝑠
=  

𝜕

𝜕𝛾
 (

𝑑 

𝑑𝑥𝑖
[ 

1

𝑐
 ] )  
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𝑑𝑃𝑖

𝑑𝑠
= (

𝜕 

𝜕𝑥𝑘
 

𝜕 

𝜕𝑥𝑖
(
1

𝑐
)) 

𝜕𝑥𝑘

𝜕𝛾
=

𝜕 2 

𝜕𝑥𝑖𝜕𝑥𝑘
(
1

𝑐
)𝑄𝑘            (30)   

 
Equation (29) and (30) are dynamic ray tracing equations and are used to compute  

𝑸𝒊 𝐚𝐧𝐝  𝑷𝒊 for the central ray.   

 

Paraxial ray tracing equations 

             
We define  𝜹𝒙𝒊 𝒂𝒏𝒅 𝜹𝒑𝒊 as parameters that connect a paraxial ray to the central ray using 

the following approximation∶  

    𝛿𝑥𝑖 ≈  
𝜕𝑥𝑖

𝜕𝛾
𝑑𝛾 =  𝑄𝑖 𝑑𝛾                    (31) 

    𝛿𝑝𝑖 ≈  
𝜕𝑝𝑖

𝜕𝛾
𝑑𝛾 =  𝑃𝑖  𝑑𝛾                           (32) 

Multiplying equation (29) and (30) with 𝛿𝛾 and apply equation (31) and (32) yields: 
 

    
𝑑𝑄𝑖

𝑑𝑠
 𝛿𝛾 = 𝑐,𝑘 𝑄𝑘𝑝𝑖𝛿𝛾 + 𝑐𝑃𝑖𝛿𝛾    

     

    
𝑑

𝑑𝑠
𝛿𝑥𝑖   = 𝑐,𝑘  𝛿𝑥𝑘 

𝑝𝑖 + 𝑐𝛿𝑝𝑖                     (33) 

 

                        
𝑑𝑃𝑖

𝑑𝑠
 𝛿𝛾 = 

𝜕2 

𝜕𝑥𝑖𝜕𝑥𝑘
(
1

𝑐
)𝑄𝑘𝛿𝛾      

 

    
𝑑 

𝑑𝑠
𝛿𝑝𝑖 =

𝜕 2 

𝜕𝑥𝑖𝜕𝑥𝑘
(
1

𝑐
) 𝛿𝑥𝑘  = ( 

2𝑐,𝑖𝑐,𝑘

𝑐3
−

𝑐,𝑖𝑘

𝑐2
 ) 𝛿𝑥𝑘    (34)   

 

Equation (33) and (34) are paraxial ray tracing equations and are used to compute 

𝜹𝒙𝒊 𝒂𝒏𝒅 𝜹𝒑𝒊 for paraxial ray from  𝒄, 𝜵⃗⃗⃗𝒄 𝒂𝒏𝒅 𝒑⃗⃗⃗. 

 
Geometrical spreading factor 

 

Geometrical spreading can be computed from the ratio of cross sectional areas. Equation 

(31) shows that cross sectional area of paraxial ray can be computed directly from  

𝑸𝟏 𝒂𝒏𝒅 𝑸𝟐 and the ray parameters 𝜸𝟏 𝒂𝒏𝒅 𝜸𝟐: 

 

   𝑑𝜎 = |
𝜕𝑥⃗

𝜕𝛾1
x 

𝜕𝑥⃗

𝜕𝛾2
 | 𝑑𝛾1𝑑𝛾2 = 𝑄1𝑄2𝑑𝛾1𝑑𝛾2   (35) 
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Paraxial ray traveltimes 

 

 

 

 

 

As shown in figure 10,  a point R is at 

𝒙⃗⃗⃗ on  the central ray and a point R’ is at  

𝒙⃗⃗⃗ + 𝒉⃗⃗⃗   on a nearby ray.  Using 3D Taylor 

series to relate R and R’, we obtain: 

   
 

Figure 10. Paraxial ray and traveltime

 

 𝑇(𝑥⃗ + ℎ⃗⃗) = 𝑇(𝑥⃗) + 𝑇,𝑗  (𝑥⃗)ℎ𝑗 +
1

2
𝑇,𝑗𝑘 (𝑥⃗)ℎ𝑗ℎ𝑘   (36) 

 

   Where 𝑇(𝑥⃗) is travel time at R,   

                                        𝑇,𝑗 is the first derivative of traveltime  and equals 𝑝𝑗   

     

𝑇,𝑗𝑘  is the second derivative of traveltime and can be computed from: 

 

  𝑇,𝑗𝑘 =
𝜕𝑝𝑗

𝜕𝑥𝑘
=

𝜕𝑝𝑗

𝜕𝛾𝑛
 
𝜕𝛾𝑛

𝜕𝑥𝑘
= 𝑃𝑗𝑛𝑄𝑛𝑘

−1                (37) 

 

   where 𝑄𝑛𝑘
−1 = 

𝜕𝛾𝑛

𝜕𝑥𝑘
 

 

Or in matrix form:  𝑇,𝑗𝑘 = T = PQ−1                                      (38) 

 

The paraxial ray tracing algorithm is outlined in the following steps: 

 

1) Shoot a ray through the medium with starting vertical angle 𝜽𝒊 and horizontal angle 

𝝓𝒊 

2) Solve ODE 26 for displacement 𝒙𝒊 for the central ray 

3) Solve ODE 27 for slowness vector 𝒑𝒊 for the central ray 

4) Solve ODE 29 and 30 for 𝑷𝒊 𝒂𝒏𝒅 𝑸𝒊 

5) Use equation 37 to compute 𝑻,𝒋𝒌 

6) Use equation 36 to compute paraxial travel time for paraxial rays near the central ray 

Repeat step 1 to 6 for all starting angle 𝜽𝒊 and horizontal angle 𝝓𝒊  
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Comparisons of travel times from ray tracing methods 

 

    To verify and compare the accuracy of the travel times computed from WFC (Figure 

11a), fast marching and paraxial method (Figure 11b), we use the Marmousi model with 

the source placed at the depth of 2500m and compute the travel times from these three 

methods.  A second order finite difference shot record was created using Seismic Unix 

module sufdmod2.  Travel times at the surface are plotted on the shot record with travel 

times from WFC plotted in red, fast marching plotted in blue and paraxial method plotted 

in yellow (Figure 12). As shown in figure 12, the travel times at the surface from WFC 

and fast marching are almost identical. Travel times at the surface from paraxial method 

that uses shortest ray path agree with the other two methods at most locations except at 

locations where rays diverge.  This test demonstrated all three methods result in very 

similar travel times that agree with the finite difference shot record.  Both WFC and fast 

marching method produce smooth and stable minimum travel times.  Rays in paraxial 

method may diverge and create large gaps that can result in inaccurate travel times.   

 

 
(a)                                                                           (b) 

Figure 11.   a) Ray paths and wavefronts from WFC method,  b) Ray paths from Paraxial method. 

 

 

    WFC and paraxial methods also show that rays can cross-over in area with complex 

velocity structure.  These cross-over ray paths result in multi-arrivals at the same grid 

point.  Furthermore, WFC computes geometric spreading amplitude using cross-sectional 

area ratio at the starting and end points of ray segment and paraxial method computes 

amplitude from dynamic ray tracing equations.  Therefore, WFC and paraxial method can 

be used when multi-arrivals or different branches of traveltime including most energetic 

arrivals is desirable.  
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Figure 12.  Finite difference synthetic shot record with first arrival times from WFC, fast marching and 

paraxial method 

 

 

Summary of ray tracing methods 

 

Fast marching method: 

 

• Advantages 

- Unconditionally stable 

- Can handle turning rays. Does not have shadow zone problem. 

- Computes first arrival time for every grid point without interpolation. 

- Excellent algorithm for refraction tomography 

 

• Disadvantages 

- Does not compute ray paths directly.  Alternate computation algorithms using 

steepest travel time gradient or minimum time can be unstable. 

- Does not compute multi-arrivals. 

- Does not compute amplitude. 

- Can be slow for large output grid. 

  

 

 



Traveltime computation and ray tracing 

 CREWES Research Report — Volume 29 (2017) 15 

Wavefront Construction method: 

 

• Advantages 

- Stable if appropriate velocity smoothing parameter is used; however, accuracy 

can decrease with increasing smoothing 

- Can handle turning rays. Does not have shadow zone problem. 

- Can compute multi-arrivals and amplitude 

- Can be faster than fast marching method, if larger step size is used. 

- Good algorithm for refraction tomography as well as depth imaging 

 

• Disadvantages 

- Ray paths from interpolated ray segments may not be accurate enough for 

tomographic inversion. 

 

Paraxial method: 

 

• Advantages 

- Fast and accurate. 

- More accurate travel time interpolation in the vicinity of the central ray than 

classical ray shooting method. 

- Can compute multi-arrivals and amplitude 

- Good algorithm for depth imaging 

 

• Disadvantages 

- Cannot handle turning ray.  Not suitable for refraction tomography 

- Can have problem with ray path divergence and shadow zone in areas with 

complex structure.  

 

Ray shooting method: 

 

• Advantages 

- Fast and accurate. 

- Can compute multi-arrivals  

- Good algorithm for depth imaging 

 

• Disadvantages 

- Cannot handle turning ray.  Not suitable for refraction tomography 

- Travel time interpolation is not as accurate as paraxial method in the vicinity 

of the central ray 

- Does not compute amplitude 

- Can have problem with ray path divergence and shadow zone in areas with 

complex structure.  
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Application of ray tracing methods in depth imaging 

 

         All methods tested show similar accuracy; while WFC and the paraxial method are 

capable of computing multi-values traveltimes.  This poses a challenge in determining 

which arrival times to use as well as storage and computational resources in retrieving these 

values. However, when minimum time and shortest path is not the optimal approach, multi-

values capability of WFC and paraxial method can improve the imaging result. 

 

      We did not perform comprehensive analysis of the effects of these ray tracing methods 

in depth imaging.  However, based on the observed geometry of the ray paths in our tests 

using the Marmousi model; we believe proper application of the multi-arrivals, amplitude 

and ray path distance information from WFC and paraxial method can have significant 

impact on the quality of the final depth image. 

 

Application of ray tracing methods in refraction tomography 

 

          Refraction tomography involves forward modelling of first arrival times and using 

the differences between the modelled times and the actual first arrival time picks to 

update the velocity model along the ray path.  Ray shooting method and paraxial method 

are not suitable for ray tracing refraction ray paths because of their inability to handle up 

turning rays.  Both WFC and fast marching method can handle up turning rays; therefore, 

they are more suitable for refraction tomography.  We used the fast marching method for 

forward modelling in refraction tomography and apply the refraction tomography process 

to the Hussar 2D line acquired in 2011 by CREWES of the University of Calgary.  We 

compared the CDP stack with the tomographic statics correction to the CDP stack with 

GLI (Hampson and Russel 1984) weathering statics correction.  GLI is one of the delay 

time methods and has found great success when the near surface can be approximated by 

layers with distinct difference in velocity, but has problem with gradational velocity 

changes and rough topography. 

 

      A velocity model with constant velocity gradient between layers and with the depth 

of the layer boundaries following the recording surface as shown in figure 13a is used as 

the starting model.  Figure 13b shows the updated velocity model and refraction ray paths 

for shot location 417 after 10 iterations. Shown in figure 14 is the comparison of modeled 

refraction arrival times and the actual first arrival picks before and after tomographic 

inversion for shot location 417 as well as the RMS error for all time picks after each 

iteration.  Figure 14b shows that modeled refraction arrival times from the final velocity 

model match the actual first arrival picks.     
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Figure 13.  a)  Starting model for tomographic inversion.  13b) Velocity model after 10 iterations using 

traveltimes from fast marching method.  Ray paths from shot location 417 are shown. 

 

 
Figure 14.  a) Actual first arrival times from shot location plotted in black, minimum travel times from 

starting model plotted in blue,  b) Minimum travel times from velocity model after 10 iterations,  c) RMS 

error at each iteration.  

 

 

      Figure 15 compares the CDP stacks with datum statics correction only and with 

tomographic weathering statics correction.  The images from the tomographic weathering 

statics corrected CDP stack is more coherent and better resolved than the datum statics 

corrected CDP stack.  These results demonstrate that fast marching method is accurate 

and is effective when used in refraction tomography.  
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Figure 15. (a) CDP stack with datum statics correction,  (b) CDP stack with tomographic weathering statics 

correction.  

     

 

CONCLUSION 
 

     Fast marching, WFC and paraxial method are all based on the principles of high 

frequency ray theory; and they all produce accurate travel times when the velocity model 

varies smoothly.  Similar to the classical ray shooting method, paraxial method has the 

problem of diverging ray paths and shadow zones in area of complex structure. WFC 

alleviates this problem by interpolating additional ray segments along wavefronts to ensure 

sufficient ray density.  Both paraxial and WFC methods can produce multi-arrivals as well 

as amplitude; by comparison, the fast marching method can only produce minimum 

traveltime values. Therefore, WFC and paraxial methods are better suited for depth 

imaging of complex structures.  The fast marching method expands the wavefront and 

computes traveltime from source to each grid cell without additional interpolation by 

solving the eikonal equation.  Both fast marching and WFC methods can handle up turning 

rays; therefore, they can be used in refraction tomography.  We used the fast marching 

method in the refraction tomography processing of the Hussar 2D lines.  The CDP stack 

image from the refraction tomography processing is more coherent and better resolved than 

the CDP stack with datum statics correction. Therefore, refraction travel times computed 

from fast marching method are accurate and the velocity model from the refraction 

tomography is reliable and can potentially be used as starting model for full waveform 

inversion and depth imaging.   We did not perform comprehensive analysis of the effects 

of these ray tracing methods in depth imaging.  However, based on the observed geometry 

of the ray paths in our tests using the Marmousi model,  we believe proper application of 

the multi-value traveltime, amplitude and ray path distance information from WFC and 

paraxial method can have significant impact on the quality of the final depth image. 
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