
The Least-Mean-Square (LMS) algorithm

 CREWES Research Report — Volume 29 (2017) 1

The Least-Mean-Square (LMS) algorithm and its geophysical
applications

Brian Russell1

1 Hampson-Russell, A CGG GeoSoftware Company, Calgary, Alberta, brian.russell@cgg.com

ABSTRACT
In geophysical analysis, we are familiar with the least-squares or Wiener-Levinson

algorithm since is the basis for solving many of our most common processing problems.
The least-squares method is applied to problems in which a set of unknown weights are
extracted which transform a measured signal into a desired signal. To apply the least-
squares algorithm the signal must first be fully acquired, which is standard practice in
seismic acquisition. The least-mean-square (LMS) algorithm, on the other hand, is an
adaptive filter that does not require knowledge of the full signal, but determines the
weights adaptively on a sample by sample basis. The LMS algorithm was developed in
the electrical engineering community and has found great success in such applications as
the adaptive equalization of telephone channels and blood pressure regulation. It also lead
to the development of the first feedforward neural networks, which were only able to
solve linearly separable problems. The LMS algorithm was then was extended to
feedforward networks that could solve nonlinearly separable problems. Thus, an
understanding of the LMS algorithm is the first step in understanding neural networks
and machine learning. In this study I will not specifically look at neural network
algorithms but rather will focus the least-squares technique and gradient search methods
such as steepest descent and conjugate gradient, and then see how LMS compares to
these methods. To this this, I will use two straightforward examples, one from electrical
engineering and one from geophysics.

The geophysical example will be the wavelet deconvolution problem. We will first
solve wavelet deconvolution using the least-squares, steepest descent and conjugate
gradient algorithms. These methods all converge to the correct result. We will then look
at how the LMS algorithm works on the deconvolution problem. Although LMS does
not converge completely in our example because of the lack of samples, it works much
better on longer datasets and also potentially solves the problem of time-varying
wavelets.

INTRODUCTION
The least-mean-square (LMS) algorithm is an adaptive filter that was first developed

by Widrow and Hoff (1960). Along with the perceptron learning rule (Rosenblatt, 1962)
this lead to the development of the first feedforward neural networks, which were able to
solve linearly separable problems. The extension to feedforward networks that could
solve nonlinearly separable problems by Rumelhart et al. (1986) also relied on LMS.
Thus, an understanding of the LMS algorithm is the first step in understanding neural
networks and machine learning. In this talk, I will first use an electrical engineering
example from Widrow and Stearns (1985) to explain the LMS algorithm, and also discuss
the full least-squares, gradient descent and conjugate gradient methods.

mailto:brian.russell@cgg.com

Russell

2 CREWES Research Report — Volume 29 (2017)

My second example comes from geophysics, in which I perform wavelet
deconvolution (Claerbout, 1976). In this example, we will first solve the deconvolution
problem using the least-squares, steepest descent and conjugate gradient algorithms.
These methods all converge to the correct result. Since the LMS algorithm is not
currently used in geophysical processing and we then look at how this method works on
the deconvolution problem.

AN ELECTRICAL ENGINEERING PROBEM
Consider a sinusoid sampled N times per cycle and which is input sample by sample

into an electrical system and then delayed by n samples, as shown in Figure 1. Both
signals are recorded and are then weighted, summed and subtracted from a desired
sinusoidal output to produce an error εk. Figure 1 shows the kth sample of both the input
sinusoid and desired sinusoid entering the system. This is a typical electrical engineering
systems problem and is called an adaptive transversal filter (Widrow and Stearns, 1985).

Figure 1: The problem as an electrical system, where an input sinusoid recorded and then shifted
by n samples, and then the two signals are weighted and summed and subtracted from a desired
signal to produce an error.

The same problem is shown in Figure 2 but now the two sinusoids (still with the same
frequency and the second input shifted by n samples) are input as separate signals into
two different channels. On output the signals are still weighted and summed and then
subtracted from a desired signal to produce an error ek.

Figure 2: The same problem as in Figure 1, except that the two signals are recorded as separate
channels, and then are weighted and summed and subtracted from a desired signal to produce
an error.

The Least-Mean-Square (LMS) algorithm

 CREWES Research Report — Volume 29 (2017) 3

Although the signals in Figure 2 are the same as those in Figure 1, there is no reason to
assume that the two signals are related in any way, and we do this only to make the
problem tractable. Thus, this way of conceptualizing the problem is much more
amenable to seismic filtering and neural networks and is the approach we will adopt in
this study.

Mathematically, we can write the problem in the following form:

kkkkk dxwxwy ε+=+= 2211 (1)

by explicitly writing the input terms, we can re-write equation 1 as:

kN
k

N
nkw

N
kw επππ

+





=






 −

+





 2cos2)(2sin2sin 21 (2)

We know that this problem has an exact solution from the trigonometric double angle
formula that will always produce zero error, which you will recall is given by:

)sin()cos()cos()sin()sin(βαβαβα AAA −=− .

Substituting the terms in equation 2 into the well known formula given above allows
us to re-write the problem as:















−














=






 −

N
n

N
kw

N
n

N
kw

N
n

N
kw ππππππ 2sin2cos2cos2sin22sin 222 , (3)

which leads to the following explicit solution for the weights:

 2csc2
2sin

12 and 2cot2
2sin

2cos
2 21 






−=









−=





=

















=
N

n

N
n

w
N

n

N
n

N
n

w π
π

π
π

π

. (4)

Note that the above analysis assumes that we know the actual mathematical form of

the input and desired signals, in which case the weights in Figure 1 and 2 could be pre-set
to these values. However, the weights shown in both figures are adjustable and the key to
the LMS algorithm is to adjust these weights after each set of values is received (i.e. the
kth set of inputs and desired signal). Later in the study we will get back to the LMS
algorithm and how the weights are adjusted. However, first we will look at several other
ways of computing the weights: the full least-squares method, the Newton method, and
the steepest descent and conjugate gradient methods.

In geophysical measurements we record all the data first as a complete time series,

rather than analyzing one sample at a time. So let us assume that in Figures 1 and 2 we
run the system until we have recorded one full waveform of the two inputs and the

Russell

4 CREWES Research Report — Volume 29 (2017)

desired signal. If we let N = 6 and n = 1, so that the frequency and phase increments are
both equal to π /3, then one complete period of the inputs and output requires that k = 0,
1,…,5, and we can write equation 1 as the weighted sum of two vectors as shown here
(where the error is now equal to zero):

























−
−
−

=

























−

−

−

























−
−

=

1
1
2
2

1
2

866.0
0
866.0
866.0
0
866

309.2

866.0
866.0
0
866.0
866.0
0

155.1y .

Note that the numbers are repetitive since .
2
1

3
cos and 866.0

2
3

3
sin =






==






 ππ Also,

the weights shown above were computed analytically from the previous formulas and are
equal to w1 = 1.155 and w2 = -2.309. In the more general N sample case with arbitrary
inputs and output, the error is not zero and we can write:

XWdyd −=−=ε , (5)

where 







=



















=



















=

−−−

2

1

2,11,1

1211

0201

1

1

0

 and ,
w
w

W

xx

xx
xx

X

d

d
d

d

NNN


.

In the above notation, ε, d and y are now N length vectors, X is a N x 2 matrix that

contains the input vectors as columns and W is a weight vector of length 2. Obviously,
the above situation can be generalized to M input attributes, but using two inputs will
allow us to show the results using two-dimensional plots.

In our case, where N = 6, we can write the result explicitly as:

























=

























−

−

−

−







−

























−−
−

−

=−=

0
0
0
0
0
0

5.0
5.1
3

3
5.1

5.0

309.2
155.1

866.0866.0
0866.0
866.00
866.0866.0
0866.0
866.00

dXWε .

The Least-Mean-Square (LMS) algorithm

 CREWES Research Report — Volume 29 (2017) 5

THE QUADRATIC ERROR SURFACE
Now, let us look at ways to compute the weights without knowing the explicit form of

the inputs. Squaring the error using vector notation, we get:

XWdXWXWdd TTTTT 2−+=εε . (6)

Equation 6 can be re-written in the following way:

WPRWWd TT
N

k
k

N

k
k 2

1

2

1

2 −−=∑∑
==

ε , (7)

where . and XdPXXR TTT == The matrix R is the cross-correlation matrix of the input
vectors and the vector P is the cross-correlation of the desired output with the input.
Note that to make these matrices true covariance matrices they should be normalized by
dividing by N. However, in geophysical analysis this is often not done and in our
example the values are easier to interpret if they are not normalized by dividing by 6. In
our numerical example, R is computed as:

35.1
5.13

866.0866.0
0866.0
866.00
866.0866.0
0866.0
866.00

866.00866.0866.00866.0
866.0866.00866.0866.00









=

























−−
−

−









−−

−
=R ,

and P as:









−

=

























−

−

−









−−

−
=

196.5
0

5.0
5.1
3

3
5.1

5.0

866.00866.0866.00866.0
866.0866.00866.0866.00

P

Before discussing the many ways that we can solve for the weights, note that the

difference between the squared sum of the errors and the squared sum of the desired
values results in a single value that we can call the quadratic error (QE):

. WPRWWdQE TT
N

k
k

N

k
k 2

1

2

1

2 −=−= ∑∑
==

ε . (8)

This suggests a “trial-and-error” approach to finding the correct weights by computing

the quadratic error for a wide range of weight values and identifying the minimum value
of the error. This involves searching the quadratic error surface, as shown in Figure 3.

Russell

6 CREWES Research Report — Volume 29 (2017)

Figure 2: The quadratic error surface from equation 8, where on the left is a 3D view of the error
surface and on the right is the contoured map, where we note that the correct weights are found
at the minimum error.

As seen in Figure 2, the minimum of the error surface, which looks like an elliptical
bowl, is indeed at the correct result. In the next section we will look at ways of making
an estimate of the weights and then updating this estimate and moving down the “bowl”
until we reach the minimum.

THE LEAST-SQUARES SOLUTION
To move from one point on the bowl in Figure 2 to the minimum, we first need to

compute the gradient. The gradient of the mean-square-error can be obtained by
differentiating the error with respect to the weights, or:

PRW
W

−=
∂
∂

=∇
ξ , (9)

where ∑
=

=
N

k
k

1

2εξ is the squared error. If we had normalized the covariances we would

have also divided this term by N and it would be the mean-square-error, but again we will
use the un-normalized terms. Also note that theoretically there should be a factor two in
front of both R and P in equation 9. Many authors, including Widrow and Stearns
(1985), include this factor in their derivations. However, the discussion is identical, and a
bit simpler, if we remove the factor of 2, as do most books on optimization (e.g. Murray
et al., 1986). The obvious solution to equation 9 is to set the gradient to zero and invert
R, giving:

 PRW 1−= . (10)

Equation 10 is called the least-squares solution, and in our case gives the correct
answer, as shown below:

The Least-Mean-Square (LMS) algorithm

 CREWES Research Report — Volume 29 (2017) 7









−

=







−








−

−
=








−








=

−

309.2
155.1

196.5
0

444.0222.0
222.0444.0

196.5
0

35.1
5.13 1

W .

But for large geophysical and neural network problems, the least-squares solution is
rarely an option due to the size of the datasets, and we need to find more efficient
methods which involving “searching” for a solution. These methods will be discussed in
the next section.

GRADIENT DESCENT METHODS
All search methods for finding the best solution for a linear problem (i.e. the

minumum shown in Figure 2 start with an initial guess set of weights and then iterate
towards the answer using the gradient computed in equation 9 in some way. That is:

MiWWW iii ,,1,0 where,1 =∆+=+ . (11)
If you know the correlation matrix R, a technique called Newton’s method will find

the solution in a single iteration, or

0
1

01 ∇−= −RWW . (12)
Substituting for the gradient makes it clear why this is so:

() PRRWRWPRWRWW 1
0

1
00

1
01

−−− +−=−−= .
Simplifying, we get the result

() PRPRWWW 11
001

−− =+−= .
Figure 4 shows that regardless of our initial guess, we converge to the correct answer

in one step using Newton’s method.

Figure 4: In Newton’s method, given in equation 12, we converge to the correct solution in one
iteration no matter whether our starting guess is (0,0) as shown on the left or (2,-1) as shown on
the right.

Russell

8 CREWES Research Report — Volume 29 (2017)

But Newton’s method is a bit of a “cheat”, since if we have to compute the matrix
inverse, why not just perform the full inversion? The most common iterative method in
which we do not compute the full inverse first is called steepest descent, or gradient
descent, and can be written very simply as:

,,,0 ,1 MiWW iiii =∇−=+ α (13)
where α is called the step size. The most crucial choice in steepest descent is therefore
the value of the step size α. It can be shown the value of the step size should be
somewhere between 0 and the 2 divided by the largest eigenvalue of the matrix R, or:

. of eigenvaluelargest where,20 max
max

R=<< λ
λ

α

The eigenvalues of R are λmax = 4.5 and λmin = 1.5, so 2/λmax = 0.444 is the largest
value before the steepest descent algorithm will become unstable. The optimum value of
α is given by the equation:

iteration.first for the 333.0=
∇∇
∇∇

=
i

T
i

i
T
i

i R
α . (14)

Using equation 14, the step size is thus re-computed after each iteration of the steepest
descent algorithm. This value equals 0.333 for the first step, which is the average of the
two eigenvalues (there is probably a mathematical reason for this, but the author has not
figured it out!). Equation 14 is called line minimization and is the optimal solution in
most cases. However, in some problems this can lead to instability and you are better off
just fixing a constant value for the step size using trial and error. A small step size will
result in more iterations, but the path will be very smooth and gradual. A large step size
will converge faster and will thus require fewer iterations, but it runs the risk of causing
instability.

Figure 5 shows the path taken by the steepest descent algorithm using the optimum
step size given in equation 14, starting at an initial guess of W0T = [0, 0].

Figure 5: The steps in the steepest descent algorithm for our example.

The Least-Mean-Square (LMS) algorithm

 CREWES Research Report — Volume 29 (2017) 9

Note also in Figure 5 that each step is orthogonal to the previous step. Finally, note
that the first step is the largest and for a step size of 0.333 it is computed as:









−

=







−








=∇−=

733.1
0

2.5
0

3
1

0
0

0001 αWW . (15)

The conjugate gradient (CG) algorithm (Hestenes and Steifel, 1952) is a refinement of
steepest descent. The CG method is not discussed by Widrow and Stearns (1985) since it
falls more into the domain of mathematical optimization (Gill et al., 1986). It starts with
the first step from steepest descent, as defined in equation 15. Next, the algorithm finds
the “conjugate” to this first direction, where conjugate vectors pi and pj are defined in the
following way using our correlation matrix R:

jiRpp j
T
i ≠= where,0 . (16)

Without going into the details (see Hagan et al., 1996 for an excellent derivation of the
algorithm), the conjugate gradient algorithm can be written:

iiii pWW α+=+1 , (17)

. where, and where
11

1i00
−−

− ∇∇
∇∇

=+−∇=−∇=
i

T
i

i
T
i

iiii ppp ββ Note that each step utilizes

only the gradient calculation but does so in a way to ensure the conjugacy of each
successive step. To show that this works on our dataset, note that the calculations for the
first two conjugate gradient directions give:

[] 0
3.1

6.2
35.1
5.13

2.50
3.1

6.2
,

2.5
0

10100 =







−








−=⇒








−

=







−

=−∇= Rpppp T ,

The convergence of conjugate gradient algorithm when applied to our problem is
shown in Figure 6 as the red curve.

Figure 6: The steps in the conjugate gradient (CG) algorithm for our example (red). Note that CG
converges in two steps, which is the number of weights being in the problem. The steepest
descent algorithm is shown in blue.

Russell

10 CREWES Research Report — Volume 29 (2017)

For comparison purposes, the steepest descent path is shown in blue in Figure 6. Note
that the conjugate gradient method shown in Figure 6 converges to the correct answer in
two steps. It can be shown mathematically that the conjugate gradient method always
converges to the correct answer in the same number of iterations as the number of
unknown weights. Note that the first step for both steepest descent and conjugate gradient
is identical. The second step of the conjugate gradient method gives the correct weights,
as shown in the following calculation:









−

=







−

+







−

=+=
31.2

15.1
3.1

6.2
444.0

733.1
0

1112 pWW α .

Note in the above calculation that α1 equals the maximum allowable step size of 2

divided by the largest eigenvalue. (Again, there must be a good theoretical explanation
for this, but the author has not found it!).

THE LEAST-MEAN-SQUARE (LMS) ALGORITHM
Finally, we shall discuss the Least-Mean-Square, or LMS, algorithm. Note that the

gradient descent methods we described in the last section, steepest descent and conjugate
gradient, assumed that all the data had been recorded before the analysis started, and
therefore the correlation matrix and cross-correlation vector could be calculated.
However, what if the data arrives sample by sample, as in our initial example? In this
case remember that the error at each input sample is given by:

[]
k

kkkkkkkkk w
w

xxdWXdyd 







−=−=−=

2

1
21ε . (18)

Thus, we are now going back to the situation shown in Figures 1 and 2.

Also recall the definition of the gradient, and note that for our two weight example we
can write:

T
kk

k

k
k

k

k

k
k

k

k X
x
x

w

w

w

w εεε

ε

ε
ε

ε

222
2

1

2

1

2

2
1

2

−=







−=



















∂
∂
∂
∂

=



















∂
∂
∂
∂

=∇ . (19)

This suggests that we can update the weights after each sample, as follows:

T
kkkkkk XWWW αεα 21 +=∇−=+ . (20)

This is called the Least-Mean-Square, or LMS, algorithm. Since the full correlation
matrix is not available, the step size α cannot be calculated for each step, so it is set to a
reasonable value for the complete set of iterations. We can now update Figure 2 to show
the LMS algorithm in block diagram form. This diagram is shown in Figure 7. Note that
this is a feedback approach in which the weights are adaptively updated.

The Least-Mean-Square (LMS) algorithm

 CREWES Research Report — Volume 29 (2017) 11

Figure 7: In the LMS algorithm the error is fed back into the algorithm after each sample is input
and the weights are adjusted.

The LMS solution to our problem is shown in Figure 8, with α set to 0.333, as in the
first step of steepest descent and conjugate gradient. In Figure 8, the path taken by the
LMS algorithm is shown in red. The conjugate gradient path is shown in blue for
comparison purposes. Note that the LMS path is chaotic at first but soon takes on
orthogonal steps like steepest descent.

Figure 8: The steps in the LMS algorithm for our example are shown in red. The steps in the
conjugate gradient algorithm are shown in blue.

Figure 9 shows the convergence of the LMS algorithm. In the figure, the red curve

shows the true desired sinusoid and the blue curve shows the LMS prediction after each
iteration. This plot is interesting for two reasons. First, in our previous discussion of the
full least-squares inverse, Newton’s algorithm, and the steepest descent and conjugate
gradient algorithms, note that we only used one period of the sinusoid, or 6 samples. In
Figure 8 we see that after only 6 iterations, the LMS algorithm has got the shape of the
curve fairly correct, but not its amplitude. Since we are dealing with simple sinusoids in
this problem, we can continue to feed values into the LMS algorithm. Note that it the fit
is not perfect until after about 20 iterations.

Russell

12 CREWES Research Report — Volume 29 (2017)

Figure 9: Convergence to the correct answer using the LMS algoithm as a function of iteration
number, where the red curve is the correct answer and the blue curve is the LMS result. Note
that it has converged after 20 iterations.

A DECONVOLUTION EXAMPLE
In this last section, we will apply the theory just developed for a sinusoidal example to

a geophysical example. Specifically, we will look at wavelet deconvolution (see, for
example, Claerbout, 1976). This starts with and understanding of the forward
convolutional model shown in Figure 10. In this figure, we convolve the simple zero-
phase wavelet shown at the top of the figure with the two-spike reflectivity shown in the
middle panel to produce the output seismic trace at the bottom of the figure.

Figure 10: The wavelet in the top panel is convolved with the reflectivity in the middle panel to
produce the seismic trace in the bottom panel.

The wavelet can be written in vector format as []5.01215.0 −−=Tw , where we
have dropped the zeros at each end of the wavelet shown in Figure 9. The reflectivity can
be written as []11 −=Tr , where again we have dropped the zeros, and the seismic trace

The Least-Mean-Square (LMS) algorithm

 CREWES Research Report — Volume 29 (2017) 13

as []5.05.1335.15.0 −−−=Ts . There are many different ways of writing the
convolution operation, but the easiest to visualize is the convolutional matrix approach, in
which the wavelet appears as shifted columns in a wavelet matrix, where there are as
many columns as there are reflection coefficients, and this matrix is multiplied times the
reflectivity vector. This approach is shown below:

sWr = , (21)

where

























−

−

−

=







−

























−
−

−
−

=⇒







−

=

























−
−

−
−

=

5.0
5.1
3

3
5.1

5.0

1
1

00
15.0

21
12
5.01

05.0

1
1

 and

00
15.0

21
12
5.01

05.0

srW .

Note that this is a classic “thin-bed tuning” example, since the final seismic trace,
which is the convolution of a zero-phase wavelet with a closely spaced dipole, looks like
a single ninety degree phase wavelet. This is a very difficult problem to solve, because in
general we do not know the true wavelet shape. However, in this problem we will
assume we know the correct shape of the wavelet as well as the observed seismic trace.
and can solve the problem using the least-squares method:

sWPWWRPRr TT === − and where,1 . (22)

Numerically, R and P can be computed as:









−

−
=

























−
−

−
−









−−

−−
=

5.65
55.6

00
15.0

21
12
5.01

05.0

5.01215.00
05.01215.0

R ,









−

=

























−

−

−









−−

−−
=

5.11
5.11

5.0
5.1
3

3
5.1

5.0

5.01215.00
05.01215.0

 and P ,

which gives the correct answer as shown below:

Russell

14 CREWES Research Report — Volume 29 (2017)









−

=







−








== −

1
1

5.11
5.11

377.029.0
29.0377.01PRr .

Next, let’s see how well our gradient search methods perform. First, we will look at

the quadratic error plot, shown in Figure 11, in which we have indicated the correct
answer as the red circle and an initial guess of rT = [-1, -1].

Figure 11: The quadratic error plot for the deconvolution example, where the red circle is the
correct answer and the blue square is the starting guess for the gradient search methods.

The steepest descent path is then shown in Figure 12. Note that steepest descent has
converged to the correct answer and has actually converged quite rapidly, in about four
steps.

Figure 12: The path for the steepest descent algorithm, which has converged to the correct result.

The conjugate gradient solution is shown in Figure 13 and, as expected, has converged
in two iterations.

The Least-Mean-Square (LMS) algorithm

 CREWES Research Report — Volume 29 (2017) 15

Figure 13: The path for the conjugate gradient algorithm, which has converged to the correct
result.

In creating the results shown in Figures 12 and 13, several interesting differences
between steepest descent and conjugate gradient came to light. It turns out that in using
the line minimization method of equations 14 and 17 (for the α and β terms) both
methods “blow up” after the first iteration for some choices of the initial guess. (For
example, an initial guess of rT = [0, 0] causes this problem, which is why I did not use
this as a guess). This problem is easily fixed in steepest descent by using the simpler
approach of finding a constant step size by trial and error. However, the conjugate
gradient method is based on finding these optimal parameters, and thus does not give any
added advantage over steepest descent in the case of instability.

Finally, Figure 14 shows the result of the least-mean-square, or LMS, algorithm. In
this case the path is moving in the right direction but stops at values of rT = [0.5, -1]
before converging to the correct result. This is because of the few samples presented to it
in this simpler problem. In the more realistic problem where the seismic trace and
reflectivity are much longer, the algorithm should converge correctly. In fact, there is the
added advantage that since LMS is an adaptive algorithm, a time varying wavelet could
be estimated.

Russell

16 CREWES Research Report — Volume 29 (2017)

Figure 14: The path for the LMS algorithm, which has not converged to the correct result due to
an insufficient number of measurements.

CONCLUSIONS

In this report, I have presented a tutorial on linear optimization techniques, such as the
steepest descent and gradient descent algorithms, but have included an algorithm that is
never discussed in the mathematical literature on optimization, the least-mean-square, or
LMS, algorithm. The LMS algorithm is an adaptive algorithm that was developed in the
electrical engineering community and has found great success in such applications as the
adaptive equalization of telephone channels and blood pressure regulation (see Widrow
and Stearns, 1985).

The key example used in this talk involved computing the weights which, when
applied to two sampled sinusoids of the same frequency but different phase, produced an
output which would cancel a third sinusoid of the same frequency and a different phase
and amplitude. This example was used for two reasons. First, the weights can be
computed exactly from a trigonometric identity, so we know what the right answer is
from the start. Second, because a sinusoid is infinitely repeating, cycle by cycle, we can
make the input and desired output as long or as short as we want. Thus, for the least-
squares, steepest descent and conjugate gradient algorithms, we used only the first cycle
of our sampled sinusoids, which involved only 6 samples. For the LMS algorithm, which
adapts on a sample by sample basis, we were able to continue the input and output for
three cycles, until the algorithm converged.

In geophysics, we make great use of both the steepest descent and conjugate gradient
algorithms since we always have our data recorded before we analyze it. Thus, our
second example showed how to solve the deconvolution problem using least-squares,
steepest descent and conjugate gradient. However, the LMS algorithm is rarely used in
geophysical processing and we therfore looked at how this method would work on a
deconvolution problem. Although the method did not converge completely in our
example because of the lack of samples, it would work well on longer datasets and also
potentially solve the problem of time-varying wavelets.

The one area that has made use of all three methods, particularly the LMS algorithm,
is neural network analysis and machine learning (Rummmelhart et al., 1986), which we

The Least-Mean-Square (LMS) algorithm

 CREWES Research Report — Volume 29 (2017) 17

did not discuss today. Neural networks are being used more and more in geophysical
analysis, so an understanding of the LMS algorithm will lead naturally to an
understanding of neural networks.

REFERENCES
Claerbout, J, 1976, Fundamentals of Geophysical Data Processing: McGraw Hill, Inc.
Gill, P.E., Murray, W., and Wright, M.H., 1981, Practical Optimization: Academic Press, New York.
Hagan, M.T., Demuth, H.B., and Beale, M., 1996, Neural Network Design: PWS, Boston.
Hestenes, M.R., and Stiefel, E., 1952, Methods of conjugate gradients for solving linear systems: Journal of

Research of the National Bureau of Standards, 29, 409-439.
Rosenblatt, M., 1958, The perceptron: A probabilistic model for information storage and organization in

the brain: Psychological Review, 65, 386-408.
Rummelhart, D.E., Hinton, G.E., and Williams, R.J., 1986, Learning representations of back-propagation

errors: Nature, 323, 533-536.
Widrow, B., and Hoff, M.E., 1960, Adaptive switching circuits: IRE WESCON Conv. Rec., pt. 4, p 96-104.
Widrow, B., and Stearns, S., 1985, Adaptive Signal Processing: Prentice-Hall, New York.

ACKNOWLEDGEMENTS
I want to thank my colleagues at the CREWES Project and at CGG and Hampson-

Russell for their support and ideas, as well as the sponsors of the CREWES Project.

	The Least-Mean-Square (LMS) algorithm and its geophysical applications
	ABSTRACT
	INTRODUCTION
	AN ELECTRICAL ENGINEERING PROBEM
	THE QUADRATIC ERROR SURFACE
	THE LEAST-SQUARES SOLUTION
	GRADIENT DESCENT METHODS
	THE LEAST-MEAN-SQUARE (LMS) ALGORITHM
	A DECONVOLUTION EXAMPLE
	REFERENCES
	Acknowledgements

