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ABSTRACT 
In geophysical analysis, we are familiar with the least-squares or Wiener-Levinson 

algorithm since is the basis for solving many of our most common processing problems.  
The least-squares method is applied to problems in which a set of unknown weights are 
extracted which transform a measured signal into a desired signal.  To apply the least-
squares algorithm the signal must first be fully acquired, which is standard practice in 
seismic acquisition.  The least-mean-square (LMS) algorithm, on the other hand, is an 
adaptive filter that does not require knowledge of the full signal, but determines the 
weights adaptively on a sample by sample basis. The LMS algorithm was developed in 
the electrical engineering community and has found great success in such applications as 
the adaptive equalization of telephone channels and blood pressure regulation. It also lead 
to the development of the first feedforward neural networks, which were only able to 
solve linearly separable problems. The LMS algorithm was then was extended to 
feedforward networks that could solve nonlinearly separable problems. Thus, an 
understanding of the LMS algorithm is the first step in understanding neural networks 
and machine learning.  In this study I will not specifically look at neural network 
algorithms but rather will focus the least-squares technique and gradient search methods 
such as steepest descent and conjugate gradient, and then see how LMS compares to 
these methods. To this this, I will use two straightforward examples, one from electrical 
engineering and one from geophysics. 

The geophysical example will be the wavelet deconvolution problem. We will first 
solve wavelet deconvolution using the least-squares, steepest descent and conjugate 
gradient algorithms.  These methods all converge to the correct result.  We will then look 
at how the LMS algorithm works on the deconvolution problem.  Although LMS does 
not converge completely in our example because of the lack of samples, it works much 
better on longer datasets and also potentially solves the problem of time-varying 
wavelets. 

INTRODUCTION 
The least-mean-square (LMS) algorithm is an adaptive filter that was first developed 

by Widrow and Hoff (1960). Along with the perceptron learning rule (Rosenblatt, 1962) 
this lead to the development of the first feedforward neural networks, which were able to 
solve linearly separable problems. The extension to feedforward networks that could 
solve nonlinearly separable problems by Rumelhart et al. (1986) also relied on LMS.  
Thus, an understanding of the LMS algorithm is the first step in understanding neural 
networks and machine learning. In this talk, I will first use an electrical engineering 
example from Widrow and Stearns (1985) to explain the LMS algorithm, and also discuss 
the full least-squares, gradient descent and conjugate gradient methods. 
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My second example comes from geophysics, in which I perform wavelet 
deconvolution (Claerbout, 1976). In this example, we will first solve the deconvolution 
problem using the least-squares, steepest descent and conjugate gradient algorithms.  
These methods all converge to the correct result. Since the LMS algorithm is not 
currently used in geophysical processing and we then look at how this method works on 
the deconvolution problem. 

AN ELECTRICAL ENGINEERING PROBEM  
Consider a sinusoid sampled N times per cycle and which is input sample by sample 

into an electrical system and then delayed by n samples, as shown in Figure 1.  Both 
signals are recorded and are then weighted, summed and subtracted from a desired 
sinusoidal output to produce an error εk.   Figure 1 shows the kth sample of both the input 
sinusoid and desired sinusoid entering the system.  This is a typical electrical engineering 
systems problem and is called an adaptive transversal filter (Widrow and Stearns, 1985). 

 
Figure 1: The problem as an electrical system, where an input sinusoid recorded and then shifted 
by n samples, and then the two signals are weighted and summed and subtracted from a desired 
signal to produce an error. 

The same problem is shown in Figure 2 but now the two sinusoids (still with the same 
frequency and the second input shifted by n samples) are input as separate signals into 
two different channels.  On output the signals are still weighted and summed and then 
subtracted from a desired signal to produce an error ek.   

 

 
 

Figure 2: The same problem as in Figure 1, except that the two signals are recorded as separate 
channels, and then are weighted and summed and subtracted from a desired signal to produce 
an error. 
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Although the signals in Figure 2 are the same as those in Figure 1, there is no reason to 
assume that the two signals are related in any way, and we do this only to make the 
problem tractable.  Thus, this way of conceptualizing the problem is much more 
amenable to seismic filtering and neural networks and is the approach we will adopt in 
this study. 

Mathematically, we can write the problem in the following form: 

kkkkk dxwxwy ε+=+= 2211     (1) 
 

by explicitly writing the input terms, we can re-write equation 1 as: 
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We know that this problem has an exact solution from the trigonometric double angle 
formula that will always produce zero error, which you will recall is given by: 
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Substituting the terms in equation 2 into the well known formula given above allows 
us to re-write the problem as: 
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which leads to the following explicit solution for the weights: 
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Note that the above analysis assumes that we know the actual mathematical form of 

the input and desired signals, in which case the weights in Figure 1 and 2 could be pre-set 
to these values.  However, the weights shown in both figures are adjustable and the key to 
the LMS algorithm is to adjust these weights after each set of values is received (i.e. the 
kth set of inputs and desired signal).   Later in the study we will get back to the LMS 
algorithm and how the weights are adjusted.  However, first we will look at several other 
ways of computing the weights: the full least-squares method, the Newton method, and 
the steepest descent and conjugate gradient methods. 

 
In geophysical measurements we record all the data first as a complete time series, 

rather than analyzing one sample at a time.  So let us assume that in Figures 1 and 2 we 
run the system until we have recorded one full waveform of the two inputs and the 
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desired signal.  If we let N = 6 and n = 1, so that the frequency and phase increments are 
both equal to π /3, then one complete period of the inputs and output  requires that k = 0, 
1,…,5, and we can write equation 1 as the weighted sum of two vectors as shown here 
(where the error is now equal to zero): 
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the weights shown above were computed analytically from the previous formulas and are 
equal to w1 = 1.155 and w2 = -2.309.  In the more general N sample case with arbitrary 
inputs and output, the error is not zero and we can write: 

XWdyd −=−=ε ,     (5) 
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In the above notation, ε, d and y are now N length vectors, X is a N x 2 matrix that 

contains the input vectors as columns and W is a weight vector of length 2.  Obviously, 
the above situation can be generalized to M input attributes, but using two inputs will 
allow us to show the results using two-dimensional plots.   

In our case, where N = 6, we can write the result explicitly as: 
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THE QUADRATIC ERROR SURFACE 
Now, let us look at ways to compute the weights without knowing the explicit form of 

the inputs.  Squaring the error using vector notation, we get: 

XWdXWXWdd TTTTT 2−+=εε .   (6) 
 
Equation 6 can be re-written in the following way: 
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where . and XdPXXR TTT ==   The matrix R is the cross-correlation matrix of the input 
vectors and the vector P is the cross-correlation of the desired output with the input.  
Note that to make these matrices true covariance matrices they should be normalized by 
dividing by N.  However, in geophysical analysis this is often not done and in our 
example the values are easier to interpret if they are not normalized by dividing by 6.  In 
our numerical example, R is computed as: 
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Before discussing the many ways that we can solve for the weights, note that the 

difference between the squared sum of the errors and the squared sum of the desired 
values results in a single value that we can call the quadratic error (QE): 

.  WPRWWdQE TT
N

k
k

N

k
k 2

1

2

1

2 −=−= ∑∑
==

ε .   (8) 

 
This suggests a “trial-and-error” approach to finding the correct weights by computing 

the quadratic error for a wide range of weight values and identifying the minimum value 
of the error.  This involves searching the quadratic error surface, as shown in Figure 3. 



Russell 

6 CREWES Research Report — Volume 29 (2017)  

 

 

Figure 2: The quadratic error surface from equation 8, where on  the left is a 3D view of the error 
surface and on the right is the contoured map, where we note that the correct weights are found 
at the minimum error. 

As seen in Figure 2, the minimum of the error surface, which looks like an elliptical 
bowl, is indeed at the correct result.  In the next section we will look at ways of making 
an estimate of the weights and then updating this estimate and moving down the “bowl” 
until we reach the minimum. 

THE LEAST-SQUARES SOLUTION 
To move from one point on the bowl in Figure 2 to the minimum, we first need to 

compute the gradient.  The gradient of the mean-square-error can be obtained by 
differentiating the error with respect to the weights, or: 
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2εξ is the squared error.  If we had normalized the covariances we would 

have also divided this term by N and it would be the mean-square-error, but again we will 
use the un-normalized terms.  Also note that theoretically there should be a factor two in 
front of both R and P in equation 9.  Many authors, including Widrow and Stearns 
(1985), include this factor in their derivations.  However, the discussion is identical, and a 
bit simpler, if we remove the factor of 2, as do most books on optimization (e.g. Murray 
et al., 1986).   The obvious solution to equation 9 is to set the gradient to zero and invert 
R, giving: 
 

 PRW 1−= .     (10) 
 

Equation 10 is called the least-squares solution, and in our case gives the correct 
answer, as shown below: 
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But for large geophysical and neural network problems, the least-squares solution is 
rarely an option due to the size of the datasets, and we need to find more efficient 
methods which involving “searching” for a solution.  These methods will be discussed in 
the next section. 

GRADIENT DESCENT METHODS 
All search methods for finding the best solution for a linear problem (i.e. the 

minumum shown in Figure 2 start with an initial guess set of weights and then iterate 
towards the answer using the gradient computed in equation 9 in some way.  That is: 

MiWWW iii ,,1,0  where,1 =∆+=+ .   (11) 
If you know the correlation matrix R, a technique called Newton’s method will find 

the solution in a single iteration, or 
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Substituting for the gradient makes it clear why this is so: 
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Simplifying, we get the result 

( ) PRPRWWW 11
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Figure 4 shows that regardless of our initial guess, we converge to the correct answer 

in one step using Newton’s method.  

 

Figure 4: In Newton’s method, given in equation 12, we converge to the correct solution in one 
iteration no matter whether our starting guess is (0,0) as shown on the left or (2,-1)  as shown on 
the right. 
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But Newton’s method is a bit of a “cheat”, since if we have to compute the matrix 
inverse, why not just perform the full inversion?  The most common iterative method in 
which we do not compute the full inverse first is called steepest descent, or gradient 
descent, and can be written very simply as: 

,,,0  ,1 MiWW iiii =∇−=+ α     (13) 
where α is called the step size. The most crucial choice in steepest descent is therefore 
the value of the step size α.  It can be shown the value of the step size should be 
somewhere between 0 and the 2 divided by the largest eigenvalue of the matrix R, or:  
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α  

The eigenvalues of R are λmax = 4.5 and λmin = 1.5, so 2/λmax = 0.444 is the largest 
value before the steepest descent algorithm will become unstable.  The optimum value of 
α is given by the equation: 
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Using equation 14, the step size is thus re-computed after each iteration of the steepest 
descent algorithm.  This value equals 0.333 for the first step, which is the average of the 
two eigenvalues (there is probably a mathematical reason for this, but the author has not 
figured it out!).  Equation 14 is called line minimization and is the optimal solution in 
most cases.  However, in some problems this can lead to instability and you are better off 
just fixing a constant value for the step size using trial and error.  A small step size will 
result in more iterations, but the path will be very smooth and gradual.  A large step size 
will converge faster and will thus require fewer iterations, but it runs the risk of causing 
instability. 

Figure 5 shows the path taken by the steepest descent algorithm using the optimum 
step size given in equation 14, starting at an initial guess of W0T = [0, 0].   

 

 

Figure 5: The steps in the steepest descent algorithm for our example. 
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Note also in Figure 5 that each step is orthogonal to the previous step.  Finally, note 
that the first step is the largest and for a step size of 0.333 it is computed as: 
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The conjugate gradient (CG) algorithm (Hestenes and Steifel, 1952) is a refinement of 
steepest descent.  The CG method is not discussed by Widrow and Stearns (1985) since it 
falls more into the domain of mathematical optimization (Gill et al., 1986).  It starts with 
the first step from steepest descent, as defined in equation 15. Next, the algorithm finds 
the “conjugate” to this first direction, where conjugate vectors pi and pj are defined in the 
following way using our correlation matrix R: 
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T
i ≠=   where,0 .    (16) 

Without going into the details (see Hagan et al., 1996 for an excellent derivation of the 
algorithm), the conjugate gradient algorithm can be written:  
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only the gradient calculation but does so in a way to ensure the conjugacy of each 
successive step.  To show that this works on our dataset, note that the calculations for the 
first two conjugate gradient directions give: 
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The convergence of conjugate gradient algorithm when applied to our problem is 
shown in Figure 6 as the red curve. 

 

Figure 6: The steps in the conjugate gradient (CG) algorithm for our example (red).  Note that CG 
converges in two steps, which is the number of weights being in the problem.  The steepest 
descent algorithm is shown in blue. 
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For comparison purposes, the steepest descent path is shown in blue in Figure 6.  Note 
that the conjugate gradient method shown in Figure 6 converges to the correct answer in 
two steps.  It can be shown mathematically that the conjugate gradient method always 
converges to the correct answer in the same number of iterations as the number of 
unknown weights. Note that the first step for both steepest descent and conjugate gradient 
is identical.  The second step of the conjugate gradient method gives the correct weights, 
as shown in the following calculation: 
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Note in the above calculation that α1 equals the maximum allowable step size of 2 

divided by the largest eigenvalue.  (Again, there must be a good theoretical explanation 
for this, but the author has not found it!). 

THE LEAST-MEAN-SQUARE (LMS) ALGORITHM 
Finally, we shall discuss the Least-Mean-Square, or LMS, algorithm.  Note that the 

gradient descent methods we described in the last section, steepest descent and conjugate 
gradient, assumed that all the data had been recorded before the analysis started, and 
therefore the correlation matrix and cross-correlation vector could be calculated.  
However, what if the data arrives sample by sample, as in our initial example?  In this 
case remember that the error at each input sample is given by: 
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Thus, we are now going back to the situation shown in Figures 1 and 2.  

Also recall the definition of the gradient, and note that for our two weight example we 
can write: 
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This suggests that we can update the weights after each sample, as follows: 

T
kkkkkk XWWW αεα 21 +=∇−=+ .   (20) 

This is called the Least-Mean-Square, or LMS, algorithm. Since the full correlation 
matrix is not available, the step size α cannot be calculated for each step, so it is set to a 
reasonable value for the complete set of iterations.  We can now update Figure 2 to show 
the LMS algorithm in block diagram form.  This diagram is shown in Figure 7.  Note that 
this is a feedback approach in which the weights are adaptively updated. 
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Figure 7: In the LMS algorithm the error is fed back into the algorithm after each sample is input 
and the weights are adjusted. 

The LMS solution to our problem is shown in Figure 8, with α set to 0.333, as in the 
first step of steepest descent and conjugate gradient.  In Figure 8, the path taken by the 
LMS algorithm is shown in red.  The conjugate gradient path is shown in blue for 
comparison purposes.  Note that the LMS path is chaotic at first but soon takes on 
orthogonal steps like steepest descent. 

 

 

Figure 8: The steps in the LMS algorithm for our example are shown in red.  The steps in the 
conjugate gradient algorithm are shown in blue. 

 
Figure 9 shows the convergence of the LMS algorithm.  In the figure, the red curve 

shows the true desired sinusoid and the blue curve shows the LMS prediction after each 
iteration.  This plot is interesting for two reasons.  First, in our previous discussion of the 
full least-squares inverse, Newton’s algorithm, and the steepest descent and conjugate 
gradient algorithms, note that we only used one period of the sinusoid, or 6 samples.   In 
Figure 8 we see that after only 6 iterations, the LMS algorithm has got the shape of the 
curve fairly correct, but not its amplitude.  Since we are dealing with simple sinusoids in 
this problem, we can continue to feed values into the LMS algorithm.  Note that it the fit 
is not perfect until after about 20 iterations. 
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Figure 9: Convergence to the correct answer using the LMS algoithm as a function of iteration 
number, where the red curve is the correct answer and the blue curve is the LMS result.  Note 
that it has converged after 20 iterations. 

A DECONVOLUTION EXAMPLE 
In this last section, we will apply the theory just developed for a sinusoidal example to 

a geophysical example.  Specifically, we will look at wavelet deconvolution (see, for 
example, Claerbout, 1976).  This starts with and understanding of the forward 
convolutional model shown in Figure 10.  In this figure, we convolve the simple zero-
phase wavelet shown at the top of the figure with the two-spike reflectivity shown in the 
middle panel to produce the output seismic trace at the bottom of the figure.   

 

Figure 10: The wavelet in the top panel is convolved with the reflectivity in the middle panel to 
produce the seismic trace in the bottom panel. 

The wavelet can be written in vector format as [ ]5.01215.0 −−=Tw , where we 
have dropped the zeros at each end of the wavelet shown in Figure 9.  The reflectivity can 
be written as [ ]11 −=Tr , where again we have dropped the zeros, and the seismic trace 
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as [ ]5.05.1335.15.0 −−−=Ts . There are many different ways of writing the 
convolution operation, but the easiest to visualize is the convolutional matrix approach, in 
which the wavelet appears as shifted columns in a wavelet matrix, where there are as 
many columns as there are reflection coefficients, and this matrix is multiplied times the 
reflectivity vector.  This approach is shown below: 

sWr = ,     (21) 

where 
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Note that this is a classic “thin-bed tuning” example, since the final seismic trace, 
which is the convolution of a zero-phase wavelet with a closely spaced dipole, looks like 
a single ninety degree phase wavelet.  This is a very difficult problem to solve, because in 
general we do not know the true wavelet shape.  However, in this problem we will 
assume we know the correct shape of the wavelet as well as the observed seismic trace. 
and can solve the problem using the least-squares method: 

 
sWPWWRPRr TT === −  and   where,1 .   (22) 

 
Numerically, R and P can be computed as: 
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which gives the correct answer as shown below: 
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Next, let’s see how well our gradient search methods perform.  First, we will look at 

the quadratic error plot, shown in Figure 11, in which we have indicated the correct 
answer as the red circle and an initial guess of rT = [-1, -1]. 

 

Figure 11: The quadratic error plot for the deconvolution example, where the red circle is the 
correct answer and the blue square is the starting guess for the gradient search methods. 

The steepest descent path is then shown in Figure 12.  Note that steepest descent has 
converged to the correct answer and has actually converged quite rapidly, in about four 
steps.   

 

Figure 12: The path for the steepest descent algorithm, which has converged to the correct result. 

The conjugate gradient solution is shown in Figure 13 and, as expected, has converged 
in two iterations.   
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Figure 13: The path for the conjugate gradient algorithm, which has converged to the correct 
result. 

In creating the results shown in Figures 12 and 13, several interesting differences 
between steepest descent and conjugate gradient came to light.  It turns out that in using 
the line minimization method of equations 14 and 17 (for the α and β terms) both 
methods “blow up” after the first iteration for some choices of the initial guess. (For 
example, an initial guess of rT = [0, 0] causes this problem, which is why I did not use 
this as a guess).  This problem is easily fixed in steepest descent by using the simpler 
approach of finding a constant step size by trial and error.  However, the conjugate 
gradient method is based on finding these optimal parameters, and thus does not give any 
added advantage over steepest descent in the case of instability.  

Finally, Figure 14 shows the result of the least-mean-square, or LMS, algorithm.  In 
this case the path is moving in the right direction but stops at values of rT = [0.5, -1] 
before converging to the correct result.  This is because of the few samples presented to it 
in this simpler problem.  In the more realistic problem where the seismic trace and 
reflectivity are much longer, the algorithm should converge correctly.  In fact, there is the 
added advantage that since LMS is an adaptive algorithm, a time varying wavelet could 
be estimated. 
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Figure 14: The path for the LMS algorithm, which has not converged to the correct result due to 
an insufficient number of measurements. 

CONCLUSIONS 

In this report, I have presented a tutorial on linear optimization techniques, such as the 
steepest descent and gradient descent algorithms, but have included an algorithm that is 
never discussed in the mathematical literature on optimization, the least-mean-square, or 
LMS, algorithm.   The LMS algorithm is an adaptive algorithm that was developed in the 
electrical engineering community and has found great success in such applications as the 
adaptive equalization of telephone channels and blood pressure regulation (see Widrow 
and Stearns, 1985).   

The key example used in this talk involved computing the weights which, when 
applied to two sampled sinusoids of the same frequency but different phase, produced an 
output which would cancel a third sinusoid of the same frequency and a different phase 
and amplitude.  This example was used for two reasons.  First, the weights can be 
computed exactly from a trigonometric identity, so we know what the right answer is 
from the start.  Second, because a sinusoid is infinitely repeating, cycle by cycle, we can 
make the input and desired output as long or as short as we want.  Thus, for the least-
squares, steepest descent and conjugate gradient algorithms, we used only the first cycle 
of our sampled sinusoids, which involved only 6 samples. For the LMS algorithm, which 
adapts on a sample by sample basis, we were able to continue the input and output for 
three cycles, until the algorithm converged. 

In geophysics, we make great use of both the steepest descent and conjugate gradient 
algorithms since we always have our data recorded before we analyze it.  Thus, our 
second example showed how to solve the deconvolution problem using least-squares, 
steepest descent and conjugate gradient.  However, the LMS algorithm is rarely used in 
geophysical processing and we therfore looked at how this method would work on a 
deconvolution problem.  Although the method did not converge completely in our 
example because of the lack of samples, it would work well on longer datasets and also 
potentially solve the problem of time-varying wavelets. 

The one area that has made use of all three methods, particularly the LMS algorithm, 
is neural network analysis and machine learning (Rummmelhart et al., 1986), which we 
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did not discuss today.  Neural networks are being used more and more in geophysical 
analysis, so an understanding of the LMS algorithm will lead naturally to an 
understanding of neural networks. 
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