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ABSTRACT 
There are few seismic wavelets that have an exact inverse filter for deconvolution, but 

one of these is an exponentially damped sinusoid.  As shown by Lines and Treitel (1983) 
this wavelet has an exact 3-term inverse.  Unlike most seismic wavelets, a Wiener 
deconvolution filter can be designed that shapes this wavelet to an output that is a nearly 
perfect spike.  For the majority of seismic wavelets where a perfect spike is not 
achievable, one can shape the actual wavelet to an exponentially damped sinusoid prior to 
and then apply a Wiener filter that will spike the exponentially damped wavelet.  This 
appears to hold some promise, as shown by a computational example.  

INTRODUCTION 
The Wiener wavelet deconvolution filter has been widely used in the seismic 

processing industry ever since the time of their introduction to the industry by Robinson 
(1954).  The successful design of this deconvolution filter depends on desired spiking 
position, filter length, prewhitening level, and of course the accuracy of the wavelet 
estimate itself.  Wiener filter design is explained in detail in several publications 
including Robinson and Treitel (2008).  In this paper, we will focus on a wavelet that has 
an exact deconvolution filter – that being a damped exponential sinusoid.  This wavelet 
and its 3-term inverse were examined by Lines and Treitel (1983) in their discussion of 
second moment norm filters.  We review this wavelet and its exact spiking filter.  Wiener 
filters for other wavelets will generally not have such ideal performance.  However, we 
can design filters that can shape wavelets to a desired damped sinusoid as described by 
Robinson and Treitel (2008).  After applying the shaping filter, we could then apply the 
“exact filter” for the exponentially damped wavelet.  These cascaded deconvolution 
filters are shown here for computational examples. 

METHODOLOGY AND RESULTS 
In order to understand the nature of a spiking filter, we review the derivation of such 

filters from Lines and Treitel (1983). Consider the wavelet given by a damped sinusoid 
with damping coefficient α  and frequency 0ω .  
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The discrete z-transform of w(t) is: 
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Equation (3a) can be rewritten as: 
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This can be re-expressed as: 
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Taking the reciprocal of (4), the discrete  z-transform for the exact inverse filter is 

then given by: 
 

11 1( ) 2cos 0sin 0
w z e z e zα αω

ω
− − − = − +  

                                          (5) 

 
It will be convenient to deal with a 1-unit delayed deconvolution filter, with 

discrete z-transform 
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If we convert this unit-delayed z-transform back to the time domain, we see that 

we obtain a causal deconvolution filter f(t) given by the three-term sequence: 
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It can be shown that this causal filter is also minimum-delay whenever both roots 

( , )1 2z z of the z-polynomial (5a) lie outside the unit circle in the complex plane, namely 

that: 
 

 ( , ) cos sin 11 2 0 0z z eα ω ω = ± >    

   
We have derived an analytic form of the deconvolution filter for the exponentially 

damped sinusoid and have shown it to be a 3-term sequence.  We can also compute a 
numerical form of this by computing a 3-term Wiener deconvolution filter that attempts 
to shape this wavelet to a spike.  This computation was done in Lines and Treitel (1983) 
for an exponentially damped sinusoid with f=20Hz. As anticipated, the Wiener filter 
effectively gave a near-perfect spike as the filter output. The result expressed in equation 
(5a) was stated earlier by Robinson (1967, p. 343) 

In this paper, we use an exponentially damped sinusoid with a frequency of 90 Hz, a 1 
ms sample interval and a value of .100=α   This wavelet is shown in Figure 1.  

 

FIG. 1. Exponentially damped sinusoidal wavelet with dominant frequency of 90 Hz.  
Horizontal axis is in samples where sample interval is 1 ms. 
 

The computation of a Wiener spiking filter produces a filter output in Figure 2 
which is nearly a perfect spike.  Treitel and Lines (1982) define this filter output as a 
resolving kernel.  Ideally, the resolving kernel would resemble a spike (delta function). 
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FIG.2. Filter output from application of a Wiener spiking filter converts the exponentially 
damped sinusoid wavelet in Figure 1 to a nearly perfect spike as anticipated by previous 
analysis in equations 1-5. 
 

This idealized performance of a Wiener filter for exponentially damped sinusoid 
is all well and good, but how would this apply to the deconvolution of a more realistic 
wavelet?  The shaping of most wavelets to a spike with a Wiener filter will not be so 
ideal.  This is due to the fact that most wavelets are bandlimited and may even have holes 
in their spectrum that could lead to singularities in deconvolution unless prewhitening is 
used (Treitel and Lines, 1982). 

 
To illustrate this, we will use a wavelet in Figure 3 from a previous study by Dey 

(1999) and we will examine the deconvolution result.   
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FIG.3. A seismic wavelet as used in Dey (1999). 
 
 A Wiener filter can be designed using the algorithms described in Robinson 
(1967) in which an optimum spiking position is chosen by comparing the difference 
between the actual filter output and a spike (delta function).  If one compares filter output 
performance for different spiking positions, an optimum spiking position can be chosen.  
If one compares the input wavelet to the output of the deconvolution, we see that 
deconvolution has some desirable characteristics.  The output has a narrower peak 
(Figure 4) than the input wavelet (Figure 3) – leading to improved resolution of arrivals.  
Also, the output has a symmetrical shape more closely resembling a zero phase wavelet.  
Therefore, following an appropriate time shift,  peaks (and troughs) on the deconvolved 
output will coincide with peaks (and troughs) in the reflectivity. 
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FIG. 4. The output from applying a Wiener spiking filter to the wavelet in Figure 3. 
 

Nevertheless, deconvolution of the wavelet in the case of Figure 4 does not result 
in a knife-sharp output as in Figure 2.  One might ask the question.  Can one design a 
digital filter that would convert the wavelet of Figure 3 to the damped exponential 
wavelet of Figure 1 and thereby utilize the ideal deconvolution properties of the 
exponentially damped wavelet?  This would require using a shaping filter to convert one 
wavelet to another, followed by the “exact” deconvolution filter.  In other words, we 
would use a cascaded filter approach. 

 
It is perhaps easiest to envision the shaping filter in the frequency domain.  Let 

)( 01 ωW be the Fourier transform of the actual wavelet, and let ( )2 0W ω  be the Fourier 

transform of the exponentially damped sinusoid.  The Fourier transform of the filter that 
will convert the wavelet to an exponentially damped sinusoid is given by: 
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where 0ω =angular frequency of the exponentially damped sinusoid. 
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On the right side of (7), if we multiply the numerator and denominator by *
1W

we will have the frequency domain version of the Wiener filter that attempts to shape the 
wavelet, )(tw1  into a desired output that is )(tw2 .   

 
In fact, it is worth noting that ( , )2 0W ω ω , the Fourier transform of a causal 

exponentially damped sinusoid of frequency has an analytic expression for its Fourier 
transform given by Papoulis (1962, p. 23) as: 

 

  

W
2
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ω0

(α + iω )2 +ω0
2

,                                        (8)  

   
where ω = filter angular frequency of  the causal exponentially damped sinusoid of 
frequency 0ω  

   
    
   

      
Having applied a shaping filter that shapes the wavelet into a desired output that is 

a damped sinusoid, we would then apply the 3-term filter that shapes the damped 
sinusoid into a spike. 

 
We can examine feasibility of applying the shaping filter defined by equation (7) 

in order to convert the wavelet of Figure 3 into the damped sinusoid of Figure 1.  In order 
to avoid division by zero in this equation, we add a small positive constant to the 
denominator of equation (7).  This will mean that the application of the shaping filter will 
not provide a perfect reproduction of the desired wavelet.  However, as Figure 5 shows, 
the shaping filter provides a wavelet that closely resembles the desired wavelet.   
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FIG. 5. The output from applying the shaping filter of equation (7) to shape the wavelet 
of Figure 3 to the wavelet of Figure 1.  

 
The next step in the cascaded deconvolution process requires that we apply a 

deconvolution filter to spike the shaped wavelet.  The application of a Wiener filter to the 
wavelet of Figure 5 produces an output or resolving kernel as shown in Figure 6.   
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FIG. 6 The application of a Wiener deconvolution spiking filter (length=5, prewhitening 
=1% produces a resolving kernel that more closely resembles a spike than the direct 
deconvolution resolving kernel of Figure 4.  
 

This cascaded deconvolution is very encouraging since although this resolving 
kernel in Figure 6 is not a perfect spike, as shown in Figure 2, it is a considerable 
improvement over the resolving kernel of the direct deconvolution of the wavelet, as 
previously shown in Figure 4.  This provides some support for the use of cascaded 
deconvolution - with one step shaping the wavelet into a damped exponential followed by 
a deconvolution of the shaped wavelet. 

 
At this stage, it is worthwhile to consider the application of this method to a data 

example.  For this purpose, we consider a reflectivity function derived from wells in 
central Alberta as used by Dey (1999).  This reflectivity is shown in Figure 7. 
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FIG. 7. The reflectivity function used in Dey (1999), as derived from well logs of a 
central Alberta well. 
 

If we convolve the wavelet in Figure 3 with the reflectivity in Figure 7, we obtain 
a synthetic seismogram that can be used for testing our cascaded deconvolution filter. 
This trace is shown in Figure 8. 
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FIG. 8 The convolution of the wavelet in Figure 3 with the reflectivity in Figure 6 
produces the above trace. 

 
The first step in the cascade deconvolution is to convert the trace in Figure 6 to 

the trace in Figure 7 by convolving the shaping filter defined by equation (7) with the 
trace in Figure 8.  Doing this will produce the trace in Figure 9. 
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FIG. 9 The convolution of the shaping filter defined by equation (7) to the trace in Figure 
9 (on the left) produces the  phase-shifted trace (on the right), that is used in 
deconvolution . 

 
The final step in this cascaded filtering procedure will be to apply the 

deconvolution filter effectively defined by equation (6) to the converted trace on the right 
hand side of Figure 9.  This produces the final deconvolved trace.  Figure 10 displays a 
comparison of the trace in Figure 9, with the deconvolution, and the actual reflectivity.  
We note a very encouraging comparison of the deconvolution (middle trace) with the 
reflectivity (right trace).   
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FIG. 10 A comparison of  an input trace (left trace) with the cascade deconvolution 
(middle trace) and the actual reflectivity.  The deconvolution correlates very well with the 
desired reflectivity function. 
 
 This encouraging result would suggest a cascade of a shaping filter to convert the 
wavelet to an exponentially damped sinusoid followed by a deconvolution filter to spike 
the damped sinusoid may prove to be a viable procedure. 
 
 Are there other possible uses for the exponentially damped sinusoid wavelet that 
has an exact 3-term inverse filter and can be ideally deconvolved?  Actually such a 
wavelet should be useful in seismic modeling.  If one were to use this wavelet in creating 
synthetic seismograms, one could apply a deconvolution filter to get an ideal 
representation of the reflectivity function.  More tests are needed to demonstrate this 
usage. 

CONCLUSIONS 
 It has been shown that the exponentially damped sinusoid has an exact 3-term 

spiking filter.  While most wavelets do not have such an effective deconvolution, it may 
be advantageous to design a shaping filter that will convert the actual wavelet to a 
damped sinusoidal wavelet and then apply deconvolution.  This has been illustrated with 
synthetic examples. 
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