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ABSTRACT

This report aims at evaluating and reducing the interparameter tradeoffs in isotropic-
elastic FWI with multiparameter Hessian matrix-vector products. It is revealed that prod-
ucts of multiparameter Hessian off-diagonal blocks with model perturbation vectors, de-
fined as interparameter contamination kernels, mainly account for interparameter tradeoff.
The multiparameter Hessian is applied to various vectors designed to provide informa-
tion regarding the strengths and characteristics of interparameter contaminations locally or
within the whole volume. Based on these findings, a novel strategy is developed to mitigate
the influence of interparameter tradeoffs with approximate contamination kernels. Further-
more, I propose to quantify resolution of the inverted models with approximate eigenvalue
volume and extended multiparameter point spread functions (EMPSFs) by preconditioned
conjugate-gradient algorithm. Finally, the proposed inversion strategies are applied to in-
vert isotropic-elastic parameters with synthetic data and Hussar practical seismic dataset.
Resolution of the inverted models are also evaluated.

INTRODUCTION

Elastic parameters are important for reservoir characterization. Simultaneously recon-
structing multiple physical parameters suffers from interparameter tradeoffs arising from
the inherent ambiguities among these parameters, which increases the nonlinearity and un-
certainty of the inverse problems significantly (Tarantola, 1986; Köhn et al., 2012; Innanen,
2013; Operto et al., 2013; Alkhalifa and Plessix, 2014; Innanen, 2014). This chapter aims
at: (1) creating more complete tools for quantifying the interparameter tradeoffs (or pa-
rameter crosstalk) than currently exist; (2) evaluating the strengths and characteristics of
the interparameter contaminations in isotropic-elastic FWI by applying the multiparam-
eter Hessian to various types of test vectors; (3) developing an effective way to reduce
the influence of interparameter tradeoffs based on approximate contamination kernels; (4)
quantifying local spatial and interparameter tradeoff of the inverted models with extended
multiparameter point spread functions (EMPSFs).

Researchers have devoted intensive efforts to the study of parameter resolution based on
analytic solutions of Fréchet derivative wavefields (“scattering" or “radiation" patterns) for
different parameter classes (Tarantola, 1986; Gholami et al., 2013b; Alkhalifa and Plessix,
2014; Kamath and Tsvankin, 2014; Podgornova et al., 2015; Oh and Alkhalifah, 2016).
Coupling effects appear between two different physical parameters, if the scattered wave-
fields due to the model perturbations overlap at certain range of scattering angles (Taran-
tola, 1986). A high-resolution parameterization should have scattering patterns as different
as possible (Tarantola, 1986). Gholami et al. (2013a) investigated the scattering patterns
of parameters resulting from various parameterizations of multiparameter acoustic FWI.
Alkhalifa and Plessix (2014) emphasized the power of horizontal P-wave velocity in re-
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ducing the number of parameters for VTI FWI.

Amplitude variations of scattering patterns provide invaluable information for under-
standing the interparameter coupling effects but also ignore some important aspects due to
a series of assumptions including incident plane-wave, homogeneous and isotropic-elastic
background, high-frequency approximation, etc (Podgornova et al., 2015). These assump-
tions are regularly violated in seismic data sets, i.e., finite-frequency effects and traveltime
information are not negligible in their influence on parameter resolution; heterogeneities
should be considered; spatial correlations of different physical parameters are neglected
(Alkhalifa and Plessix, 2014). Overlapping the scattering patterns due to different physical
parameters in fact represents only an asymptotic approximation of the crosstalk quantifica-
tion intrinsic to the Gauss-Newton Hessian (Operto et al., 2013). These limitations of the
scattering patterns may result in misunderstandings concerning the interparameter trade-
offs. The problem of isotropic-elastic FWI has been investigated by many researchers
(Mora, 1987; Brossier et al., 2009; Köhn et al., 2012; Yuan and Simons, 2014; Borisov and
Singh, 2015; Raknes and Arntsen, 2015; Modrak et al., 2016; Pan and Innanen, 2016a,c,b),
but many challenges and open questions remain. Density structures are still poorly con-
strained, which may be caused by the weak sensitivity of traveltime to density variations
and strong contaminations from velocity parameters. Some issues associated with the in-
terparameter tradeoffs of isotropic-elastic parameters are actually not explained completely
and clearly. Further unanswered questions include:

1. how do the interparameter tradeoffs affect the inversion process ?

2. how to evaluate the strengths and characteristics of the interparameter contaminations
quantitatively ?

3. how to assess the uncertainties of the inverted models due to the interparameter trade-
offs ?

The first objective of this chapter is to evaluate the relative strengths and character-
istics of interparameter contamination in isotropic-elastic FWI with multiparameter Hes-
sian, which describes geometry of the objective function in terms of curvature or convexity
(Fichtner and Trampert, 2011b; Fichtner and van Leeuwen, 2015). The diagonal blocks
in the multiparameter Hessian characterize spatial correlations of the same physical pa-
rameter. Off-diagonal blocks measure correlations between different physical parameters
(Fichtner and Trampert, 2011a; Operto et al., 2013). Rows in the multiparameter Hessian
are averaging kernels (Backus and Gilbert, 1968) and columns are defined as multiparame-
ter point spread functions (MPSFs) (Valenciano et al., 2006; Fichtner and Trampert, 2011b;
Trampert et al., 2013; Tang and Lee, 2015; Zhu and Fomel, 2016). This chapter reveals
that products of multiparameter Hessian off-diagonal blocks with the model perturbation
vectors, which I will refer to as interparameter contamination kernels, account for the in-
terparameter tradeoffs. For most large-scale inverse problems, explicitly constructing the
Hessian matrix is considered to be computationally unaffordable. However, characteristics
of the Hessian can be inferred via matrix probing techniques, which are useful when ex-
plicit representation of a matrix are too expensive to be constructed (Trampert et al., 2013).
A low rank approximation of the Hessian can be efficiently computed by applying it to
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various types of vectors (Halko et al., 2011; Demanet et al., 2012; An, 2012; Zhu et al.,
2016; Rawlinson and Spakman, 2016). This chapter also examines the adjoint-state and
finite-difference approaches for multiparameter Hessian matrix-vector product calculation.
The product of the Hessian with a point-localized model perturbation vector preserves one
Hessian column (Spakman, 1991). The MPSFs measure the relative strengths and finite-
frequency features of the local interparameter tradeoffs. Furthermore, it is also shown (see
below in this chapter) that S-wave velocity perturbations tend generally to produce strong
contaminations into density update and phase-reversed contaminations within the P-wave
velocity update, which may make density highly under- or overestimated and cancel the
update for P-wave velocity.

To assess the interparameter tradeoffs within the whole volume of interest, MPSFs
should be computed for each type of model parameter at every spatial position, which
also results in prohibitive computation expense (Fichtner and Trampert, 2011b; Chen and
Xie, 2015). Assuming that the multiparameter Hessian matrix is diagonally dominant, I
have adopted a stochastic probing strategy by applying multiparameter Hessian to ran-
dom vectors. Expectation values of the correlations between the random vector with its
Hessian-vector products approximate Hessian diagonals (Sacchi et al., 2007; MacCarthy
et al., 2011; Trampert et al., 2013). Arranging different random probes, the diagonals of
multiparameter Hessian off-diagonal blocks, which measure the coupling strengths of dif-
ferent physical parameters in the whole volume, can be estimated stochastically. Stochastic
estimations of the Hessian diagonals can also be used as preconditioners for acceleration
(Modrak and Tromp, 2016).

Reducing the uncertainties introduced by the interparameter tradeoff is becoming es-
sential for multiparameter FWI. Newton-based optimization methods are promising be-
cause they incorporate the inverse multiparameter Hessian with its ability to suppress the
unwanted parameter crosstalk artifacts (Innanen, 2014; Métivier et al., 2015; Wang et al.,
2016; Yang et al., 2016). As stated in previous chapters, explicitly constructing and in-
verting multiparameter Hessian for large-scale inverse problems is, however, impracticably
expensive as I have mentioned. Truncated-Newton (or Hessian-free) optimization methods
represent affordable strategies for multiparameter FWI, in which the Newton equation is
solved iteratively with matrix-free scheme of conjugate-gradient algorithm (Métivier et al.,
2013; Boehm and Ulbrich, 2014; Métivier et al., 2015; Liu et al., 2015). However, itera-
tively solving the Newton equation is also expensive. Furthermore, by increasing savings
through use of a small number of inner iterations, the effectiveness of removing interpa-
rameter mappings is reduced (Baumstein, 2014). Mode decomposition is a potential strat-
egy for mitigating interparameter tradeoffs by isolating P and S wavefields but may also be
limited in reducing the contaminations in density updates and multiparameter acoustic FWI
(Wang and Cheng, 2017). Subspace optimization methods mitigate interparameter trade-
offs by scaling different physical parameters but do not prevent their occurrence (Kennett
et al., 1988; Bernauer et al., 2014). In this chapter, based on a set of observations made
on synthetic examples of interparameter tradeoff, a novel strategy is developed to reduce
the interparameter tradeoff by approximating quantities I will refer to as interparameter
contamination kernels. This strategy approximates the parameter contamination in model
space by applying multiparameter Hessian off-diagonal blocks to estimated model vectors.
The result is a model estimate which is approximately free of parameter crosstalk, and
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which has been created without iteratively solving large Newton systems, and which is in
principle applicable to any tomographic or FWI misfit function. Numerical examples are
given to illustrate that this new strategy is able to remove the contaminations from S-wave
velocity partially and provide more reliable density estimations in isotropic-elastic FWI.

In addition to suppressing interparameter contaminations, parameter resolution quan-
tification is key to a well-posed inverse scheme; it has been investigated by many re-
searchers (Backus and Gilbert, 1968; Spakman, 1991; Fichtner and Trampert, 2011b; Rawl-
inson et al., 2014; Rawlinson and Spakman, 2016; Zhu et al., 2016). Within a Bayesian in-
ference framework, uncertainties of the maximum a posterior model are evaluated based on
posterior covariance operatorïijŇ which has a direct relationship with the (inverse) Hessian
(Gouveia and Scales, 1998; Tarantola, 2005; Dettmer et al., 2007; Fichtner and Trampert,
2011b; Flath et al., 2011). In recent years, researchers have evaluated the local resolution
of the inverted model with point spread functions by applying multiparameter Hessian to
Gaussian-shape model perturbations (Fichtner and Trampert, 2011b; Rickers et al., 2013;
Zhu et al., 2015; Bozdağ et al., 2016). However, the point spread functions actually rep-
resent conservative estimations of columns in resolution matrix by approximating inverse
Hessian as an identity matrix (Oldenborger and Routh, 2009; Fichtner and van Leeuwen,
2015). The similarities and differences of the Hessian matrix and resolution matrix in res-
olution analysis are investigated. Approximate eigenvalue volumes are used to evaluate
resolution of inverted models within the whole volume. Local spatial and interparam-
eter tradeoffs of the inverted models are quantified with extended multiparameter point
spread functions (EMPSFs) by applying the approximate inverse Hessian to the traditional
MPSFs iteratively with preconditioned conjugate-gradient algorithm. The approximate in-
verse Hessian will de-blur the MPSFs further, balance the relative magnitudes by compen-
sating geometrical spreading and mitigate interparameter contaminations, which represent
more accurate local measurements of spatial and interparameter tradeoffs.

This chapter first reviews the basic principles of isotropic-elastic FWI. Benefits and
limitations of the parameter resolution studies based upon scattering patterns are explored.
Interparameter contamination kernels are then defined and how to evaluate the interparam-
eter tradeoffs with multiparameter Hessian-vector products is explained. An explanation
of the novel inversion strategy in reducing the interparameter tradeoffs with approximate
contamination kernels is then given. Strategies for quantifying the resolution of the in-
verted models with approximate eigenvalue volumes and extended multiparameter point
spread functions (EMPSFs) are explained. In the numerical modelling section, the strengths
and characteristics of local interparameter tradeoffs are first examined with multiparame-
ter point spread functions. Proposed matrix probing techniques are applied on a complex
Marmousi model to assess the interparameter tradeoffs within the whole volume. The new
inversion strategy is also applied to invert isotropic-elastic parameters with synthetic data
and the low-frequency Hussar field seismic data set acquired by the CREWES Project and
collaborators in 2011 (Margrave et al., 2012). The approximate eigenvalue volumes and
EMPSFs are used to quantify resolution of the inverted models. The performances of var-
ious parameterizations for reconstructing subsurface isotropic-elastic properties are also
examined with synthetic examples. Note: in this chapter, the expressions of gradients,
Hessian-vector products, etc are given in time domain with integral formulas, whereas in
previous chapters for convenience discrete formulas were used.
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THEORY AND METHODS

Isotropic-elastic full-waveform inversion

The common l-2 norm misfit function in time domain can be expressed as:

Φ (m) =
∑

xs

∑
xg

∫ T

0

‖∆d (xs, xg, t; m) ‖2dt, (1)

where ∆d (xs, xg, t; m) = dsyn (xs, xg, t) − dobs (xs, xg, t; m) is the data residual, xs (s =
1, ..., S) and xg (g = 1, ..., R) indicate source and receiver locations, S and R are the
maximum source and receiver indexes, and T represents maximum recording time. In order
to solve the inverse problem and find the model which minimizes the adopted cost function,
the model is updated iteratively. The gradient of the misfit function can be obtained by
correlating the Fréchet derivative wavefield with data residual:

∇mΦ (m) =
∑

xs

∑
xg

∫ T

0

∫
Ω(x)

∇m(x)u? (xs, xg, t; m) ∆d (xs, xg, t; m) dxdt, (2)

where∇m(x)u (xs, xg, t; m) indicates the Fréchet derivative wavefield, Ω indicates the whole
volume, and the symbol ?means complex conjugate transpose. Considering general anisotropic-
elastic media, based on Born approximation the perturbed nth displacement field due to
model perturbation ∆mρ and ∆mcijkl is expressed as:

∆un (xs, xg, t; ∆m) =−
∫

Ω(x)

∫ t

0

[∆mρ (x)Gni (x, xr, t− t′) ∂2
t ui (x, xs, t′)

+ ∆mcijkl (x) ∂jGni (x, xr, t− t′) ∂kul (x, xs, t′)]dt′dx,
(3)

where ρ and cijkl (i, j, k, l take on the values of x, y, z) denote density and elastic constant
tensor with Einstein summation convention, Gni is the Green’s tensor, the nth displace-
ment response due to impulse source at the ith direction. For isotropic-elastic media, the
perturbation of elastic constants can be expressed in terms of the perturbations of bulk
modulus ∆mκ and shear modulus ∆mµ: ∆mcijkl (x) = (∆mκ (x)− 2/3∆mµ (x)) δijδkl +
∆mµ (x) (δikδjl + δjkδil). Wavefield perturbation due to the perturbations of isotropic-
elastic parameters are expressed as:

∆un (xs, xg, t; ∆m) = −
∫

Ω(x)

∫ t

0

[∆mρ (x)Gni (x, xr, t− t′) ∂2
t ui (x, xs, t′)

+

(
∆mκ (x)− 2

3
∆mµ (x)

)
δijδkl∂jGni (x, xr, t− t′) ∂kul (x, xs, t′)

+ ∆mµ (x) (δikδjl + δjkδil) ∂jGni (x, xr, t− t′) ∂kul (x, xs, t′)]dt′dx.

(4)

Substituting equation (4) into equation (5) gives the Fréchet derivative of the misfit func-
tion:

∇mΦ (m) =

∫
Ω(x)

[Kκ (x) aκ (x) +Kµ (x) aµ (x) +Kρ (x) aρ (x)]dx, (5)
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where Kκ, Kµ and Kρ represent sensitivity kernels with respect to bulk modulus κ, shear
modulus µ and density ρ, aκ = ∆mκ/mκ, aµ = ∆mµ/mµ and aρ = ∆mρ/mρ are relative
model perturbations. Explicit expressions of the sensitivity kernels for these isotropic-
elastic parameters can be written as (Tromp et al., 2005; Liu et al., 2006; Zhu et al., 2009;
Luo et al., 2013; Yuan and Simons, 2014):

Kκ (x) = −
∑

xs

∑
xg

∫ T

0

κ (x) ∂iũi (xg, x, T − t) ∂kuk (x, xs, t) dt, (6)

Kµ (x) =−
∑

xs

∑
xg

∫ T

0

µ (x) [∂jũi (xg, x, T − t) (∂iuj (x, xs, t) + ∂jui (x, xs, t))

− 2

3
∂iũi (xg, x, T − t) ∂kuk (x, xs, t)]dt,

(7)

Kρ (x) = −
∑

xs

∑
xg

∫ T

0

ρ (x) ũi (xg, x, T − t) ∂2
t ui (x, xs, t) dt, (8)

where ũi (xg, x, T − t) represents the ith component of the adjoint wavefield:

ũi (xg, x, T − t) =

∫ T−t

0

Gin (xg, x, T − t− t′) f̃n (x, t′) dt′, (9)

where f̃n (x, t′) is the adjoint source (Tromp et al., 2005; Bozdag et al., 2011):

f̃n (x, t′) =
∑

xg

∆dn (xg, T − t′) δ (x− xg) . (10)

With velocity-density parameterization, the corresponding sensitivity kernels for P-velocity
α, S-wave velocity β and density ρ′ are given by (Tromp et al., 2005; Köhn et al., 2012;
Yuan et al., 2015):

Kα = 2

(
1 +

4

3

µ

κ

)
Kκ, Kβ = 2

(
Kµ −

4

3

µ

κ
Kκ

)
, Kρ′ = Kρ +Kκ +Kµ. (11)

For impedance-density parameterization, sensitivity kernels of P-wave impedance IP=αρ′′,
S-wave impedance IS=βρ′′ and density ρ′′ are given by:

KIP = 2

(
1 +

4

3

µ

κ

)
Kκ = Kα,

KIS = 2

(
Kµ −

4

3

µ

κ
Kκ

)
= Kβ,

Kρ′′ = −Kκ −Kµ +Kρ = −Kα −Kβ +Kρ′ .

(12)

Matrix multiplication of Newton equation system can be written with an integral formula-
tion:

∇mΦ (x) = −
∫

Ω(x′)
H (x, x′) ∆m (x′) dx′, (13)

where H (x, x′) denotes one Hessian element described by positions x and x′. In this chap-
ter, to update the isotropic-elastic parameters simultaneously, a quasi-Newton l-BFGS op-
timization method is used. At each iteration, a line search approach is employed to obtain
the step length for updating the model (Nocedal and Wright, 2006; Yuan et al., 2015).
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Physical interpretation of multiparameter Hessian

In multiparameter FWI, the multiparameter Hessian has a block structure. For general
anisotropic-elastic media, Hessian H can be expressed as:

H =

∫
Ω(x)

∫
Ω(x′)

[∆mρ (x)Hρρ (x, x′) ∆mρ (x′) + ∆mρ (x)Hρc (x, x′) ::∆mc (x′)

+ ∆mc (x) ::Hcρ (x, x′) ∆mρ (x′) + ∆mc (x) ::Hcρ (x, x′) ::∆mc (x′)] dxdx′,
(14)

where ∆mc indicates the perturbation of elastic constant tensor c and :: means sequential
contractions over the four nearest tensor indices (Luo, 2012). Because H is symmetric,
then Hρc = H†cρ. Explicit expressions of diagonal blocks Hρρ and Hcc and off-diagonal
block Hcρ are given by:

Hρρ (x, x′) =
∑

xs

∑
xg

∫ ∫
∂2
t′ui (x, xs, t′)Gni (xg, x, T − t′)

×Gn′i′ (xg, x′, t− t′′) ∂2
t′′ui′ (x′, xs, t′′) dt′dt′′,

(15)

Hcc (x, x′) =
∑

xs

∑
xg

∫ ∫
∂kul (x, xs, t′) ∂jGni (xg, x, T − t′)

× ∂j′Gn′i′ (xg, x′, t− t′′) ∂k′ul′ (x′, xs, t′′) dt′dt′′,
(16)

Hcρ (x, x′) =
∑

xs

∑
xg

∫ ∫
∂kul (x, xs, t′) ∂jGni (xg, x, T − t′)

×Gn′i′ (xg, x′, t− t′′) ∂2
t′′ui′ (x′, xs, t′′) dt′dt′′.

(17)

For velocity-density parameterization in isotropic-elastic FWI, the Newton equation system
for simultaneously updating P-wave velocity α, S-wave velocity β and density ρ′ can be
written as: 

Hαα Hαβ Hαρ′

Hβα Hββ Hβρ′

Hρ′α Hρ′β Hρ′ρ′




∆mα

∆mβ

∆mρ′

 = −


∇αΦ

∇βΦ

∇ρ′Φ

 , (18)

where ∇αΦ, ∇βΦ, and ∇ρ′Φ are gradient vectors of α, β and ρ′ respectively. Multiparam-
eter Hessian elements can be classified into 4 types: (A) diagonal elements of the diagonal
blocks account for geometrical spreading (i.e., Hαα (x, x)); (B) off-diagonal elements of
the diagonal blocks measure the spatial correlations of model parameters with the same
physical signature (i.e., Hαα (x, x′) with x 6= x′); (C) diagonals of off-diagonal blocks
indicate the strength of interparameter coupling at the same location (i.e., Hαβ (x, x)); (D)
off-diagonal elements of off-diagonal blocks describe both spatial and interparameter trade-
offs (i.e., Hαβ (x, x′) with x 6= x′). One column of the multiparameter Hessian describes
the blurring of an input delta function by the inverse operator, which is defined as multi-
parameter point spread function (MPSF) (Fichtner and Trampert, 2011b; Trampert et al.,
2013; Fichtner and van Leeuwen, 2015; Tang and Lee, 2015; Zhu and Fomel, 2016). For
example, the column Hβ (x, xN) indicates the correlation model parameter β at position xN
with model parameters α, β and ρ′ at all positions in the whole volume.
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Quantifying interparameter tradeoffs via multiparameter Hessian probing

First this section shows that the unwanted interparameter tradeoff artifacts can be de-
scribed by interparameter contamination kernels defined as products of multiparameter
Hessian off-diagonal blocks with model perturbation vectors. Thus, the interparameter
tradeoffs in isotropic-elastic FWI can be quantified by probing the multiparameter Hessian
with various test vectors.

Interparameter contamination kernels

Interparameter contamination kernels may be first introduced starting from standard
sensitivity kernels. According to equation (11), the sensitivity kernel Kα (x) is written
explicitly as:

Kα (x) = −
∑

xs

∑
xg

∫ T

0

2ρ′α2∂kuk (xs, x, t)
∫ T−t

0

∂iGin (x, xg, T − t− t′) f̃n (x, t′) dt′dt,

(19)

where the adjoint source f̃n can be decomposed into three parts due to perturbations of
∆mα, ∆mβ and ∆mρ′ respectively:

f̃n (x, t′; ∆m) = f̃n (x, t′; ∆mα) + f̃n (x, t′; ∆mβ) + f̃n (x, t′; ∆mρ′) . (20)

Ignoring multiple scattering components in the data residuals and following equations (4)
and (10), the three adjoint sources in equation (20) can be expressed as:

f̃n′ (x, t′; ∆mα) =〈2ρ′α2∂i′Gi′n′ (x′) ∆mα (x′) ∂k′uk′ (x′) δ (x− xg)〉, (21)

f̃n′ (x, t′; ∆mβ) =〈2ρ′β2 [∂j′Gn′i′ (x′) ∆mβ (x′) (∂i′uj′ (x′) + ∂j′ui′ (x′))
−2∂i′Gn′i′ (x′) ∆mβ (x′) ∂k′uk′ (x′)] δ (x− xg)〉,

(22)

f̃n′ (x, t′; ∆mρ′) =〈ρ′
[(
Gn′i′ (x′) ∆mρ′ (x′) ∂2

t′ui′ (x′) + 2α2∂i′Gn′i′ (x′) ∆mρ′ (x′) ∂k′uk′ (x′)
)

+2β2 (∂j′Gn′i′ (x′) ∆mρ′ (x′) (∂i′uj′ (x′) + ∂j′ui′ (x′))
−2∂i′Gn′i′ (x′) ∆mρ′ (x′) ∂k′uk′ (x′))] δ (x− xg)〉,

(23)

where the symbol 〈·〉 indicates summation over sources, receivers, time and positions for
sake of compactness. Inserting equations (21), (22) and (23) into equation (19) partitions
the standard sensitivity kernel Kα into:

Kα = Kα↔α +Kβ→α +Kρ′→α, (24)

where the first term Kα↔α represents the correct update kernel for α, and the second and
third terms Kβ→α and Kρ′→α are defined as interparameter contamination kernels (Pan
et al., 2017d,b,c), which represent the contaminations from β and ρ′ to α:

Kα↔α (x) =− 〈2ρ′α2∂kuk (x) ∂iGin (x)
[
2ρ′α2∂i′Gi′n′ (x′) ∆mα (x′) ∂k′uk′ (x′)

]
〉, (25)
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Kβ→α (x) =− 〈2ρ′α2∂kuk (x) ∂iGin (x) 2ρ′β2 [∂j′Gn′i′ (x′) ∆mβ (x′) (∂i′uj′ (x′)
+∂j′ui′ (x′)) − 2∂i′Gn′i′ (x′) ∆mβ (x′) ∂k′uk′ (x′)]〉,

(26)

Kρ′→α (x) =− 〈2ρ′α2∂kuk (x) ∂iGin (x) ρ′
[(
Gn′i′ (x′) ∆mρ′ (x′) ∂2

t′ui′ (x′) + 2α2∂i′Gn′i′ (x′)
×∆mρ′ (x′) ∂k′uk′ (x′)) +2β2 (∂j′Gn′i′ (x′) ∆mρ′ (x′) (∂i′uj′ (x′) + ∂j′ui′ (x′))
−2∂i′Gn′i′ (x′) ∆mρ′ (x′) ∂k′uk′ (x′))]〉.

(27)

Interparameter contamination kernels can also be explained and obtained with Newton
equation (18). The gradient vector ∇αΦ (x) in equation (18) can be written as an integral
formulation:

∇αΦ (x) = −
∫

Ω(x′)
Hαα (x, x′) ∆mα (x′) dx′

−
∫

Ω(x′)
Hαβ (x, x′) ∆mβ (x′) dx′

−
∫

Ω(x′)
Hαρ′ (x, x′) ∆mρ′ (x′) dx′,

(28)

where model perturbation vectors ∆mβ and ∆mρ′ blurred by off-diagonal blocks Hαβ and
Hαρ′ in multiparameter Hessian are mapped into the update for parameter α. Equation (28)
is equivalent to equation (24). Products of multiparameter Hessian block matrices with
the model perturbation vectors are equivalent to the correct update kernel Kα↔α and inter-
parameter contamination kernels Kβ→α and Kρ′→α in equation (28). Similarly, gradient
vectors ∇βΦ and ∇ρ′Φ can be written as:

∇βΦ (x) = aβ (Kα→β (x) +Kβ↔β (x) +Kρ′→β (x))

= −
∫

Ω(x′)
Hβα (x, x′) ∆mα (x′) dx′

−
∫

Ω(x′)
Hββ (x, x′) ∆mβ (x′) dx′

−
∫

Ω(x′)
Hβρ′ (x, x′) ∆mρ′ (x′) dx′,

(29)

∇ρ′Φ (x) = aρ′ (Kα→ρ′ (x) +Kβ→ρ′ (x) +Kρ′↔ρ′ (x))

= −
∫

Ω(x′)
Hρ′α (x, x′) ∆mα (x′) dx′

−
∫

Ω(x′)
Hρ′β (x, x′) ∆mβ (x′) dx′

−
∫

Ω(x′)
Hρ′ρ′ (x, x′) ∆mρ′ (x′) dx′,

(30)

whereKβ↔β andKρ′↔ρ′ are correct update kernels for β and ρ′,Kα→β andKρ′→β described
by off-diagonal blocks Hβα and Hβρ′ indicate contaminations from α and ρ′ to β,Kα→ρ′ and
Kβ→ρ′ described by off-diagonal blocks Hρ′α and Hρ′β are contaminations from α and β to
ρ′. Explicit expressions of these correct update kernels and interparameter contamination
kernels are given in Appendix .
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According to equations (28), (29) and (30), gradient updates are linear combinations
of correct model estimations and the contributions of the interparameter contamination
kernels, which are determined by both of model perturbations and multiparameter Hes-
sian off-diagonal blocks. In a generalized inversion framework, off-diagonal blocks of the
multiparameter Hessian provide direct measurements of the parameter crosstalks, which
are influenced by different wave modes, source-receiver illumination, parameterizations,
etc. In large-scale inverse problems, it is always unaffordable to construct the whole Hes-
sian matrix explicitly. One objective of this paper is to infer the characteristics of Hes-
sian with matrix probing techniques by applying multiparameter Hessian to various types
of vectors and quantify the interparameter tradeoffs in isotropic-elastic FWI. Products of
multiparameter Hessian with an arbitrary vector can be calculated with adjoint-sate and
finite-difference approaches, as explained in Appendix .

Multiparameter point spread functions

The multiparameter Hessian is first applied to model perturbation vector ∆m:

∆m = [∆mα = 0 ∆mβ = Aβδ (x− z) ∆mρ′ = 0]† , (31)

where perturbations of P-wave velocity α and density ρ′ are zeros and perturbation of S-
wave velocity β is point located at position z with a strength of Aβ . According to equations
(28), (29) and (30), the correct update kernel for S-wave velocity Kβ↔β is given by:

Kβ↔β (x, z) = −a−1
β Aβ

∫
Ω(x′)

Hββ (x, x′) δ (x′ − z) dx′. (32)

According to the sifting property of delta function:

Kβ↔β (x, z) = −a−1
β AβHββ (x, z) . (33)

Similarly, interparameter contamination kernels Kβ→α and Kβ→ρ′ are given by:

Kβ→α (x, z) = −a−1
β Aβ

∫
Ω(x′)

Hαβ (x, x′) δ (x′ − z) dx′ = −a−1
β AβHαβ (x, z) (34)

Kβ→ρ′ (x, z) = −a−1
β Aβ

∫
Ω(x′)

Hρ′β (x, x′) δ (x′ − z) dx′ = −a−1
β AβHαβ (x, z) , (35)

where Kβ→α (x, z) and Kβ→ρ′ (x, z) are local contaminations from β to α and ρ′. Multipa-
rameter Hessian-vector product preserves the column of multiparameter Hessian Hβ (x, z) =

[Hαβ (x, z) Hββ (x, z) Hρ′β (x, z)]†, which is referred to as a multiparameter point spread
function (MPSF) following the common convention in exploration geophysics (Hu et al.,
2001; Valenciano et al., 2006; Valenciano, 2008; Tang, 2009; Ren et al., 2011). Following
equations (25), (26) and (27), the multiparameter point spread function Hβ (x, z) can be
expressed explicitly as:

Hββ (x, z) =〈−2ρ′β2 (x) [∂jGni (x) (∂iuj (x) + ∂jui (x))

−2∂iGni (x) ∂kuk (x)]Jβ (z)〉,
(36)
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Hαβ (x, z) = 〈−2ρ′α2 (x) ∂iGni (x) ∂kuk (x)Jβ (z)〉, (37)

Hρ′β (x, z) = 〈−ρ′ (x)
[(
Gni (x) ∂2

t ui (x) + 2α2∂iGni (x) ∂kuk (x)
)

+2β2 (∂jGni (x) (∂iuj (x) + ∂jui (x))− 2∂iGni (x) ∂kuk (x))
]
Jβ (z)〉,

(38)

where Jβ (z) represents the product of Jacobian matrix due to parameter β with the point-
localized model perturbation vector:

Jβ (z) =−
∫

Ω(x′)
2ρ′β2 (x′) [∂j′Gn′i′ (x′) (∂i′uj′ (x′) + ∂j′ui′ (x′))

−2∂i′Gn′i′ (x′) ∂k′uk′ (x′)]Aβδ (x′ − z) dx′.
(39)

Applying multiparameter Hessian to spike model perturbation ∆mα = Aαδ (x− z) or
∆mρ′ = Aρ′δ (x− z) allows us to calculate the MPSFs Hβα (x, z), Hρ′α (x, z), Hαρ′ (x, z),
and Hβρ′ (x, z), which describe the local contaminations from α to β and ρ′ and the contam-
inations from ρ′ to α and β. With these MPSFs, the relative strengths, phase characteristics
and spreading widths of the local interparameter contaminations are evaluated by taking
finite-frequency effects and source-receiver illumination into consideration. Because it is
used within the context of the Born approximation, the amplitude of the spike model per-
turbation vector should be chosen to be smaller than 10% of the background model.

Evaluating interparameter tradeoffs within the whole volume

Multiparameter point spread functions (MPSFs) are limited in their ability to charac-
terize the parameter resolution because they are spatially local. To evaluate the coupling
effects of different physical parameters in the whole volume of interest, MPSFs would have
to be computed for each type of model parameter at every spatial position, which gives rise
to extensive computation requirements. An efficient stochastic probing approach is intro-
duced to estimate the essential diagonals of subblock matrices in multiparameter Hessian.
Diagonals of multiparameter Hessian off-diagonal blocks measure the coupling strengths
of different physical parameters in the whole volume.

I first consider a function v (x), which satisfies v ∼ N (E [v] ,Σvv) (N means Gaussian
distribution). Expectation value E [v] and variance-covariance matrix Σvv satisfy:

E [v (x)] = 0, (40)

Σvv (v (x) , v (x′)) = E
[
(v (x)− E [v (x)]) (v (x′)− E [v (x′)])†

]
= E [v (x) v (x′)]− E [v (x)] (E [v (x′)])†

= δ (x− x′) .

(41)

Correlating this random function with its Hessian-vector product H = Hv gives:

v (x)� H (x) =

∫
Ω(x′)

v (x)H (x, x′) v (x′) dx′

= v (x)H (x, x) v (x) +

∫
Ω(x′)

v (x)Hx6=x′ (x, x′) v (x′) dx′,
(42)
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where � indicates element-wise multiplication, H (x, x) and Hx6=x′ (x, x′) represents Hes-
sian diagonals and off-diagonals. Applying expectation operator E on both sides of equa-
tion (42) gives (Sacchi et al., 2007; Trampert et al., 2013):

E [v (x)� H (x)] =

∫
Ω(x′)

H (x, x′)E [v (x) v (x′)] dx′

=

∫
Ω(x′)

H (x, x′)
(

Σvv (v (x) , v (x′)) + E [v (x)] (E [v (x′)])†
)
dx′

=

∫
Ω(x′)

H (x, x′) δ (x− x′) dx′

= H (x, x) ,

(43)

where it can be seen that taking the expectation operation, the second term in equation
(42), which represents off-diagonal elements, vanishes (Hutchinson, 1990; Trampert et al.,
2013). The theoretical expectation operation can be approximated by averaging the cross-
correlation results v�H with a finite number of independent zero-mean random vectors:

Hdiag ≈
NR∑
nr=1

vnr �Hvnr �
NR∑
nr

vnr � vnr (44)

where � represents element-wise division, nr is the index of random vector, NR indicates
the maximum number of random vectors and vnr � vnr is normalization term (MacCarthy
et al., 2011). In a multiparameter inverse problem, the random vector v can be partitioned
into Np subvectors and multiparameter Hessian is divided into Np×Np subblock matrices,
as illustrated in equation (18). Applying multiparameter Hessian to the random vector
gives Np sub-Hessian-vector products. Diagonals of the Hessian subblock matrices can be
estimated by:

Hdiag
pq = E [vp �Hp] = E

[
vp �

Np∑
q=1

Hpqvq

]
, (45)

where p and q are indexes for subvectors representing different physical parameters, and
Hp is the sub-Hessian-vector product. Considering that zero-mean random vectors vp and
vq for two different physical parameters are independent, equation (45) becomes:

Hdiag
pq =

Np∑
q=1

HpqE [vpvq] = HpqE [vpvp] . (46)

Proof of equation (46) is given in Appendix . With a series of random vectors, diagonals of
the Hessian subblock matrices can be obtained approximately by:

Hdiag
pq ≈

NR∑
nr=1

vp,nr �Hpqvp,nr �
NR∑
nr=1

vp,nr � vp,nr. (47)

In isotropic-elastic FWI, the random vector is given by v = [vα vβ vρ′ ]†, where vα, vβ ,
and vρ′ are independent zero-mean subvectors. Applying multiparameter Hessian to this
random vector gives three sub-Hessian-vector products Hα, Hβ and Hρ′:

Hα = Hααvα + Hαβvβ + Hαρ′vρ′ , (48)
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Hβ = Hβαvα + Hββvβ + Hβρ′vρ′ , (49)

Hρ′ = Hρ′αvα + Hρ′βvβ + Hρ′ρ′vρ′ . (50)

With a series of independent zero-mean random vectors, diagonals of the Hessian sub-
blocks Hαα and Hβα can be estimated approximately by:

Hdiag
αα = E [vα �Hα]

= E [vα �Hααvα] + E [vα �Hαβvβ] + E [vα �Hαρ′vρ′ ]

≈
NR∑
nr=1

vα,nr �Hααvα,nr �
NR∑
nr=1

vα,nr � vα,nr,
(51)

Hdiag
βα = E [vα �Hβ]

= E [vα �Hβαvα] + E [vα �Hββvβ] + E [vα �Hβρ′vρ′ ]

≈
NR∑
nr=1

vα,nr �Hβαvα,nr �
NR∑
nr=1

vα,nr � vα,nr.
(52)

A similar approach can be used to estimate the diagonals of Hββ , Hρ′ρ′ , Hαρ′ and Hβρ′ . The
choice of maximum random vectors NR depends on the desired accuracy of the estimated
diagonals, which can be evaluated by statistically examining repeated estimates with in-
dependent random vectors (MacCarthy et al., 2011). Generally, more random probes give
better estimations. If the sublocks of multiparameter Hessian are diagonally dominant,
much less random probes are needed (Trampert et al., 2013). Sacchi et al. (2007) esti-
mated the diagonal Hessian preconditioner with 5 random realizations using a phase shift
approach. In this chapter, we show that diagonals of multiparameter Hessian can be esti-
mated stochastically with 1 or 2 random Hessian-vector applications using spectral-element
method. Stochastic estimations of Hessian diagonals can also be used as effective precon-
ditioners in the inversion process.

Reducing interparameter tradeoffs with approximate contamination kernels

Non-uniqueness due to interparameter tradeoffs will increase nonlinearity and uncer-
tainties within multiparameter inverse problems significantly. Different strategies includ-
ing Newton-based optimization methods (Métivier et al., 2015; Liu et al., 2015), subspace
optimization methods (Kennett et al., 1988; Baumstein, 2014; Bernauer et al., 2014), and
wave mode decomposition strategies (Wang and Cheng, 2017), have been proposed to re-
duce the influences of interparameter tradeoffs in multiparameter FWI. However, most of
these strategies have some limitations, as discussed in introduction section. In the numer-
ical modelling section, with the proposed probing strategies, I find that S-wave velocity
dominates the inversion process and produces relatively strong contaminations into density
and P-wave velocity updates but suffers very weak contaminations from other parameters.
Based on these observations, a novel inversion strategy has been developed to reduce the
contaminations from S-wave velocity to other parameters especially density by approxi-
mating the contamination kernels.

From equation (30), it can be seen that the standard sensitivity kernel Kρ′ is just linear
summation of the correct update kernel Kρ′↔ρ′ with two contamination kernels Kα→ρ′ and
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Kβ→ρ′ . The interparameter mappings from α and β to ρ′ can be removed completely by
simply summing the Hessian-vector products Hρ′α = Hρ′α∆mα and Hρ′β = Hρ′β∆mβ

with standard sensitivity kernel Kρ′ . However, true model perturbation vectors ∆mα and
∆mβ are unknown variables. Because S-wave velocity suffers little contaminations from
other parameters, the model parameters can be updated simultaneously for a finite number
of k′ iterations and then the inverted P-wave velocity and density models are dropped. The
estimated S-wave velocity mk′

β is kept. The inversion is then started from initial models
by simultaneously updating three model parameters. At the k̃th iteration, the approximate
contamination kernels K̃ k̃

β→α and K̃ k̃
β→ρ′ are constructed:

K̃ k̃
β→α (x) = −

∫
Ω(x′)

H k̃
αβ (x, x′) ∆m̃k̃

β (x′) dx′, (53)

K̃ k̃
β→ρ′ (x) = −

∫
Ω(x′)

H k̃
ρ′β (x, x′) ∆m̃k̃

β (x′) dx′, (54)

where ∆m̃k̃
β = mk′

β − mk̃
β is the approximate model perturbation vector. Subtracting the

approximate contamination kernels from the standard sensitivity kernels K k̃
α and K k̃

ρ′ will
remove the contaminations partially and give the new update kernels for α, β and ρ′:

K̃ k̃
α (x) = K k̃

α (x)− K̃ k̃
β→α (x) , K̃ k̃

β (x) = K k̃
β (x) , K̃ k̃

ρ′ (x) = K k̃
ρ′ (x)− K̃ k̃

β→ρ′ (x) , (55)

in which the S-wave velocity kernel K̃ k̃
β is kept unchanged. A better approximation of the

model perturbation vector ∆m̃β removes the contaminations more completely but at the
cost of more computation requirements. Table 4.1 illustrates the basic work-flow for this
inversion strategy. In traditional simultaneous inversion strategy, the computational cost of
k̃max iterations is equivalent to number of 2×Ns × k̃max forward and adjoint simulations.
This new inversion strategy will be more expensive for obtaining mk′

β and constructing
approximate contamination kernels. For k̃max iterations, the number of forward and adjoint
simulations is equivalent to

(
2×Ns × k′ ×Nk′ + 8×Ns × k̃max

)
, where Nk′ is number

of loops for obtaining mk′

β .

Resolution analysis

Resolution analysis is long lasting issue for geophysical inverse problems and have
been studied by many researchers (Backus and Gilbert, 1968; Spakman, 1991; Rawlinson
et al., 2014; Rawlinson and Spakman, 2016). Quantifying resolution and uncertainties of
the inverted models due to interparameter tradeoffs is a key aspect of for multiparameter
FWI. Assuming that an optimal model m has been obtained with least-squares optimization
framework, applying model perturbation ∆m gives perturbed model m′ = m+∆m, which
is close to model m. The reconstructed model m̃ can be obtained by m̃ = m + ∆m + ∆m̃,
where ∆m̃ represents the estimated model perturbation vector:

∆m̃ = −H−g∇mΦ = H−gH∆m = R∆m, (56)

where H−g is the generalized inverse of H and R = H−gH is the resolution matrix, which
describes how the estimated model perturbation ∆m̃ relates to the true model perturbation
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Notations: k̃max is the maximum iteration; φ is the normalized misfit;
φmin is the minimum normalized misfit; Nf is the frequency band.

Input: ← m0 = [m0
α m0

β m0
ρ′ ]
†, φmin, k̃max, ˜̃kmax, k′, Nf , dobs

Output: → mest, φ
Initialization: k̃ = 0

For k̃ < k̃max or φk̃ > φmin

1. ← mk̃, k′, Nf , dobs \\ Iteratively estimate β by k′ iterations→ mk′

β ;

2. For ˜̃k < ˜̃kmax

2.1. ← mk̃, Nf , dobs \\ Calculate sensitivity kernels→ K
˜̃
k
α, K

˜̃
k
β and K

˜̃
k
ρ′;

2.2. ← ∆m̃
˜̃
k
β = mk′

β −m
˜̃
k
β \\ Calculate approximate contamination kernels:

→ K̃
˜̃
k
β→α = −H

˜̃
k
αβ∆m̃

˜̃
k
β , K̃

˜̃
k
β→ρ′ = −H

˜̃
k
ρ′β∆m̃

˜̃
k
β

2.3. ← K̃
˜̃
k
β→α and K̃

˜̃
k
β→ρ′ \\ Calculate new update kernels:

→ K̃
˜̃
k
α = K

˜̃
k
α − K̃

˜̃
k
β→α, K̃

˜̃
k
β = K

˜̃
k
β , K̃

˜̃
k
ρ′ = K

˜̃
k
ρ′ − K̃

˜̃
k
β→ρ′

2.4. Apply stochastic estimations of diagonal Hessian preconditioners:
2.5. Get step length µ˜̃

k
with a line search method;

2.6. Update the model vector: m
˜̃
k+1 = m

˜̃
k + µ˜̃

k
∆m

˜̃
k;

2.7. Calculate misfit φ˜̃
k

and ˜̃k = ˜̃k + 1;
End

3. Update parameters: k̃ = k̃ + ˜̃kmax, φk̃ = φ˜̃
k
, mest = mk̃ = m

˜̃
kmax;

End

Table 1. Work-flow of the new inversion strategy for isotropic-elastic FWI with approximate contam-
ination kernels.
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∆m. Ideally R should be an identity matrix I meaning that the model is perfectly recovered
(Backus and Gilbert, 1968). However, if the resolution matrix deviates significantly from
the identity matrix, the inverted model suffers from tradeoffs (Luo, 2012). A column of
R measures the local resolution and uncertainties of the inverted model (Oldenborger and
Routh, 2009; Fichtner and Trampert, 2011b). However, explicitly constructing and invert-
ing H are computationally unaffordable for large-scale inverse problems. In recent years,
researchers evaluated the local resolution of the inverted model with point spread functions
by approximating H−g with an identity matrix I (Fichtner and Trampert, 2011b; Rickers
et al., 2013; Zhu et al., 2015; Bozdağ et al., 2016). Thus, the column of multiparameter
Hessian (i.e., H (x, z) equation (33)) only represents an conservative estimation of the col-
umn in resolution matrix (i.e., R (x, z)) (Fichtner and van Leeuwen, 2015). In this section,
the similarities and differences between H (x, z) and R (x, z) in resolution analysis are in-
vestigated and the potential benefits by applying approximate inverse Hessian operators to
PSFs are explored.

The symmetric and positive semi-definite Hessian matrix H can be decomposed as:

H = ΞΠΞ−1, (57)

where Ξ = [a1, a2, a3, ..., aM ] is an orthogonal matrix consisting ofM column eigenvectors
ak̇, k̇ = 1, 2, ....,M of H and Π is a diagonal matrix with corresponding eigenvalues λk̇.
The generalized inverse of H is given by:

H−g =
[
Ξ (Π + λ0I) Ξ−1

]−1
= Ξ (Π + λ0I)−1 Ξ−1, (58)

where λ0I is the damping term added to the eigenvalues. The resolution matrix R can be
obtained by:

R = ΞΠ̃−1ΠΞ−1 = Ξ (Π + λ0I)−1 ΠΞ−1, (59)

where Π̃ = (Π + λ0I)−1 Π is diagonal matrix with eigenvalues of λ̃ = (1 + λ0/λk̇)
−1. The

Hessian matrix and resolution matrix have the same eigenvectors but different eigenvalues.
Because the orthogonal eigenvectors of H span the model space, the model perturbation
vector ∆m can also be written as a sum of M eigenvectors ak̇:

∆m =
M∑
k̇=1

hk̇ak̇ = h1a1 + h2a2 + ... + hMaM , (60)

where hk̇ are the model expansion coefficients. Combining equation (60) and equation (57),
Hessian-vector product H∆m can be expressed in terms of eigenvalues and eigenvectors
of H:

H∆m =
M∑
k̇=1

λk̇hk̇ak̇ = λ1h1a1 + λ2h2a2 + ... + λMhMaM . (61)

Substituting equations (60) and (59) into equation (56) gives:

m̃ =
M∑
k̇=1

(1 + λ0/λk̇)
−1 hk̇ak̇,

= (1 + λ0/λ1)−1 h1a1 + (1 + λ0/λ2)−1 h2a2 + ... + (1 + λ0/λM)−1 hMaM .

(62)
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Assuming that the eigenvalues of H are constant λk̇ ≈ λ, equations (61) and (62) become:

H∆m ≈
M∑
k̇=1

λhk̇ak̇ = λ∆m,

m̃ ≈
M∑
k̇=1

(1 + λ0/λ)−1 hk̇ak̇ = (1 + λ0/λ)−1 ∆m.

(63)

Magnitudes of the PSFs directly measure the magnitudes of eigenvalues. Larger eigen-
values mean well constrained eigenvectors. Smaller eigenvalues mean poorly constrained
eigenvectors. PSFs determine resolution of the inverted models with eigenvalues and mimic
the shape of the true model perturbation but have distinct magnitudes. Because λk̇ � λ0,
then (1 + λ0/λk̇)

−1 ≈ 1, the closer of eigenvalues of the resolution matrix approach 1, the
better of the resolution is. If the Hessian is diagonally dominant, eigenvalues of the reso-
lution matrix within the whole volume can be approximated by diagonals of the resolution
matrix (Luo, 2012; Zhu et al., 2015), referred to as approximate eigenvalue volume:

Eig =
[
Hdiag + ε̃×max

(
Hdiag)]−1 Hdiag, (64)

where max
(
Hdiag) represents the maximum value of diagonal Hessian Hdiag and ε̃ is a small

constant value.

Here, this chapter proposes to quantify the local spatial and interparameter tradeoffs
of the inverted models with extended multiparameter point spread functions (EMPSFs) by
applying approximate inverse Hessian to MPSFs with conjugate-gradient algorithm pre-
conditioned by stochastic estimations of diagonal Hessian. Considering a point-localized
model perturbation vector ∆m = [∆mα = 0 ∆mβ = Aβδ (x− z) ∆mρ′ = 0]†, equation
(56) can be written as:

∆m̃β (z) =

∫
Ω(x)

∫
Ω(x′)

AβR̃β (x, x′) δ (x′ − z) dx′dx =

∫
Ω(x)

AβR̃β (x, z) dx, (65)

where R̃β (x, z) = H−1 (Hβ (x, z)) indicates the extended MPSF (EMPSF) and H−1 rep-
resents the approximate inverse Hessian by preconditioned conjugate-gradient algorithm.
Applying the inverse Hessian approximately will re-scale the magnitudes and de-blur the
MPSFs. Furthermore, approximate inverse multiparameter Hessian will also suppress the
interparameter contaminations to a certain extent (Innanen, 2014; Métivier et al., 2015;
Pan et al., 2016; Wang and Cheng, 2017). Thus, the EMPSFs will provide more accurate
measurements of the local spatial and interparameter tradeoffs. To evaluate the interpa-
rameter tradeoffs of the inverted models obtained by new inversion strategy, the EMPSFs
with a variant of preconditioned conjugate-gradient approach are constructed following the
work-flow illustrated in Table 4.1.

NUMERICAL EXAMPLES

In the numerical modelling section, the proposed strategies are applied to quantify
and reduce the interparameter tradeoffs in isotropic-elastic FWI. Spectral-element methods
are employed for forward and adjoint simulations with the open-source software package
SPECFEM2D (Komatitsch and Tromp, 2005). Influences of surface waves are currently
not considered in the numerical examples presented in this chapter.
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FIG. 1. Acquisition geometry for spike probing test. Black stars and gray circles represent sources
and receivers positions. The 2D model is discretized into 50 and 50 uniform mesh nodes in hori-
zontal and vertical directions with 1 km in width and 1 km in depth. The black square located at the
center of the model indicates the spike model perturbation at position z = (0.5 km, 0.5 km).

Spike probing test with MPSFs

The relative strengths and characteristics of the interparameter contaminations are first
investigated with multiparameter point spread functions (MPSFs) in isotropic-elastic FWI
using x-z component data. Inversion experiments with Gaussian-anomaly examples are
given to verify the predictions and examine the effectiveness of this new inversion strategy
in reducing the interparameter contaminations.

Figure 1 shows the 2D isotropic-elastic model with one spike model perturbation em-
bedded in a homogeneous background. P-wave velocity, S-wave velocity and density of the
background model are 2.0 km/s, 1.4 km/s and 1.2 g/cm3. A P-SV mode source with Ricker
wavelet (dominant frequency fdom=8Hz) is used for modeling. A total of 60 sources and
200 receivers are arranged along all boundaries of the model with a regular source spac-
ing of 62.5 m and a regular receiver spacing of 20 m. I first apply a positive spike model
perturbation of P-wave velocity at position z (the model center): ∆mα (z) = 0.1 km/s.
Multiparameter point spread functions (MPSFs) Hαα (x, z), Hβα (x, z), and Hρ′α (x, z) are
calculated with x-z component data, where Hβα (x, z) and Hρ′α (x, z) describe the map-
pings from α to β and ρ′. Then, spike model perturbations ∆mβ (z) = 0.1 km/s and
∆mρ′ (z) = 0.1 g/cm3 are applied respectively. MPSFs Hαβ (x, z), Hββ (x, z), Hρ′β (x, z),
Hαρ′ (x, z), Hβρ′ (x, z), and Hρ′ρ′ (x, z) are obtained. Hαβ (x, z) and Hρ′β (x, z) describe the
mappings from β to α and ρ′. Hαρ′ (x, z) and Hβρ′ (x, z) describe the mappings from ρ′ to
α and β.

These MPSFs are plotted in model space and arranged in a block structure in consistent
with their positions in multiparameter Hessian, as shown in Figure 2a. Figure 2a is also
equivalent to a sparse representation of multiparameter Hessian with 3 columns, which
measure finite-frequency features of the interparameter tradeoffs. A positive α perturbation
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FIG. 2. Multiparameter point spread functions (MPSFs) of isotropic-elastic parameters in velocity-
density parameterization. (a) shows the MPSFs Hαα (x, z), Hβα (x, z), Hρ′α (x, z), Hαβ (x, z),
Hββ (x, z), Hρ′β (x, z), Hαρ′ (x, z), Hβρ′ (x, z), and Hρ′ρ′ (x, z) with x-z component data; (b) shows
the corresponding normalized MPSFs. APSF indicate the maximum magnitudes of the MPSFs.

produces a negative contamination in β described by Hβα (x, z) and vice versa. However,
both positive α and β perturbations result in positive contaminations in density ρ′ described
by Hρ′α (x, z) and Hρ′β (x, z) and vice versa. Furthermore, regards to spatial spreading, the
MPSFs representing contaminations to density (i.e., Hρ′α (x, z) and Hρ′β (x, z)) experience
oscillatory side-lobes, which may distort the correct density updates.

As indicated by APSF in Figure 2a, magnitudes of the MPSFs, which describe relative
strengths of the eigenvalues, also differ significantly. Magnitude of Hββ (x, z) is larger than
the magnitudes of Hαα (x, z) and Hρ′ρ′ (x, z) meaning that the eigenvectors associated with
S-wave velocity will be better recovered than those associated with P-wave velocity and
density. To evaluate relative strengths of the interparameter contaminations, the contami-
nations are normalized with the MPSFs representing correct model updates. For example,
the MPSFs Hαβ (x, z) and Hαρ′ (x, z) are normalized by the maximum absolute value of
Hαα (x, z). Normalized MPSFs are shown in Figure 2b. Contaminations from α to β and
ρ′ appear to be relatively weak. Density ρ′ perturbations also produce moderate unwanted
artifacts in α and β. S-wave velocity β suffers from the least amount of contaminations but
produces strong mappings to α and ρ′, which may make density under- or overestimated
and cancel the updates for P-wave velocity. Geological features in the inverted P-wave
velocity and density models may be contaminations from the S-wave velocity, which in-
creases the uncertainties of the inverse problems significantly. These information helps us
understand how the interparameter tradeoffs affect the inversion process.

To verify our analysis and predictions with MPSFs, inversion experiments with a Gaussian-
anomaly model is carried out. Figures 3a, 3b, and 3c show the true P-wave velocity, S-wave
velocity and density models with 3 isolated Gaussian anomalies. The initial models are ho-
mogeneous with α = 2.0 km/s, β = 1.2 km/s and ρ′ = 1.2 g/cm3. The acquisition arrange-
ment is the same with previous example. A l-BFGS optimization method is employed for
updating α, β and ρ′ simultaneously. This inversion experiment can be considered as an ex-
tended version of spike probing test with 3 Gaussian model perturbation vectors. Relative

CREWES Research Report — Volume 29 (2017) 19



Pan et. al

FIG. 3. Figures (a-c) show the true P-wave velocity, S-wave velocity and density of the Gaussian-
anomaly model: mtrue

α , mtrue
β and mtrue

ρ′ .

FIG. 4. Figures (a-c) show the true S-wave velocity model perturbation vector ∆mtrue
β , true con-

tamination kernels Kβ→α and Kβ→ρ′ respectively; Figures (d-f) illustrate the standard sensitivity
kernels Kα, Kβ , and Kρ′ ; Figures (g-i) are the inverted models mest

α (ε̃α=0.47), mest
β (ε̃β=0.15) and

mest
ρ′ (ε̃ρ′=0.77) after 10 iterations with traditional simultaneous inversion strategy.

least-squares error (RLSE) (equation (??)) is used to evaluate the quality of the inverted
model. Figure 4a shows the true S-wave velocity model perturbation ∆mtrue

β . Figures 4b
and 4c show the true contamination kernels Kβ→α and Kβ→ρ′ calculated by multiplying
multiparameter Hessian off-diagonal blocks Hαβ and Hρ′β with true model perturbation
vector ∆mtrue

β . Figures 4d, 4e and 4f show the standard sensitivity kernels Kα, Kβ and
Kρ′ in the first iteration. Strengths and characteristics of the interparameter contaminations
generally match our predictions using MPSFs shown in Figure 2. A negative S-wave ve-
locity perturbation produces strong positive and negative contaminations into the updates
for α and ρ′, as indicated by the interparameter contamination kernels Kβ→α and Kβ→ρ′ .
Figures 4g, 4h and 4i show the inverted P-wave velocity, S-wave velocity and density mod-
els after 10 iterations using traditional simultaneous inversion strategy. S-wave velocity
suffers from limited contaminations and is best inverted. P-wave velocity and density suf-
fer strong contaminations from S-wave velocity. As iteration proceeds, S-wave velocity
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FIG. 5. Figures (a-c) show the estimated S-wave velocity model perturbation vector ∆m̃β (k′ = 3),
approximate contamination kernels K̃β→α and K̃β→ρ′ respectively; Figures (d-f) illustrate the new
update kernels K̃α, K̃β , and K̃ρ′ ; Figures (g-i) are the inverted models mest

α (ε̃α=0.32), mest
β (ε̃β=0.14)

and mest
ρ′ (ε̃ρ′=0.61) after 10 iterations with new inversion strategy.

is estimated fastest. The interparameter contaminations due to S-wave velocity perturba-
tions are also reduced iteratively and if a sufficient number of iterations are performed, the
contaminations are expected to be removed almost completely.

Figure 5a shows the estimated S-wave velocity model perturbation vector ∆mest
β after

k′ = 3 iterations. Figures 5b and 5c show the approximate contamination kernels K̃β→α
and K̃β→ρ′ calculated by multiplying multiparameter Hessian off-diagonal blocks Hαβ and
Hρ′β with estimated model perturbation vector ∆mest

β . The features of the approximate
contamination kernels match those of true contamination kernels (Figures 4b and 4c) very
well. Figures 5d, 5e and 5f are the new update kernels following equation (55). Figures
5g, 5h and 5i show the inverted P-wave velocity, S-wave velocity and density models with
the new inversion strategy. As indicated by the arrows, contaminations from S-wave veloc-
ity to P-wave velocity and density have been suppressed. Figure 6 shows the convergence
histories of traditional simultaneous inversion strategy and new inversion strategy for the
Gauss-anomaly example. The new inversion strategy provides faster convergence com-
pared to traditional simultaneous inversion strategy but it is 2.5 times more expensive.

Marmousi model example

The proposed stochastic probing strategy is first applied to evaluate the strengths of the
interparameter tradeoffs within the whole volume. The new inversion strategy with ap-
proximate contamination kernels is employed to invert the isotropic-elastic parameters in
comparison with traditional simultaneous inversion strategy. Approximate eigenvalue vol-
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FIG. 6. Convergence histories comparison of traditional simultaneous inversion strategy (red curve)
and new inversion strategy (blue curve) for the Gaussian-anomaly inversion example.

FIG. 7. (a-c) show true P-wave velocity, S-wave velocity and density models; (d-f) show initial P-
wave velocity, S-wave velocity and density models; Figures (g-i) show true P-wave velocity, S-wave
velocity and density model perturbations. The regularly distributed black squares in (d) represent
the vector v′ for interparameter tradeoffs analysis within the whole model. The blue square in (e)
indicates the location z1 = (0.515 km, 0.275 km) for quantifying local spatial and interparameter
tradeoffs of the inverted models.

umes and extended multiparameter point spread functions (EMPSFs) are used to evaluate
resolution of the inverted models.

Figures 7a, 7b and 7c show the true P-wave velocity, S-wave velocity and density mod-
els. Figures 7d, 7e and 7f show the initial P-wave velocity, S-wave velocity and density
models. Figure 7g, 7h and 7i show the corresponding true model perturbations. The model
is 3.4 km wide and 1.2 km deep. Number of 33 sources and 330 receivers are deployed
regularly with a source spacing of 100 m and a receiver spacing of 10 m along top sur-
face of the model. A Ricker wavelet with dominant frequency of 6 Hz is used for forward
modelling.
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FIG. 8. (a) shows the Hessian diagonals Hdiag, aj
ρ′ρ′ calculated with adjoint-state method; (b-c) show

the stochastic estimation of Hessian diagonals Hdiag, 1
ρ′ρ′ and Hdiag, 2

ρ′ρ′ with 1 and 2 random vector ap-
plications respectively.

Evaluating the strengths of interparameter tradeoffs within the whole volume

Diagonals of subblock matrices in multiparameter Hessian are first estimated with the
stochastic probing approach following equation (47). Figure 8a shows the Hessian diago-
nals Hdiag, aj

ρ′ρ′ calculated with adjoint-state method (Shin et al., 2001). The computation cost
is equivalent to 363 forward simulations. Figures 8b and 8c show the stochastic estimations
of Hessian diagonals with 1 and 2 random vector applications respectively. Computation
costs are equivalent to 66 and 198 forward simulations. Energy distributions in the stochas-
tic estimations generally match those calculated with the adjoint-state method, which ver-
ifies the effectiveness of stochastic probing approach. Figures 9a show the stochastic es-
timations of the Hessian diagonals Hdiag

αα , Hdiag
ββ and Hdiag

ρ′ρ′ after normalization. Energy dis-
tributions in these Hessian diagonals for different parameters differ significantly. Stronger
elements of the Hessian diagonals mean that the model parameters are well constrained.
However, energies of Hdiag

ββ are constrained in the shallow parts of the model. Maximum
magnitudes of Hdiag

ββ are approximately 11.0 times and 6.3 times stronger than those of Hdiag
αα

and Hdiag
ρ′ρ′ , which means that S-wave velocity will be better recovered than P-wave veloc-

ity and density. The Hessian diagonals are also used as preconditioners in the inversion
process.

Figures 9b show the stochastic estimations of the Hessian diagonals Hdiag
αβ , Hdiag

αρ′ and
Hdiag
βρ′ which measure the coupling strengths of the isotropic-elastic parameters in the whole

volume. The coupling strengths change within the whole volume significantly, that is to
say, they are influenced by inhomogeneity of the model and source-receive illumination. In
earlier iterations, strong interparameter tradeoffs appear at the shallow parts of the model,
as indicated by the grey and white arrows. Magnitudes of the diagonals of off-diagonal
blocks associated with different physical parameters are quite different. Hdiag

βρ′ is much
stronger than Hdiag

αβ and Hdiag
αρ′ meaning that the interparameter tradeoffs among the isotropic-

elastic parameters mainly come from the coupling effects between S-wave velocity and
density. Hdiag

βρ′ is very similar to Hdiag
ββ meaning that the coupling effects between S-wave

velocity and density are dominated by S-wave velocity.

In this research, a vector v′, which consists of regularly distributed spikes with a con-
stant magnitude of 0.2, is designed, as indicated by the black squares in Figure 7d. Products
of the multiparameter Hessian subblocks approximate row summations of the multiparam-
eter Hessian, as illustrated in Figure 10. Strengths of interparameter contaminations gen-
erally match our predictions with multiparameter Hessian diagonals. Areas with strong
interparameter tradeoffs are indicated by the grey and white arrows in Figure 10. Fur-
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FIG. 9. (a) shows the the stochastic estimations of Hessian diagonals Hdiag
αα , Hdiag

ββ and Hdiag
ρ′ρ′ with 2

random vector applications; (b) shows the stochastic estimations of Hessian diagonals Hdiag
αβ , Hdiag

αρ′

and Hdiag
βρ′ with 2 random vector applications. Ã mean the maximum magnitude of the Hessian

diagonals after normalization.

FIG. 10. Products of multiparmaeter Hessian with vector v′. The first column show the multiparam-
eter Hessian-vector products Hαα = Hααv′, Hβα = Hβαv′, and Hβα = Hβαv′. The second column
show the multiparameter Hessian-vector products Hαβ = Hαβv′, Hββ = Hββv′, and Hρ′β = Hρ′βv′.
The third column show the multiparameter Hessian-vector products Hαρ′ = Hαρ′v′, Hβρ′ = Hβρ′v′,
and Hρ′ρ′ = Hρ′ρ′v′.
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FIG. 11. (a-c) illustrate the standard sensitivity kernels Kα, Kβ , and Kρ′ ; (d-f) show the correct up-
date kernelKα↔α and contamination kernelsKβ→α andKρ′→α; (g-i) show the contamination kernel
Kα→β , correct update kernels Kβ↔β and contamination kernel Kρ′→β ; (j-l) show contamination ker-
nels Kβ→ρ′ and Kα→ρ′ and correct update kernel Kρ′↔ρ′ . A represent maximum magnitudes of the
kernels.

thermore, comparing strengths of the off-diagonal Hessian-vector products (i.e., Hβα) with
those of diagonal Hessian-vector products (i.e., Hββ), it is concluded that the contamina-
tions from α to β and ρ′ are relatively weak and can be ignored. Contaminations from ρ′ to
α and β are also not very strong. However, the contaminations from β to α may degrade
the update for α. Contaminations from β to ρ′ may boost the density update by 1.8 times.

To verify these predictions and conclusions, the true interparameter contamination ker-
nels are calculated by applying multiparameter Hessian to the true model perturbation vec-
tors ∆mα, ∆mβ and ∆mρ′ as shown in Figures 7g, 7h and 7i. The first row in Figure 11
show the standard sensitivity kernels Kα, Kβ and Kρ′ , which are contaminated by map-
pings from other parameters. The second row in Figure 11 show the correct update kernel
Kα↔α and contamination kernels Kβ→α and Kρ′→α. In the third row of Figure 11, the con-
tamination kernel Kα→β , correct update kernel Kβ↔β , and Kρ′→β are illustrated from left
to right. In the forth row of Figure 11, contamination kernels Kα→ρ′ and Kβ→ρ′ and correct
update kernel Kρ′→ρ′ are given.

Since magnitudes of the true model perturbation vectors change within the whole vol-
ume and the strengths of P-wave velocity perturbation are approximately 2 times and 4
times larger than those of S-wave velocity and density perturbations, the contamination
kernels are not entirely consistent with the predictions by Hessian diagonals and Hessian-
vector products shown in Figures 9 and 10 exactly. I interpret this is an indication of the
complexity of the resolution problem in general. However, areas with strong elements
in Kβ↔β generally match those of Hessian diagonals Hdiag

ββ (Figure 9) and Hessian-vector
product Hββ (Figure 10), as indicated by the black arrows. Examining the contamination
kernels Kα→β and Kβ→α tells us that Hessian diagonals (Hdiag

αβ in Figure 9) and Hessian-
vector products (Hαβ and Hβα in Figure 9) predict energy distributions of the interparam-
eter tradeoffs, as indicated by the grey arrows. White arrows in Kρ′→β and Kβ→ρ′ also
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FIG. 12. (a) shows the estimated model perturbation vector ∆m̃1
β , approximate contamination

kernels K̃1
β→α and K̃1

β→ρ′ ; (b) shows the estimated model perturbation vector ∆m̃2
β , approximate

contamination kernels K̃2
β→α and K̃2

β→ρ′ .

indicate the areas with strong interparameter tradeoffs between S-wave velocity and den-
sity.

Comparing magnitudes of the correct updates and interparameter contamination ker-
nels, it can be observed that Kβ→β is very close to Kβ meaning that the S-wave velocity
suffers limited contamination from α and ρ′. Furthermore, the correct update kernel Kα↔α
will be degraded by the contamination kernel Kβ→α. Contamination kernel Kβ→ρ′ is ap-
proximately 1.7 times stronger than the correct update kernel Kρ′↔ρ′ , which will make
density highly under- or overestimated. The contaminations from β to ρ′ will dominate the
estimated density structures. Note: during the inversion process, the contaminations can
be reduced partially and the energy distributions of the interparameter contaminations may
also change.

Mitigating the interparameter tradeoffs

To mitigate the contamination of S-wave velocity into other parameters, a novel inver-
sion strategy is proposed with approximate contamination kernels. I first carry out inversion
experiments by k′ = 8 and 15 iterations, which provide estimated model perturbation vec-
tors ∆m̃1

β and ∆m̃2
β , as shown in Figures 12a and 12b. The estimated P-wave and density

perturbations are dropped. Contamination kernels K̃1
β→α, K̃1

β→ρ′ , K̃
2
β→α, and K̃2

β→ρ′ are
constructed by applying multiparameter Hessian off-diagonal blocks Hαβ and Hρ′β to the
estimated model vectors, as shown in Figures 12a and 12b. Magnitudes and characteristics
of the approximate contamination kernels match the true contamination kernels K̃β→α and
K̃β→ρ′ shown in Figure 11 very well. Because ∆m̃2

β is more resolved and better recovered
than ∆m̃1

β , K̃2
β→α and K̃2

β→ρ′ represent better approximations than K̃1
β→α and K̃1

β→ρ′ .

The new updates kernels K̃1
α, K̃1

β , K̃1
ρ′ , K̃

2
α, K̃2

β and K̃2
ρ′ are calculated by subtract-

ing the approximate contamination kernels from the standard sensitivity kernels following
equation (55), as shown in Figure 13. Magnitudes of the new updates kernels K̃1

ρ′ and K̃2
ρ′

have been reduced by approximately 38.2% and 56.8%. In particular, it is observed that
the features of new update kernel K̃2

ρ′ for density are very close to the characteristics of
true update kernel Kρ′↔ρ′ shown in Figure 11, which means that the contaminations from
S-wave velocity to density have been suppressed.
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FIG. 13. (a) show the new update kernels K̃1
α, K̃1

β and K̃1
ρ′ ; (b) show the new update kernels K̃2

α,
K̃2

β and K̃2
ρ′ .

FIG. 14. (a-c) show inverted P-wave velocity (ε̃α=0.83), S-wave velocity (ε̃β=0.72) and density
(ε̃ρ′=1.04) models with traditional simultaneous inversion strategy; (d-f) show the inverted P-wave
velocity (ε̃α=0.76), S-wave velocity (ε̃β=0.67) and density (ε̃ρ′=0.83) models using new inversion
method with approximate contamination kernels.

FIG. 15. (a-c) show the well log data of P-wave velocity, S-wave velocity, and density models at
0.5 km; (d-f) show the well log data at 3.0 km. The red and grey curves indicate the true and initial
models. The blue and green lines indicate the inverted models by traditional simultaneous inversion
strategy and new inversion strategy.
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FIG. 16. Convergence history comparison of traditional simultaneous inversion strategy (red curve)
and new inversion strategy (blue curve) for Marmousi model example.

The P-wave velocity α, S-wave velocity β and density ρ′ are inverted with traditional
simultaneous inversion strategy. Multiscale approach is adopted for reducing the nonlinear-
ity by expanding the frequency band from [3 Hz, 5Hz] to [3 Hz, 8Hz]. With each frequency
band, 20 iterations are performed. Figures 14a, 14b and 14c show the inverted α, β and
ρ′ models after 40 iterations with traditional simultaneous inversion strategy. Following
the work-flow illustrated in Table 4.1, I first simultaneously update α, β and ρ′ models by
k′ = 15 iterations and the inverted models are dropped but only keep the estimated model
perturbation ∆m̃β . Then, model parameters α, β and ρ′ are inverted again from initial
models by 10 iterations. In this inversion loop, at each iteration approximate contamina-
tion kernels are constructed and the models are updated with new kernels as indicated in
equation (55). This process is then repeated every 10 iterations. Figures 14d, 14e and 14f
show the inverted P-wave velocity, S-wave velocity and density models with the new in-
version strategy after 40 iterations. The computation cost is 2.5 times more expensive than
traditional simultaneous inversion strategy.

S-wave velocity is best inverted and more resolved than P-wave velocity. P-wave veloc-
ity is poorly recovered but limited interparameter contamination artifacts can be observed.
With traditional simultaneous inversion strategy, the S-wave velocity structures are mapped
into the estimated density model as indicated by the arrows in Figures 14c, 15c and 15f.
Positive S-wave velocity perturbations make density overestimated and negative S-wave
velocity perturbations make density underestimated. With the new inversion strategy, the
imprints in the inverted density model have been suppressed effectively, as indicated by
arrows in Figures 14f, 15c and 15f. Furthermore, the inverted P-wave velocity (Figure 14d)
and S-wave velocity (Figure 14e) are also enhanced. The new inversion approach is also
able to provide faster convergence, as shown in Figure 16.
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FIG. 17. Approximate eigenvalue volumes of the inverted models. Figures (a-c) show approxi-
mate eigenvalue volumes Eigαα, Eigββ , and Eigρ′ρ′ for inverted P-wave velocity, S-wave velocity
and density by traditional simultaneous inversion strategy; Figures (d-f) show the corresponding
approximate eigenvalue volumes by the new inversion strategy.

Resolution analysis

Approximate eigenvalue volume (equation (64)) and extended multiparameter point
spread functions (EMPSFs) are used to quantify resolution of the inverted models with
different inversion strategies. Figures 17a, 17b and 17c show the approximate eigenvalue
volumes obtained with 2 random Hessian-vector applications. The approximate eigen-
value volumes of S-wave velocity (Eigββ) are closer to 1 than those of P-wave velocity
and density, which means that S-wave velocity is better recovered than P-wave velocity
and density. Magnitudes of the approximate eigenvalue volumes decrease with increasing
depths meaning that shallow parts of models are better recovered than deep parts.

Spike model perturbations ∆mα = 0.2 km/s, ∆mβ = 0.2 km/s and ∆mρ′ = 0.2 g/cm3

are applied at local position z1 = (0.515 km, 0.275 km) (as shown in Figure 7e) respec-
tively, which are used to measure the local spatial and interparameter tradeoffs of the in-
verted models. The traditional MPSFs are plotted in Figure 18a. The MPSFs representing
interparameter contaminations are normalized with those representing correct model esti-
mations. Strong contaminations from S-wave velocity to P-wave velocity and density are
observed as indicated by the grey arrows. The spike model perturbations are then recon-
structed with 10 conjugate-gradient iterations, which gives the EMPSFs, as presented in
Figures 18b. Contaminations from S-wave velocity to P-wave velocity and density are re-
duced by approximately 23.8% and 47.1%, as indicated by the grey arrows. Furthermore,
compared to MPSFs, EMPSFs are more de-blurred. This is strongly suggestive that the lo-
cal spatial and interparameter tradeoffs provided by traditional MPSFs may not be accurate
and the inverted models by traditional simultaneous inversion strategy suffer strong inter-
parameter tradeoffs. In Figures 18c, the EMPSFs obtained with conjugate-gradient method
following the work-flow with approximate contamination kernels are given. The contam-
inations from S-wave velocity to P-wave velocity and density are reduced effectively, as
indicated by grey arrows. This means that the inverted models (Figures 14a, 14b and 14c)
by new inversion strategy suffer little interparameter contaminations.

Hussar dataset application

At the end, the proposed strategies are applied to invert isotropic-elastic parameters with
Hussar practical seismic dataset and quantify resolution of the inverted models. In Septem-

CREWES Research Report — Volume 29 (2017) 29



Pan et. al

FIG. 18. (a) show the traditional MPSFs after normalization at position z1; (b) show the normalized
EMPSFs with 10 conjugate-gradient iterations; (c) show the normalized EMPSFs constructed with
new inversion work-flow (Table 4.1).
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FIG. 19. The location of seismic line and well (14-35) in Hussar experiment (Margrave et al., 2012).
Note: I have reset the coordinate of the seismic line for FWI. I assume that initial location of the
seismic line starts at x0=0 km and ends at xend=4.5 km, as indicated by the blue circles.
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FIG. 20. (a) and (b) show the preprocessed vertical (z) and radial (x) component shot gathers at
position of 0.6 km in horizontal distance; (c) shows the amplitude spectrum of the data. The shaded
area means frequency band of [3Hz, 10Hz]. (d) shows the estimated minimum phase wavelet with
dominant frequency of 25 Hz.

ber 2011, CREWES (Consortium for Research in Elastic Wave Exploration Seismology)
initiated a seismic experiment in Hussar area, which is about 100 km east of Calgary, Al-
berta, Canada. The objective of this experiment was to maximize the low frequency content
of the seismic data (Margrave et al., 2012), and to acquire a land dataset maximally suit-
able for full-waveform inversion methods. The 2D seismic survey line is 4.5 km in length.
Figure 19 show the locations of the seismic line and well log 14-35. The seismic experi-
ments were carried out with dynamite and vibroseis sources and different receiver types.
In this research, I use the multicomponent data recorded by 10 Hz 3C (three-component)
geophones with dynamite sources for inversion. A total of 269 sources (2 kg charge at 15
m in depth) are arranged regularly with a spacing of 20 m. A total of 448 geophones are
distributed with a spacing of 10 m.

The raw seismic shot gathers are preprocessed with a series of steps. Automatic gain
control (AGC) is first applied for amplitude recovery. Surface waves and monochromatic
noise are suppressed with F-K filtering. Elevation statics and residual statics are applied to
compensate the topographic variations and near-surface lithological variations. The seismic
data is finally band-pass filtered within the frequency band of [3Hz, 60Hz]. Figures 20a and
20b show the preprocessed vertical (z) and radial (x) component data. Figure 20c shows
the amplitude spectrum of the data. Frequency band of [3Hz, 10Hz] is used for inversion,
as indicated by the shaded area. A minimum phase wavelet with dominant frequency of 25
Hz is estimated from seismic data and used for forward modelling, as illustrated in Figure
20d.
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FIG. 21. (a-c) show the initial P-wave velocity, S-wave velocity and density models; (d-f) show
the inverted P-wave velocity, S-wave velocity and density models using traditional simultaneous
inversion strategy; (g-i) show the inverted P-wave velocity, S-wave velocity and density models
using new inversion method. The black line in (a) indicates the position of well log 14-35. The blue
square in (a) indicates the location z1=(2.0 km, 1.2 km) for local spatial and interparameter tradeoffs
analysis.

FIG. 22. (a-c) show the well log data comparison of P-wave velocity, S-wave velocity and density
respectively. Black and gray curves are true well log data and initial models. Red and blue curves
are the inverted models by traditional simultaneous inversion method and new inversion method
respectively.
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FIG. 23. Convergence history comparison of traditional simultaneous inversion method (red) and
new inversion method (blue) for Hussar seismic dataset.

Figures 21a, 21b and 21c show the linear initial P-wave velocity, S-wave velocity and
density models. The well log (14-35) is located at about 1.29 km in horizontal distance,
as indicated by the black line in Figure 21a. I first simultaneously update P-wave velocity,
S-wave velocity and density by expanding the frequency band from [3Hz, 5Hz] to [3Hz,
8Hz] and then [3Hz, 10Hz] with 10 iterations for each frequency band. The inverted P-
wave velocity, S-wave velocity and density models using this traditional inversion strategy
are illustrated in Figures 21d, 21e and 21f. I then carry out inversion experiments using
new inversion strategy with approximate contamination kernels following the work-flow
shown in Table 4.1. At each frequency band, I need to simultaneously update the model
parameters by k′=15 iterations for estimating the approximate S-wave velocity perturbation
vector ∆m̃β . Figures 21g, 21h and 21i show the inverted P-wave velocity, S-wave velocity
and density models using the new inversion method. Some artifacts appear in the inverted
models. The geological layers are resolved and most of them are flat, which are consistent
with the previous studies of impedance inversion (Lloyd, 2013; Cui, 2015; Esmaeili, 2016).
Figures 22a, 22b and 22c show the well log data comparison of P-wave velocity, S-wave
velocity and density models respectively. The inverted P-wave velocity and S-wave veloc-
ity models generally match the well log data. However, it appears that the shallow parts of
inverted density model (Figure 21f) by traditional simultaneous inversion strategy are un-
derestimated, as indicated by the shaded area in Figure 22c. Furthermore, artifacts appear
in the deep parts of the inverted density model as indicated by the arrows in Figures 21f
and 22c. In the inverted density model (21i) by new inversion method, the shallow parts are
better recovered and the artifacts in deep parts are suppressed. The new inversion method
also provides faster convergence as shown in Figure 23.

For resolution analysis, in Figure 24a, approximate eigenvalue volumes Eigαα, Eigββ
and Eigρ′ρ′ of the inverted P-wave velocity, S-wave velocity and density models by tradi-
tional simultaneous inversion method are plotted. In Figure 24b, the approximate eigen-
value volumes of the inverted models generated using the new inversion method are given.
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FIG. 24. (a) illustrate the approximate eigenvalue volumes Eigαα, Eigββ and Eigρ′ρ′ of the inverted
models by traditional simultaneous inversion method; (b) illustrate the approximate eigenvalue vol-
umes Eigαα, Eigββ and Eigρ′ρ′ of the inverted models generated using the new inversion method.

FIG. 25. (a) show the collection of EMPSFs at local position z1 = (2.0 km, 1.2 km) with conjugate-
gradient algorithm; (b) show the collection of EMPSFs at z1 with conjugate-gradient algorithm fol-
lowing the work-flow of new inversion method (Table 4.1).

Both of these methods are able to recover amplitudes of the model parameters very well.
The spatial and interparameter tradeoffs of the inverted models at location of z1=(2.0 km, 1.2 km)
are evaluated, as indicated by blue square in Figure 21a. Figure 25a show the normalized
EMPSFs with 10 conjugate-gradient iterations. Figure 25b show the normalized EMPSFs
with 10 conjugate-gradient iterations following the work-flow of new inversion method.
In Figure 25a, it is observed that the EMPSFs Rαβ (x, z) and Rρ′β (x, z) representing the
contaminations from S-wave velocity to P-wave velocity and density are still strong, which
means the inverted P-wave velocity and density models (Figures 21d and 21f) by traditional
simultaneous inversion method still suffer interparameter contaminations. In Figure 25b,
the EMPSFs Rαβ (x, z) and Rρ′β (x, z) are very weak, which means that with the new inver-
sion method, the interparameter contaminations from S-wave velocity to P-wave velocity
and density have been reduced. These numerical experiments show that the new inversion
method is able to provide high resolution P-wave velocity and S-wave velocity models.
Furthermore, the interparameter contaminations from S-wave velocity to P-wave velocity
and density can be suppressed, which will provide more convincing isotropic-elastic pa-
rameters for reservoir characterization.
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FIG. 26. (a-c) illustrate the standard sensitivity kernels Kκ, Kµ, and Kρ; (d-f) show the correct
update kernel Kκ↔κ and contamination kernels Kµ→κ and Kρ→κ; (g-i) show the contamination ker-
nel Kκ→µ, correct update kernels Kµ↔µ and contamination kernel Kρ→µ; (j-l) show contamination
kernels Kκ→ρ and Kµ→ρ and correct update kernel Kρ↔ρ. A represent maximum magnitudes of
the kernels.

The influence of different parameterizations in isotropic-elastic FWI

Inversion experiments with velocity-density, modulus-density and impedance-density
parameterizations are then carried out for comparison. The true models and initial models
are shown in Figure 7. Figure 26 show the standard sensitivity kernels and true interparam-
eter contamination kernels among bulk modulus κ, shear modulus µ and density ρ within
modulus-density parameterization. It can be seen that the standard sensitivity kernel Kρ

is quite different from the correct update kernel Kρ↔ρ. However, the contamination ker-
nel Kµ→ρ is very similar to the standard sensitivity kernel Kρ. This is strongly suggestive
that the update for density ρ is dominated by the contaminations from shear modulus µ to
density ρ. Figure 27 shows the standard sensitivity kernels and true interparameter contam-
ination kernels among P-wave impedance IP, S-wave impedance IS and density ρ′′ within
impedance-density parameterization. Similarly, the standard update kernel for density ρ′′

is dominated by the contamination from S-wave impedance to density ρ′′.

The inversion experiments are carried out using three frequency bands of [3Hz, 5Hz],
[3Hz, 8Hz] and [3Hz, 10Hz] with 60 iterations at each frequency band. The same true
models and initial models are used for inversion with the 3 different parameterizations.
Figures 28, 29 and 30 show the corresponding true models, initial models and inverted
models after 180 iterations. Note: here I use non-linear conjugate-gradient method for
inversion. In Figure 31, the convergence histories at frequency band of [3Hz, 5Hz] are
plotted for comparison. In Figure 28, P-wave velocity and S-wave velocity are well re-
constructed. The density structures are also reconstructed even though there are still some
interparameter contaminations. In Figure 29, the shear modulus µ is recovered best. The
inverted density model is distorted, which may be caused by the contaminations from shear
modulus. Magnitudes of the recovered bulk modulus model are very weak. In Figure 30,
the reconstructed density structures are distorted significantly, which may be caused by
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FIG. 27. (a-c) illustrate the standard sensitivity kernels KIP, KIS, and Kρ′′ ; (d-f) show the correct
update kernel KIP↔IP and contamination kernels KIS→IP and Kρ′′→IP; (g-i) show the contamination
kernel KIP→IS, correct update kernels KIS↔IS and contamination kernel Kρ′′→IS; (j-l) show con-
tamination kernels KIP→ρ′′ and KIS→ρ′′ and correct update kernel Kρ′′↔ρ′′ . A represent maximum
magnitudes of the kernels.

the strong interparameter contaminations from S-wave impedance. This observation also
verifies our analysis with scattering patterns in Figure ??. Because the scattered wave-
fields due to density perturbations in impedance-density parameterization mostly forward
scattered, recorded data on surface is mainly caused by P-wave impedance and S-wave
impedance perturbations, which makes it more difficult to recover density structures. In
Figure 31, velocity-density parameterization provides the fastest convergence rate. Hence,
velocity-density parameterization is still the best choice to recover isotropic-elastic param-
eters among these three parameterizations.

FIG. 28. (a-c) show the true P-wave velocity, S-wave velocity and density models; (d-f) show the
corresponding initial P-wave velocity, S-wave velocity and density models; (g-i) show the corre-
sponding inverted P-wave velocity, S-wave velocity and density models.
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FIG. 29. (a-c) show the true bulk modulus κ, shear modulus µ and density ρ models; (d-f) show
the corresponding initial bulk modulus κ, shear modulus µ and density ρ models; (g-i) show the
corresponding inverted bulk modulus κ, shear modulus µ and density ρ models.

FIG. 30. (a-c) show the true P-wave impedance IP, S-wave impedance IS and density ρ′′ models;
(d-f) show the corresponding initial P-wave impedance IP, S-wave impedance IS and density ρ′′

models; (g-i) show the corresponding inverted P-wave impedance IP, S-wave impedance IS and
density ρ′′ models.
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FIG. 31. Convergence rates comparison for various parameterizations in isotropic-elastic FWI
([3Hz, 5Hz] frequency band). The red, blue and black curves indicate velocity-density, modulus-
density and impedance-density parameterization respectively.
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DISCUSSION

Interparameter tradeoffs are strongly influenced by source-receive illumination (or ac-
quisition geometry). In this chapter, the interparameter tradeoffs with perfect acquisition
geometry are studied using a simple Gaussian-anomaly model and reflection acquisition
geometry using Marmousi model. In transmission tomography (i.e., cross-well survey or
earthquake seismology), the strengths and characteristics of the interparameter contamina-
tions may be different from the conclusions and results presented in this chapter. Hence,
for inverse problems with different models and acquisition geometries, the interparameter
tradeoffs should be reevaluated following the strategies presented in this chapter.

Various misfit functions (i.e., envelope, instantaneous phase and traveltime misfit func-
tions) based on different measurements have been studied for full-waveform inversion
(Bozdag et al., 2011). Different physical parameters are sensitive to different measurements
(i.e., amplitude and traveltime). The interparameter tradeoffs with the common waveform
difference based misfit function are studied. It is also necessary to assess the interparameter
tradeoffs in isotropic-elastic FWI for different misfit functions.

CONCLUSIONS

Origins of interparameter tradeoffs in isotropic-elastic FWI have been revealed with
interparameter contamination kernels. Strengths and characteristics of the interparameter
contaminations in isotropic-elastic FWI are quantified locally or within the whole volume
by applying multiparameter Hessian to various types of probes. Two approaches (adjoint-
state and finite-difference) are examined to construct the multiparameter Hessian matrix-
vector products. This chapter reveals that S-wave velocity perturbations produce relatively
strong contaminations into density updates and phase-revered contaminations into P-wave
velocity updates. These contaminations make density structures highly under- and overes-
timated.

A novel inversion strategy has been recommended to reduce the contaminations from
S-wave velocity to other parameters based on approximate contamination kernels. Nu-
merical examples are given to illustrate that this new inversion strategy is able to provide
more convincing and reliable density estimations in isotropic-elastic FWI. Approximate
eigenvalue volume is employed to evaluate resolution of inverted models within the whole
volume. Both of local spatial and interparameter tradeoffs of the inverted models are evalu-
ated with extended multiparameter point spread functions (EMPSFs), which provide more
accurate measurements of the local resolution compared to traditional MPSFs. The pro-
posed strategies are finally applied on Hussar practical seismic dataset. According to the
inverted models with different parameterizations, it is concluded that the velocity-density
parameterization is still a better choice than modulus-density and impedance-density pa-
rameterizations.
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APPENDIX A: EXPLICIT EXPRESSIONS OF INTERPARAMETER
CONTAMINATION KERNELS IN ISOTROPIC-ELASTIC FWI

In this appendix, explicit expressions of correct update kernels and interparameter con-
tamination kernels in equations (29) and (30) are given. Kβ↔β and Kρ′↔ρ′ are correct
update kernels for β and ρ′:

Kβ↔β = −a−1
β

∫
Ω(x′)

Hββ (x, x′) ∆mβ (x′) dx′

= −〈2ρ′β2 [∂jGni (x) (∂iuj (x) + ∂jui (x))− 2∂iGni (x) ∂kuk (x)]

× 2ρ′β2 [∂j′Gn′i′ (x′) ∆mβ (x′) (∂i′uj′ (x′) + ∂j′ui′ (x′))
−2∂i′Gn′i′ (x′) ∆mβ (x′) ∂k′uk′ (x′)]〉,

(66)

Kρ′↔ρ′ (x) = −a−1
ρ′

∫
Ω(x′)

Hρ′ρ′ (x, x′) ∆mρ′ (x′) dx′

= −〈ρ′
[(
Gni (x) ∂2

t ui (x) + 2α2∂iGni (x) ∂kuk (x)
)

+2β2 (∂jGni (x) (∂iuj (x) + ∂jui (x))− 2∂iGni (x) ∂kuk (x))
]

× ρ′
[(
Gn′i′ (x′) ∆mρ′ (x′) ∂2

t′ui′ (x′) + 2α2∂i′Gn′i′ (x′) ∆mρ′ (x′) ∂k′uk′ (x′)
)

+2β2 (∂j′Gn′i′ (x′) ∆mρ′ (x′) (∂i′uj′ (x′) + ∂j′ui′ (x′))
−2∂i′Gn′i′ (x′) ∆mρ′ (x′) ∂k′uk′ (x′))]〉.

(67)

Interparameter contamination kernels Kα→β and Kρ′→β represent the mappings from α
and ρ′ to β respectively:

Kα→β = −a−1
β

∫
Ω(x′)

Hβα (x, x′) ∆mα (x′) dx′

= −〈2ρ′β2 [∂jGni (x) (∂iuj (x) + ∂jui (x))− 2∂iGni (x) ∂kuk (x)]

×
[
2ρ′α2∂i′Gi′n′ (x′) ∆mα (x′) ∂k′uk′ (x′)

]
〉,

(68)

Kρ′→β = −a−1
β

∫
Ω(x′)

Hβρ′ (x, x′) ∆mρ′ (x′) dx′

= −〈2ρ′β2 [∂jGni (x) (∂iuj (x) + ∂jui (x))− 2∂iGni (x) ∂kuk (x)]

× ρ′
[(
Gn′i′ (x′) ∆mρ′ (x′) ∂2

t′ui′ (x′) + 2α2∂i′Gn′i′ (x′) ∆mρ′ (x′) ∂k′uk′ (x′)
)

+2β2 (∂j′Gn′i′ (x′) ∆mρ′ (x′) (∂i′uj′ (x′) + ∂j′ui′ (x′))
−2∂i′Gn′i′ (x′) ∆mρ′ (x′) ∂k′uk′ (x′))]〉.

(69)
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Interparameter contamination kernels Kα→ρ′ and Kβ→ρ′ represent the mappings from α
and β to ρ′ respectively:

Kα→ρ′ = −a−1
ρ′

∫
Ω(x′)

Hρ′α (x, x′) ∆mα (x′) dx′

= −〈ρ′
[(
Gni (x) ∂2

t ui (x) + 2α2∂iGni (x) ∂kuk (x)
)

+2β2 (∂jGni (x) (∂iuj (x) + ∂jui (x))− 2∂iGni (x) ∂kuk (x))
]

×
[
2ρ′α2∂i′Gi′n′ (x′) ∆mα (x′) ∂k′uk′ (x′)

]
〉,

(70)

Kβ→ρ′ = −a−1
ρ′

∫
Ω(x′)

Hρ′β (x, x′) ∆mβ (x′) dx′

= −〈ρ′
[(
Gni (x) ∂2

t ui (x) + 2α2∂iGni (x) ∂kuk (x)
)

+2β2 (∂jGni (x) (∂iuj (x) + ∂jui (x))− 2∂iGni (x) ∂kuk (x))
]

× ρ′β2 [∂j′Gn′i′ (x′) ∆mβ (x′) (∂i′uj′ (x′) + ∂j′ui′ (x′))
−2∂i′Gn′i′ (x′) ∆mβ (x′) ∂k′uk′ (x′)]〉.

(71)

APPENDIX B:MULTIPARAMETER HESSIAN-VECTOR PRODUCT
CALCULATION IN TIME DOMAIN

Constructing Hessian-vector products is an essential step for implementing Hessian-
free optimization methods and quantifying uncertainties of the inverse problems (Santosa
and Symes, 1988; Fichtner and Trampert, 2011a; Métivier et al., 2012; Pan et al., 2017a).
One popular approach for Hessian-vector product construction in time domain is known
as adjoint-state method. To understand the mechanism of the adjoint-state method for
Hessian-vector calculation, I first consider minimizing the misfit function (Métivier et al.,
2013):

Ψ (m) =
∑

xs

∑
xg

∫ T

0

u∗n (xg, xs, t′)νdt′, (72)

where ν is an arbitrary function and the gradient is given by ∇mΨ = ∇mu∗ν. Minimiz-
ing this misfit function subject to that wavefield u satisfies the wave equation gives the
augmented Lagrangian functional (Liu et al., 2006; Métivier et al., 2013):

χ (m,u,λ) =
∑

xs

∑
xg

∫ T

0

[u∗n (xg, xs, t′)ν

−λi
(
ρ∂2

t′ui (xg, xs, t′)− ∂j (cijkl∂luk (xg, xs, t′))− fi
)]
dt′,

(73)

where fi is the source term and λi is the Lagrangian multiplier. Variation of functional
due to the perturbations of model parameter ∆m and wavefield ∆u is given by (Liu et al.,
2006):

∆χ (m,u,λ) =
∑

xs

∑
xg

∫ T

0

−
[
∆ρλi∂

2
t′ui (xg, xs, t′) + ∆cijkl∂jλi (∂luk (xg, xs, t′))

]
+
[
ν −

(
ρ∂2

t′λi − ∂j (cijkl∂lλk)
)]

∆undt
′.

(74)

40 CREWES Research Report — Volume 29 (2017)



Isotropic-elastic FWI

Equation (74) is stationary with respect to wavefield perturbation ∆u when its coefficient
is zero, which gives the adjoint-state equation: ρ∂2

t′λi − ∂j (cijkl∂lλk) = ν, where ν serves
as the adjoint source. Thus, gradients of the misfit function with respect to density ρ and
elastic constants c become:

∇ρχ = ∇ρu∗ν = −〈ũi∂2
t′ui〉,∇cχ = ∇cu∗ν = −〈∂jũi∂luk〉, (75)

where ũi (xg, x, T − t′) = λi (xg, x, T − t′) = Gni (xg, x, T − t′)ν is the adjoint wavefield.
Product of Jacobian matrix with an arbitrary vector v is given by:

J = ∇muv = −〈Gn′i′ (x′) v (x′) ∂2
t′′ui′ (x′) + ∂j′Gn′i′ (x′) v (x′) ∂l′uk′ (x′)〉, (76)

Replacing ν in equation (75) with Jacobian-vector product J gives the multiparameter
Gauss-Newton Hessian-vector product:

H = ∇mu∗∇muv
= 〈
(
Gni (x) ∂2

t′ui (x) + ∂jGni (x) ∂luk (x)
)

×
(
Gn′i′ (x′) v (x′) ∂2

t′′ui′ (x′) + ∂j′Gn′i′ (x′) v (x′) ∂l′uk′ (x′)
)
〉.

(77)

For example, product of off-diagonal block Hcρ in multiparameter Gauss-Newton Hessian
with an arbitrary perturbation vector vρ due to density can be written explicitly as:

Hcρ (x) =

∫
Ω(x′)

Hcρ (x, x′) vρ (x′) dx′

=
∑

xs

∑
xg

∫
Ω(x′)

∫ ∫
∂kul (x, xs, t′) ∂jGni (xg, x, T − t′)

×Gn′i′ (xg, x′, t− t′′) vρ (x′) ∂2
t′′ui′ (x′, xs, t′′) dt′dt′′dx′,

(78)

where Jacobian-vector product Jρ is:

Jρ (xg, x′, t) =
∑

xs

∫
Gn′i′ (xg, x′, t− t′′) vρ (x′) ∂2

t′′ui′ (x′, xs, t′′) dt′′, (79)

where interaction of the indicate wavefield ui′ (x′, xs, t′′) with the perturbation vector vρ (x′)
serves as the “secondary scattered source" f ′i (x′, xs, t′′):

f ′i (x′, xs, t′′) = vρ (x′) ∂2
t′′ui′ (x′, xs, t′′) . (80)

Convolution of this scattered source with the Green’s function Gn′i′ (xg, x′, t− t′′) gives
the first-order scattered wavefield:

∆un′ (xg, x′, t) =
∑

xs

∫
Gn′i′ (xg, x′, t− t′′) f ′i (x′, xs, t′′) dt′′. (81)

Recorded scattered wavefield at the receiver locations can be considered as adjoint source
f̃ ′n (x, x′, t):

f̃ ′n (x, x′, t) =
∑

xg

∆un (xg, x′, T − t) δ (x− xg) . (82)
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Inserting equation (82) into equation (78) gives the Hessian-vector product as:

Hcρ (x) =
∑

xs

∑
xg

∫
Ω(x′)

∫
∂kul (x, xs, t′) ∂jũi (xg, x, x′, T − t′) dt′dx′, (83)

where ũi (xg, x, x′, T − t′) is the adjoint wavefield:

ũi (xg, x, x′, T − t′) =

∫ T−t′

0

Gni (xg, x, T − t′ − t′′′) f̃ ′n (x, x′, t′′′) dt′′′. (84)

Calculating Gauss-Newton Hessian-vector product with the adjoint-state approach needs
to construct forward wavefield ui′ (x′, xs, t′′), Born modelling wavefield ∆un′ (xg, x′, t) and
adjoint wavefield ũi (xg, x, x′, T − t′), The computational cost is 1.5 times than that of cal-
culating gradient (Métivier et al., 2013).

Another approach for Hessian-vector calculation is finite-difference method. Recalling
that Hessian operator represents the Fréchet derivative of the gradient vector, with Taylor
series expansion:

∇mΦ
(
m0 + ∆m

)
≈ ∇mΦ

(
m0
)

+ H∆m, (85)

where m0 denote current model. Replacing the model perturbation vector ∆m with an
arbitrary vector v scaled by a small constant value ε̄ gives:

∇mΦ
(
m0 + ε̄v

)
≈ ∇mΦ

(
m0
)

+ ε̄Hv. (86)

An approximate Hessian-vector product solution can be obtained by:

H ≈ ∇mΦ (m0 + ε̄v)−∇m0Φ (m)

ε̄
. (87)

Two additional pairs of forward and adjoint simulations are required for calculating this
Hessian-vector product approximation, which is affordable for large-scale inverse prob-
lems. Even this approximation may suffer from rounding errors, the accuracy can be im-
proved with high-order finite-difference approaches at the cost of more computation re-
quirements and for very small coefficient ε̄, its accuracy will be very high. For example, if
the multiparameter Hessian is applied to vector v = [vc = 0 vρ 6= 0]†, the Hessian-vector
product Hcρ = Hcρvρ can be obtained by:

Hcρ ≈
∇cΦ (ρ0 + ε̄vρ)−∇cΦ (ρ0)

ε̄
. (88)

Next, the two approaches with a multiparameter acoustic example are examined for com-
parison. Figure 32a shows the vector vρ with 9 isolated spikes. A homogeneous model
with bulk modulus κ = 13.5 GPa and density ρ = 1500 kg/m3 is used as the background
model. A set of sources and receivers are distributed regularly along the top boundary of the
model. Multiparameter Hessian-vector product Hκρ = Hκρvρ is calculated with adjoint-
state and finite-difference methods, as shown in Figures 32b and 32c respectively. The
Hessian-vector products by these two methods match very well. In this chapter, I adopt
the adjoint-state approach for calculating the multiparameter Hessian-vector products in
isotropic-elastic media.

42 CREWES Research Report — Volume 29 (2017)



Isotropic-elastic FWI

a)

0.2 0.5 0.8
Distance (km)

0.2

0.5

0.8

D
ep

th
 (

km
)

b)

0.2 0.5 0.8
Distance (km)

0.2

0.5

0.8

c)

0.2 0.5 0.8
Distance (km)

0.2

0.5

0.8

FIG. 32. Panel (a) shows vector vρ with 9 isolated spikes; Figures (b) and (c) are the multiparam-
eter Hessian-vector products Hκρ = Hκρvρ calculated with second-order adjoint-state and finite-
difference methods respectively.

APPENDIX C:STOCHASTICALLY ESTIMATING DIAGONALS OF
MULTIPARAMETER HESSIAN OFF-DIAGONAL BLOCKS

This Appendix explains how to efficiently estimate the diagonals of multiparameter
Hessian off-diagonal blocks with stochastic probing approach. Zero-mean random vector
v is divided into Np independent subvectors corresponding to Np different physical pa-
rameters: v =

[
v1, v2, ...., vNp

]
. vp ∼ N

(
E [vp] ,Σvpvp

)
and vq ∼ N

(
E [vq] ,Σvqvq

)
are

independent subvectors within v. Expectation values and variance-covariance matrices of
the subvectors satisfy:

E [vp (x)] = 0,E [vq (x)] = 0, (89)

Σvpvp (vp (x) , vp (x′)) = E [vp (x) vp (x′)] = δ (x− x′) , (90)

Σvqvq (vq (x) , vq (x′)) = E [vq (x) vq (x′)] = δ (x− x′) . (91)

Cross-covariance between vp and vp can be obtained as:

Σvpvq (vp (x) , vq (x′)) = E
[
(vp (x)− E [vp (x)]) (vq (x′)− E [vq (x′)])†

]
= E [vp (x) vq (x′)]− E [vp (x)] (E [vq (x′)])†

= 0.

(92)

Thus, expectation value of the correlation result between subvector vp and the sub-Hessian-
vector product Hp is given by:

E [vp � Hp] =

Np∑
q=1

vp �Hpqvq

=

∫
Ω(x′)

Hpq (x, x′)E [vp (x) vp (x′)] dx′

= Hpq (x, x) .

(93)
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