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SUMMARY 
Constant phase rotations and constant time shifts are the constant and slope of a 

polynomial approximation to the seismic wavelet phase.  Errors in the estimation of either 
one cause a bias in the subsequent estimation of the other.  It follows that estimations of 
time-shifts followed by subsequent phase estimates, as is commonly done in well tying, is 
subject to this bias meaning that alignment errors cause compensating phase errors and a 
very questionable solution.  A strategy is presented to overcome this bias whereby the 
alignment is estimated though correlation of trace envelopes and it is demonstrate that this 
is much more accurate.  This strategy is then extended to the nonstationary case where, in 
a series of numerical experiments, it is demonstrated that nonstationary phase rotations and 
time delays can be reliably measured with good quality data. 

INTRODUCTION 
It is well understood that a time-shift can be accomplished in the frequency domain as 

a linear (with frequency) phase-shift.  Also true is that the common practice of phase 
rotating seismic data to match well control is a constant phase shift.  Together, phase 
rotation and time shift can be regarded as the intercept and slope of a linear approximation 
to the phase of the crosscorrelation between a seismic trace and a synthetic seismogram 
constructed from well-logs.  For a better understanding, assume the convolutional model 
for the seismic trace as 

 𝑠𝑠(𝑡𝑡) = 𝑤𝑤(𝑡𝑡) ∙ 𝑟𝑟(𝑡𝑡) + 𝑛𝑛(𝑡𝑡), (1) 

where 𝑤𝑤(𝑡𝑡) is the wavelet embedded in the trace, 𝑟𝑟(𝑡𝑡) is the reflectivity, and 𝑛𝑛(𝑡𝑡) is 
random noise and the bullet (∙) denotes convolution.  Next let the synthetic seismogram, 
aka the reference trace, constructed from the well reflectivity be 

 𝑢𝑢(𝑡𝑡) = 𝑤𝑤0(𝑡𝑡) ∙ 𝑟𝑟0(𝑡𝑡), (2) 

where 𝑤𝑤0(𝑡𝑡) and 𝑟𝑟0(𝑡𝑡) are again wavelet and reflectivity but are generally different from 
those in equation 1.  The crosscorrelation 𝑐𝑐𝑢𝑢𝑢𝑢(𝑡𝑡) = 𝑢𝑢(𝑡𝑡) ⊗ 𝑠𝑠(𝑡𝑡) is then 

 𝑐𝑐𝑢𝑢𝑢𝑢(𝑡𝑡) = 𝑢𝑢(−𝑡𝑡) ∙ 𝑠𝑠(𝑡𝑡) = [𝑤𝑤0(−𝑡𝑡) ∙ 𝑟𝑟0(−𝑡𝑡)] ∙ [𝑤𝑤(𝑡𝑡) ∙ 𝑟𝑟(𝑡𝑡) + 𝑛𝑛(𝑡𝑡)]  

 𝑐𝑐𝑢𝑢𝑢𝑢(𝑡𝑡) = 𝑤𝑤0(−𝑡𝑡) ∙ 𝑤𝑤(𝑡𝑡) ∙ 𝑟𝑟0(−𝑡𝑡) ∙ 𝑟𝑟(𝑡𝑡) = 𝑐𝑐𝑤𝑤0𝑤𝑤(𝑡𝑡) ∙ 𝑐𝑐𝑟𝑟0𝑟𝑟(𝑡𝑡) (3) 

in which use has been made of the fact that 𝑎𝑎(𝑡𝑡) ⊗𝑏𝑏(𝑡𝑡) = 𝑎𝑎(−𝑡𝑡) ∙ 𝑏𝑏(𝑡𝑡) (meaning that 
crosscorrelation is equivalent to time-reversal and convolution) and where 𝑐𝑐𝑟𝑟0𝑛𝑛 was 
assumed to be zero because it is the crosscorrelation of two random sequences. 

Now, make two simplifying assumptions about the relationship between 𝑤𝑤(𝑡𝑡) and 
𝑤𝑤0(𝑡𝑡) and between 𝑟𝑟(𝑡𝑡) and 𝑟𝑟0(𝑡𝑡).  First assume that 𝑤𝑤(𝑡𝑡) = 𝑅𝑅𝜃𝜃[𝑤𝑤0(𝑡𝑡)] where 𝑅𝑅𝜃𝜃 is a 
constant-phase rotation operator.  Then assume that 𝑟𝑟(𝑡𝑡) = 𝑇𝑇Δt(𝑟𝑟0(𝑡𝑡)) in which 𝑇𝑇Δ𝑡𝑡 is a 
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constant-time-shift operator.  Thus we assume that the wavelet used in modelling and the 
true wavelet are different only by a constant-phase rotation and the reflectivity used in 
modelling and the true reflectivity are different only by a constant time-shift.  These are 
common assumptions used in well tying and the simplest reasonable ones to make.  In the 
frequency domain, the wavelet assumption reduces to  

 𝑤𝑤�(𝑓𝑓) = 𝑤𝑤0�(𝑓𝑓)𝑒𝑒𝑖𝑖𝜃𝜃,𝑓𝑓 ≥ 0 (4) 
and the reflectivity assumption is 

 �̂�𝑟(𝑓𝑓) = 𝑟𝑟0�(𝑓𝑓)𝑒𝑒𝑖𝑖2𝜋𝜋𝜋𝜋Δ𝑡𝑡,𝑓𝑓 ≥ 0 (5) 
where, for convenience, both expressions have been written for non-negative frequencies 
only. 

Now consider 𝑐𝑐𝑤𝑤0𝑤𝑤(𝑡𝑡) in the frequency domain and recall that time-reversal becomes 
phase-negation (i.e. complex conjugation).  Therefore 

 𝑐𝑐𝑤𝑤0𝑤𝑤�(𝑓𝑓) = 𝑤𝑤0�
∗(𝑓𝑓)𝑤𝑤�(𝑓𝑓) = 𝑤𝑤0�

∗(𝑓𝑓)𝑤𝑤0�(𝑓𝑓)𝑒𝑒𝑖𝑖𝜃𝜃 = 𝑐𝑐𝑤𝑤0𝑤𝑤0� (𝑓𝑓)𝑒𝑒𝑖𝑖𝜃𝜃 (6) 

where the superscript * indicates the complex conjugate and 𝑐𝑐𝑤𝑤0𝑤𝑤0 is the autocorrelation 
of 𝑤𝑤0 which is zero phase.  Similarly, we deduce 

 𝑐𝑐𝑟𝑟0𝑟𝑟� (𝑓𝑓) =  𝑟𝑟0�
∗(𝑓𝑓)�̂�𝑟(𝑓𝑓) = 𝑟𝑟0�

∗(𝑓𝑓)𝑟𝑟0�(𝑓𝑓)𝑒𝑒𝑖𝑖2𝜋𝜋𝜋𝜋Δ𝑡𝑡 = 𝑐𝑐𝑟𝑟0𝑟𝑟0�(𝑓𝑓)𝑒𝑒𝑖𝑖2𝜋𝜋𝜋𝜋Δ𝑡𝑡. (7) 

Therefore, the Fourier transform of equation 3 is 

 𝑐𝑐𝑢𝑢𝑢𝑢� = 𝑐𝑐𝑤𝑤0𝑤𝑤�(𝑓𝑓)𝑐𝑐𝑟𝑟0𝑟𝑟� (𝑓𝑓) = 𝑐𝑐𝑤𝑤0𝑤𝑤0� (𝑓𝑓)𝑐𝑐𝑟𝑟0𝑟𝑟0�(𝑓𝑓)𝑒𝑒𝑖𝑖(𝜃𝜃+2𝜋𝜋𝜋𝜋Δ𝑡𝑡). (8) 

In equation 8 𝑐𝑐𝑤𝑤0𝑤𝑤0� (𝑓𝑓) and 𝑐𝑐𝑟𝑟0𝑟𝑟0�(𝑓𝑓) are Fourier-transformed autocorrelations and hence 
have no phase.  Therefore the prediction for the phase of the crosscorrelation 𝑐𝑐𝑢𝑢𝑢𝑢(𝑡𝑡) =
𝑢𝑢(𝑡𝑡) ⊗ 𝑠𝑠(𝑡𝑡) is that it is 

 𝜙𝜙𝑢𝑢⊗𝑢𝑢 = 𝜃𝜃 + 2𝜋𝜋𝑓𝑓Δ𝑡𝑡 (9) 

which is a linear phase with intercept 𝜃𝜃 and slope 2𝜋𝜋Δ𝑡𝑡.   

Equation 9 shows that, with a fairly simple model, the two quantities of interest, 𝜃𝜃 and 
Δ𝑡𝑡, are predicted to form the phase spectrum of the fundamental measurable 𝑐𝑐𝑢𝑢𝑢𝑢(𝑡𝑡).  This 
is very significant because it is well known that the slope and intercept of a linear data 
model are not statistically independent.  This means that an error in the estimation of either 
one biases a subsequent estimation of the other.  Figure 1 illustrates this situation with a 
simple least-squares fitting of a first-order polynomial (e.g. a straight line) to noisy data 
from a linear model.  The model slope and intercept are 0.5 and 0.1 respectively and the 
simultaneous least-squares solution give excellent answers of 0.498 and 0.099.  Now 
suppose that some independent process estimates the slope to be the incorrect value of 0.4 
and a subsequent least-square solution for the intercept only is done.  This results in an 
incorrect intercept of 0.148, which directly illustrates that an error in the slope causes a 
subsequent error in intercept.  This also works the other way around in that if the intercept 
is estimated first, with some error, then a subsequent slope estimate will be correspondingly 
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incorrect.  The best way to solve this problem is a simultaneous estimation of both slope 
and intercept. 

 
Figure 1.  An example of straight-line fitting to noisy data with both a simultaneous and biased 
solution.  The slope and intercept of the true line are 0.5 and 0.1 while the simultaneous least-
squares solution estimates 0.498 and 0.099.  In the biased case, the slope is constrained to be 0.4 
and the resulting least-squares estimate for the intercept is then 0.148. 

In the context of matching seismic data to well control, this problem of fitting a linear 
model to the phase of the crosscorrelation between seismic and synthetic arises.  It is not 
practical to directly fit a linear model to the phase because the time shift can be quite large 
and this causes a vexing problem known as phase-wrapping.  Given a linear phase relation 
like equation 9, even very small time shifts can easily generate phases greater than 180o, 
or 𝜋𝜋 radians, in absolute value.  Yet for unavoidable mathematical reasons, phase estimates 
are “wrapped” to the interval [−𝜋𝜋,𝜋𝜋].  This means that any direct attempt to fit a linear 
model to the phase will fail unless the phase can be un-wrapped, which is a very complex 
problem.  Instead, what usually happens is that the time shift is estimated by a cross-
correlation between the synthetic and the seismic data, then the synthetic is shifted and the 
relative phase rotation is then measured.  This is exactly the biased procedure discussed 
previously.  The phase will cause errors in the time-shift estimation and the time-shift will 
cause errors in the phase. 

Fortunately, seismic data is more complex and rich than the simple situation of Figure 
1.  Consequently, there may be ways to address this problem that escape this circumstance.  
In this paper I argue that crosscorrelation of the seismic trace and the synthetic directly is 
subject to the biasing problem.  However, crosscorrelation of the Hilbert envelopes of trace 
and synthetic escapes the bias.  This is because the Hilbert envelope is an estimate of the 
trace-amplitude that is mathematically unaffected by a constant-phase rotation.  Thus for a 
stationary trace, the time-shift and phase can be successfully measured by first 
crosscorrelating the envelopes to estimate the time-shift and then estimating the phase after 
removing this shift. 



Margrave 

4 CREWES Research Report — Volume 29 (2017)  

A further complication to this problem is that both the time-shift and the phase rotation 
are generally functions of time.  This is predicted from theory to be a consequence of 
anelastic attenuation and is widely observed.  This problem can be addressed by performing 
the stationary analysis repeatedly with small trace segments created by applying a moving 
Gaussian window to both trace and synthetic. 

In this paper, I will demonstrate this process and describe the computations involved. 

THE STATIONARY CASE 
Measurement of phase rotation 

Given two signals, 𝑠𝑠(𝑡𝑡) and 𝑢𝑢(𝑡𝑡), we seek to estimate the constant-phase rotation that 
produces the best match between them.  This can be formulated as an inverse problem by 
seeking the phase angle 𝜃𝜃 that minimizes ‖𝑠𝑠(𝑡𝑡) − 𝑅𝑅𝜃𝜃[𝑢𝑢(𝑡𝑡)]‖ where ‖ ‖ denotes the 𝐿𝐿2 
norm or sum-of-squares.  So we seek the phase angle minimizes the sum-squared 
difference between the phase rotated synthetic and the seismic trace. (It does not matter if 
we choose to rotate the synthetic or the trace because the phase angles determined will 
simply be the negatives of each other.)  Another way to phase-rotate a signal, equivalent to 
that in equation 4, is  

 𝑢𝑢𝜃𝜃(𝑡𝑡) = 𝑢𝑢(𝑡𝑡) cos 𝜃𝜃 + 𝑢𝑢⊥(𝑡𝑡) sin 𝜃𝜃, (10) 

where 𝑢𝑢⊥(𝑡𝑡) is a 90o phase rotation, also called the Hilbert-transformed trace.  This says 
that an arbitrary phase rotation can be formed as a linear combination of the signal and its 
90o phase rotation, with the cosine and sine weights as shown.  Letting sin𝜃𝜃 = 𝑥𝑥 and 
cos 𝜃𝜃 = √1 − 𝑥𝑥2, then 

 ‖𝑠𝑠(𝑡𝑡) − 𝑅𝑅𝜃𝜃[𝑢𝑢(𝑡𝑡)]‖2 = ∑ �𝑠𝑠(𝑡𝑡) − 𝑢𝑢(𝑡𝑡)√1 − 𝑥𝑥2 − 𝑢𝑢⊥(𝑡𝑡)𝑥𝑥�𝑡𝑡
2
. (11) 

The optimal phase angle can then be found by minimizing this with respect to 𝑥𝑥 and then 
finding the inverse sine.  This is a tedious and complicated operation that involves 
differentiating equation 11 with respect to 𝑥𝑥, setting the result equal to zero, and solving 
for 𝑥𝑥.  The result is a 4th order polynomial in 𝑥𝑥 whose roots can be found numerically (two 
of the roots are typically complex and can be discarded).  Each root must then be tested to 
determine if it corresponds to a maximum or a minimum.  The details of this computation 
are not presented here but there is a function in the CREWES MATLAB toolbox that 
implements this method.  This function is constphase.m and the method will be called the 
analytic method. 

Fortunately, there is a much simpler way to find the best rotation angle and that is by a 
direct numerical search. Experience shows that phase-angle difference of less than 5o are 
usually irrelevant and therefore extreme precision is not required.  Furthermore, the 
periodicity of the sine and cosine functions means that the phase estimate will always lie 
between −180o and 180o.  Therefore, it is quite sufficient to simply evaluate 
‖𝑠𝑠(𝑡𝑡) − 𝑅𝑅𝜃𝜃𝑢𝑢(𝑡𝑡)‖2 for all integer values between -180 and 179 and the search for the 
numerical minimum.  This method is implemented by constphase2.m also in the CREWES 
toolbox. 



Phase rotations and time shifts 

 CREWES Research Report — Volume 29 (2017) 5 

Figure 2 is an almost trivial example of this phase estimation.  Here a 30 Hz Ricker 
wavelet is phase rotated by 119.2o and then both the analytic method and the direct search 
are used to deduce this phase rotation.  The calculation requires both wavelets and the 
analytic method yields a single number that is exactly the applied rotation while the direct 
search gives the entire objective function, ‖𝑠𝑠(𝑡𝑡) − 𝑅𝑅𝜃𝜃𝑢𝑢(𝑡𝑡)‖2, sampled at integer phase 
angles.  Both methods get the correct result. 

 
Figure 2:  (Left) A 30 Hz Ricker wavelet and the same wavelet after a phase rotation of 119.2o.  
(Right) The curve shows the objective function ‖𝑠𝑠(𝑡𝑡) − 𝑅𝑅𝜃𝜃𝑢𝑢(𝑡𝑡)‖2 as mapped out by direct 
calculation at all integer phase angles between -180 and 179.  The curve has a minimum at 119o 
while the analytic solutions gets exactly 119.2o. 

It is not possible to include all possible tests with these functions so instead I just 
summarize a few things I’ve learned: 

1. A phase calculation always requires a reference trace and the rotated trace.  The 
phase is always relative to the reference trace, which need not be a zero phase 
wavelet. 

2. The method works best if the traces being compared have similar amplitude 
spectra.  Therefore the toolbox functions provide the option to equalize the 
amplitude spectra before measurement. 

3. The phase calculation always gives an answer even when that answer may be 
nearly meaningless due to conflict with time shift. 

Measurement of time shift 

A crosscorrelation is the classic way to measure a time shift.  If 𝑠𝑠(𝑡𝑡) and 𝑢𝑢(𝑡𝑡) differ by 
only a constant time-shift, then computation of 𝑐𝑐𝑢𝑢𝑢𝑢 = 𝑢𝑢 ⊗ 𝑠𝑠 for a suitable range of lags 
should detect the shift.  In more detail, the time shift is the lag at which 𝑐𝑐𝑢𝑢𝑢𝑢 finds it’s 
maximum.  Of course, 𝑐𝑐𝑢𝑢𝑢𝑢 must be evaluated over a large enough range of lags to find the 
maximum.  Less well known, is that the shift can also be detected by crosscorrelating the 
trace envelopes rather than the traces themselves, or by simply examining the envelope of 
the crosscorrelation of the traces.  The envelope of any signal 𝑠𝑠(𝑡𝑡), denoted 𝑒𝑒[𝑠𝑠](𝑡𝑡) is 
defined as 
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 𝑒𝑒[𝑠𝑠](𝑡𝑡) =   �𝑠𝑠2(𝑡𝑡) + 𝑠𝑠⊥2(𝑡𝑡)  (12) 

and it has the remarkable property that it is insensitive to phase rotations.  That is, 𝑠𝑠𝜃𝜃(𝑡𝑡), 
which is a constant-phase rotation of 𝑠𝑠(𝑡𝑡), has the same envelope as 𝑠𝑠(𝑡𝑡).  This can be 
easily proven by direct calculation of both envelopes and using appropriate trigonometric 
identities.  This is very important because it means that we have an alternate method to get 
the time shift that is insensitive to constant phase rotations.  Also, it follows directly from 
equation 12 that |𝑠𝑠(𝑡𝑡)| ≤ 𝑒𝑒[𝑠𝑠](𝑡𝑡) which means the trace is contained in the envelope.  Since 
all constant phase rotations have the same envelope, then they are all so contained.  This is 
illustrated in Figure 3. 

 
Figure 3.  A portion of a seismic trace is shown together with its envelope (positive and negative) 
and a number of phase rotations.  The envelope contains all of the phase rotations. 

The argument in the introduction suggests that the phase of 𝑐𝑐𝑢𝑢𝑢𝑢, the crosscorrelation of 
the reference trace 𝑢𝑢(𝑡𝑡) with a seismic trace 𝑠𝑠(𝑡𝑡), is dominated by a constant phase rotation 
and a linear term.  So, it follows that the envelope of the crosscorrelation, 𝑒𝑒[𝑐𝑐𝑢𝑢𝑢𝑢], should 
be insensitive to a constant phase rotation.  So, either 𝑒𝑒[𝑢𝑢] ⊗ 𝑒𝑒[𝑠𝑠] or 𝑒𝑒[𝑢𝑢 ⊗ 𝑠𝑠] should be 
insensitive to phase rotations.  To test these ideas, Figure 4 shows the situation where 𝑠𝑠 
differs from 𝑢𝑢 only by a time shift and no phase rotation.  On the right-hand side of this 
figure, the three correlation functions are shown, 𝑢𝑢 ⊗ 𝑠𝑠, 𝑒𝑒[𝑢𝑢 ⊗ 𝑠𝑠], and 𝑒𝑒[𝑢𝑢] ⊗𝑒𝑒[𝑠𝑠], and 
all three have their maximum at the correct position which is a lag time of −0.075 sec.  
Compare this to the case shown in Figure 5 where 𝑠𝑠 differs from 𝑢𝑢 by both a time shift and 
a phase rotation.  When a phase shift is present both of the correlations involving envelopes 
still work but the standard crosscorrelation (𝑢𝑢 ⊗ 𝑠𝑠) fails.   
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Figure 4.  At left are the reference trace 𝑢𝑢(𝑡𝑡), the seismic trace 𝑠𝑠(𝑡𝑡), and their envelopes.  By 
construction 𝑠𝑠(𝑡𝑡) is identical to 𝑢𝑢(𝑡𝑡) except for a 0.075 sec time shift.  At right are the three possible 
correlations and all three succeed at detecting the shift because there is no phase rotation.  A red 
dashed line indicates the correct lag. 

 
Figure 5. Similar to Figure 4 except that the seismic trace 𝑠𝑠(𝑡𝑡) differs from 𝑢𝑢(𝑡𝑡) by both a 0.075 sec 
time shift and a 90o phase rotation.  On the right, the maximum of the standard correlation 𝑢𝑢 ⊗ 𝑠𝑠 
fails to pick the correct time shift but the other two correlations do correctly find the shift. 

Measurement of both time shift and phase rotation 

So either 𝑒𝑒[𝑢𝑢 ⊗ 𝑠𝑠] or 𝑒𝑒[𝑢𝑢] ⊗ 𝑒𝑒[𝑠𝑠] are crosscorrelation techniques which are insensitive to 
constant phase rotations while 𝑢𝑢 ⊗ 𝑠𝑠 lacks this property.  The lack of a phase-rotation 
estimation technique that is insensitive to time shift means that the time shift must be 
estimated first and then the phase rotation.  (For the forward problem of applying the time 
shift and phase rotation, the order is not important in the stationary case.)  Using the same 
synthetic traces as before, where 𝑠𝑠(𝑡𝑡) has a 0.075 sec time shift and a 90o phase rotation 
with respect to 𝑢𝑢(𝑡𝑡), Figure 6 compares the performance of the 3 crosscorrelation 
possibilities to first estimate the shift and then subsequently the phase rotation.  Here 𝑠𝑠(𝑡𝑡) 
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is shown at the top of each column and 𝑢𝑢(𝑡𝑡) is at the bottom.  In between, the red trace is 
𝑠𝑠(𝑡𝑡) with the estimated shift applied and the yellow trace also has the estimated phase 
rotation applied.  Thus success is measured by the similarity of the yellow trace to 𝑢𝑢(𝑡𝑡).  
Above the red traces is shown the magnitude of the estimated shift while above the yellow 
traces is the estimated phase rotation (this is the phase required to rotate 𝑠𝑠 into 𝑢𝑢 so −90 is 
the correct result).  In the first column, the ordinary crosscorrelation gets an erroneous shift 
of −0.0676 sec which is 7 milliseconds too small.  This small shift error has a strong effect 
of the phase estimate which is only −9 instead of −90.  The final corrected trace in the 
first column has a maximum correlation with 𝑢𝑢 of 0.9.  In contrast, both of the envelope 
correlation methods do much better getting both shift and phase almost exactly and having 
a final maximum correlation of 0.99.  The sensitivity of the phase estimation to the time 
shift is quite strong and these results required that the initial crosscorrelation to estimate 
the lag be interpolated to 1/10 of the sample interval.  If the crosscorrelation is evaluated 
without interpolation, meaning that the lag of the maximum is evaluated only to the nearest 
sample, the results are significantly degraded as is illustrated in Figure 7.  While the final 
correlations are still very good, the phase rotation from the two envelope techniques is now 
in error by 10o. 

 
Figure 6. The three different crosscorrelation procedures are used together with the constant phase 
estimation to determine both shift and phase for a test trace 𝑠𝑠 shown at the top of each column.  
The reference trace 𝑢𝑢 is at the column bottoms.  In this case the time shifts were determined by 
finding and interpolated maximum for the crosscorrelations.  See the text for more discussion. 
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Figure 7.  Similar to Figure 6 except that the time shifts were determined by finding the 
crosscorrelation maxima to the nearest sample only without interpolation. 

THE NONSTATIONARY CASE 
All seismic data is really nonstationary even though most of our data processing 

algorithms ignore this fact.  Here “nonstationary” refers to the wavelet spectrum as it varies 
with both time and frequency.  It is the temporal variation of the spectrum which merits 
the label nonstationary.  This is caused by at least two effects: (1) anelastic attenuation and 
(2) short-path interbed multiples.  As was first shown by O’Doherty and Anstey (1971) 
these two very different physical processes both cause the wavelet to evolve in a very 
similar fashion.  This evolution is characterized by an amplitude spectrum that decays 
progressively with increasing time and a phase spectrum that also changes with time as can 
be inferred by the minimum-phase condition.  The nonstationary evolution of wavelet 
phase can be characterized, to first order, by a monotonically increasing delay and a time-
variant phase rotation.  Application of stationary deconvolution will change the pattern of 
phase nonstationarity but will not remove it.  This becomes evident in well tying when 
fitting a synthetic seismogram to processed data requires “stretching and squeezing” and 
time-dependent phase rotations.  “Stretching and squeezing” is the common jargon for the 
time-dependent time-shifts that are applied to the synthetic seismogram while attempting 
to align it with the data.  While time-dependent time-shifts are commonly used, usually 
only a stationary constant-phase rotation is estimated and applied.  This may be due to 
difficulties in measurement related to short well logs, or it just may be due to tradition.  
Whatever the reason, the feasibility of estimating both nonstationary time-shifts and phase-
rotations will be demonstrated here. 

In extending the stationary results to the nonstationary setting, I will assume “local 
stationarity” meaning that the stationary techniques will simply be applied repeatedly in 
each of a set of temporal windows that span the available times.  The property of the 
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envelope being unaffected by constant phase rotations is only strictly true in the purely 
stationary case.  Still, I will show empirically that using envelope crosscorrelations in 
nonstationary analyses is much better than using ordinary crosscorrelations.  The main 
innovation in extending these methods to the nonstationary case is to use the Gabor 
windowing idea.  Here a set of windows, usually Gaussians, are defined that break up the 
traces into small segments that can be compared to one another.  In this study, the windows 
are all identical except for their center times which move regularly down the traces.  For 
the estimation of time shifts, the Gaussian width, characterized by the standard deviation 
for convenience, should be chosen larger than any anticipated shift.  The increment 
between adjacent windows is typically chose to be much smaller than the width.  For 
example, a window width of 0.05 or 0.1 seconds and an increment of 0.01 or 0.02 are robust 
choices. 

As with the stationary case, I begin with examples of phase rotation without delay and 
then delay without phase rotation before closing with an example of both together. The 
simplest way to apply a time-variant phase rotation is with a straight-forward 
generalization of equation 10 

 𝑢𝑢𝜃𝜃(𝑡𝑡) = 𝑢𝑢(𝑡𝑡) cos 𝜃𝜃(𝑡𝑡) + 𝑢𝑢⊥(𝑡𝑡) sin𝜃𝜃(𝑡𝑡), (13) 

where the only change has been to replace the constant 𝜃𝜃 with the time-variant 𝜃𝜃(𝑡𝑡).  While 
a stationary delay is just a static shift, a time time-variant delay is a common operation 
known as a stretch.  A stretch can be written 

 𝑢𝑢𝛿𝛿(𝑡𝑡) = 𝑢𝑢(𝑡𝑡 + 𝛿𝛿(𝑡𝑡)), (14) 

where 𝛿𝛿(𝑡𝑡) describes the time-variant delay.  Typically, the computation of a stretched 
trace (or the removal of an estimated 𝛿𝛿(𝑡𝑡)) requires a careful interpolation of new samples 
from the existing trace. 

Figure 8 demonstrates the successful estimation and removal of a time-variant phase 
rotation in the absence of any delay.  An initial trace, 𝑢𝑢(𝑡𝑡), was constructed from the same 
reflectivity used previously and a minimum-phase wavelet.  A time-variant phase function 
given by 𝜃𝜃(𝑡𝑡) =  90cos 2𝜋𝜋𝑡𝑡 was then applied using equation 13 to produce trace 𝑠𝑠(𝑡𝑡).  
This phase variation begins at 90o at time zero, progresses to −90o in the middle and back 
to 90o at the end of the trace, passing through 0o twice.  The time-variant estimates of 
delay and phase were then made by comparing 𝑠𝑠(𝑡𝑡) with 𝑢𝑢(𝑡𝑡).  Even though there is no 
delay in this case, a time-variant delay was estimated using both ordinary and envelope 
crosscorrelations and the results are seen in the middle panel.  It is clear the ordinary 
crosscorrelations estimate an incorrect delay that is induced by the phase rotations while 
the envelope crosscorrelations give the correct zero result.  The phase rotation estimates 
are essentially correct and when removed from 𝑠𝑠(𝑡𝑡) produce the purple trace in the top 
panel which is visually identical to 𝑢𝑢(𝑡𝑡).  Both the delay estimates and the phase estimates 
were made using a Gabor technique using Gaussian windows of standard deviation 0.05 
sec and increment 0.01 second.  Annotated in the upper panel next to the yellow and purple 
traces are the maximum crosscorrelation values and their lag (in samples) with the optimal 
values of 1 and 0 being obtained with the removal of the estimated phase. 
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Figure 8.  An initial minimum-phase seismogram, 𝑢𝑢(𝑡𝑡), (top panel) is subjected to a time-variant 
phase rotation where the phase is given by 90cos 2𝜋𝜋𝑡𝑡, and no time-variant delay, to produce trace 
𝑠𝑠(𝑡𝑡).  Both time–variant delay analysis and time-variant constant phase analysis were conducted.  
The middle panel shows that only the envelope crosscorrelation gets the correct zero delay.  In the 
bottom panel, the time-variant phase estimates are seen to be very accurate. Crosscorrelation 
values (top panel) are with respect to 𝑢𝑢(𝑡𝑡). 

Figure 9 is a similar experiment to that shown in Figure 8 except that here the time-
variant phase rotation is progressively increasing from 0o at the beginning of the trace to 
180o at the end.  The Gabor windowing parameters were the same as before.  Again the 
ordinary crosscorrelation sees a delay where there is none and this delay is clearly related 
to the applied phase.  The envelope crosscorrelations give the correct null delay and the 
time-variant phase estimations are very close.  Again the corrected 𝑠𝑠(𝑡𝑡) correlates 
essentially perfectly with 𝑢𝑢(𝑡𝑡).   

 
Figure 9.  Similar to Figure 8 except that the time-variant phase is progressively increasing instead 
of oscillating in a cosine fashion.  Again the ordinary crosscorrelations see a delay where there is 
none while the envelope crosscorrelations get the correct result.  The time-variant phase estimates 
are very good and, when removed, give and excellent result. 
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Figure 10 shows a case with progressive time-delay but no phase rotations.  The 
progressive delay increases from 0 at the trace beginning to 0.02 seconds at the end.  The 
Gabor windowing parameters were the same as before.  Since there are no phase rotations 
involved, both normal and envelope crosscorrelations give the same result and estimate the 
delay function correctly.  In the bottom panel, a phase estimate is shown as measured 
correctly after removing the estimated delay, and then again without removing the delay.  
Only the first case gives the correct null result while the second case gets a completely 
erroneous phase that is clearly related to the applied delay.  In the top panel, the purple 
trace is 𝑠𝑠(𝑡𝑡) after removal of the estimated delay and it correlates almost perfectly with 
𝑢𝑢(𝑡𝑡).  The green trace is what results if 𝑠𝑠(𝑡𝑡) is “corrected” not for delay but for the 
erroneous phase estimated without first removing the delay.  The result is an improvement 
in correlation with 𝑢𝑢(𝑡𝑡) but the result is clearly incorrect and inferior to the delay-removed 
result. 

 
Figure 10.  Here is a case of estimating time-variant delay when there are no phase rotations.  
Either normal or envelope crosscorrelations estimate the delay correctly.  Phase estimates are 
shown as made after delay removal and without delay removal and only the former are correct.  
Versions of 𝑠𝑠(𝑡𝑡) are shown corrected for the estimated delay (purple) and corrected for the 
erroneous phase estimated without delay removal.  Only the former correlates well with 𝑢𝑢(𝑡𝑡). 

Figure 11 shows a case where 𝑠𝑠(𝑡𝑡) has both time-variant delay and time-variant phase 
and both are progressive.  In the cases with phase only and no delay, the phase-induced 
delay (the delay measured without phase correction) was roughly opposite in trend to the 
imposed phase.  Similarly, with delay only and no phase, the delay-induced phase was 
roughly opposite in trend to the delay.  Here the imposed delay and phase have similar 
trends and the phase measured without delay removal is very nearly zero.  The Gabor 
windowing parameters were the same as before (standard deviation of 0.05 sec and 
increment of 0.01 sec.).  Delay estimates from both correlation methods are shown and 
only the envelope method comes close to the correct answer.  The phase measured after 
removal of the estimated delay is very close to correct and the final corrected 𝑠𝑠(𝑡𝑡) (green 
trace top panel) correlates very well with 𝑢𝑢(𝑡𝑡).  Although this result is very good, there is 
in interesting wobble in the estimated delay near 0.8 seconds.  This is an example of an 
artefact caused by a too small Gabor window width.  In Figure 12, is a repeat of this 
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experiment with the Gabor standard deviation doubled to 0.10 sec.  The delay estimate is 
seen to be improved and a correlated wobble in the phase curve is also reduced. 

 
Figure 11.  In this case, both a time-variant delay and a time-variant phase have been applied to 
the reference trace. The envelope correlation method has successfully estimate the delay while 
conventional correlation has not.  When this delay is removed, the phase is estimated with good 
accuracy.  When the phase is estimated without first removing the delay, the result is nearly zero.  
The slight error in delay estimate near 0.8 seconds is caused by a Gabor window width that was 
too small. 

 
Figure 12.  A repeat of the experiment of Figure 11, identical in all aspects except that the Gabor 
window width for delay estimation n has been doubled.  This improves the delay estimates near 
0.8 seconds and removes a slight corresponding phase error. 

It is the phase insensitivity of the trace envelope that lead to the success of these 
measurements.  Even though this property is only strictly true for the stationary case, the 
experiments shown here demonstrate that it is still a very useful approximation in 
reasonable nonstationary cases.  Of course, it will always be possible to invent very 
extreme cases where this breaks down but it seems likely that there is a large class of quasi-
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stationary settings where it works very well.  Figure 13 is a final attempt to bolster this 
claim by showing the traces 𝑢𝑢(𝑡𝑡) and 𝑠𝑠(𝑡𝑡) from the previous two figures together with their 
envelopes.  If this figure is studied carefully, it is possible to appreciate the difficulty in 
guessing the relative delay between any two events from the traces themselves due to the 
rotating phase.  When the envelopes are compared the task becomes much simpler. 

 
Figure 13.  The traces 𝑢𝑢(𝑡𝑡) and 𝑠𝑠(𝑡𝑡) of Figures 11 and 12 are shown together with their envelopes.  
It is difficult to guess the time-variant delay from visual comparison of the traces themselves 
because of the phase rotations.  However, the task is much simpler when comparing the envelopes. 
In fact, the two envelopes are seen to be very similar except for the temporal shifts. 

 

SUMMARY AND CONCLUSIONS 
Measurement of apparent phase rotation and time delay from the comparison of two 

seismic traces is complicated by the fact that the two unknowns are correlated with one 
another such that measurement errors in one affect the other.  Relative time delay estimates, 
which are commonly measured by crosscorrelation, are therefore subject to considerable 
error if there are also phase rotation differences between the traces.  The trace envelope, 
which is insensitive to phase rotations, can be exploited to remove this bias.  Either the 
crosscorrelation of envelopes or the envelope of the crosscorrelation can be used to reliably 
measure the delay regardless of any phase rotations.  In a series of controlled experiments, 
I have demonstrated these concepts on stationary synthetics.  The extension to the 
nonstationary, or time-variant, case is accomplished by simply applying the stationary 
concepts in a series of moving Gaussian windows that are chosen to properly sample the 
traces.  This is essentially a Gabor technique and it allows a direct extension of stationary 
methods to a time-variant setting.  In a second series of experiments, I have demonstrated 
that these methods allow a very detailed estimation of both time-variant delay and time-
variant phase. 

ACKNOWLEDGEMENTS 
I thank the sponsors of CREWES, especially Devon Energy, for their support.  My 

thanks to my colleagues at Devon for their insight and suggestions. 



Phase rotations and time shifts 

 CREWES Research Report — Volume 29 (2017) 15 

REFERENCES 
Kjartansson, E, 1979, Constant Q-wave Propagation and Attenuation, Journal of Geophysical Research, 84, 

4737-4748. 
Margrave, G. F., 2014, Stratigraphic filtering and Q estimation, CREWES Research Report, Volume 26. 
O’Doherty, R. F., and N. A. Anstey, 1971, Reflections on Amplitudes, Geophysical Prospecting, 19, pp. 430-

458. 

APPENDIX 
Software modules used in this study are shown below.  All listed functions are Matlab 

code found in the CREWES Matlab distribution. 

phsrot … applies a constant (stationary) phase rotation. 
constphase … estimates a constant (stationary) phase rotation. 
env … compute the Hilbert envelope of a signal. 
ccorr … crosscorrelation. 
stat … stationary time shift (static shift). 
maxcorr … find the maximum of a correlation function and its delay. 
tvmaxcorr … time variant version of maxcorr using Gaussian windows. 
tvconstphase … time variant version of constphase using Gaussian windows. 
tvphaserot … time variant version of phsrot using equation 13. 
stretcht … applies a time-variant delay or stretch. 
 
If you are employed by a CREWES sponsor, then I will gladly provide a script that 
recreates the figures in this paper and demonstrates these codes. 
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