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ABSTRACT

Based on the linear slip fracture model, we first express stiffness matrix of tilted trans-
versely isotropic (TTI) media in terms of the normal and tangential fracture weakness-
es. Using perturbations in stiffness parameters for the case of an interface separating an
isotropic medium and a TTI medium, we derive a linearized P-to-P reflection coefficient
as a function of fracture weaknesses, in which titled fracture weaknesses involving effects
of tilt angle and fracture weaknesses emerge. Following a Bayesian framework, we pro-
pose an inversion approach to use amplitude differences between seismic data along two
azimuths to estimate the tangential fracture weakness and tilted normal and tangential frac-
ture weaknesses based on the derived and simplified reflection coefficient. Synthetic tests
confirm that the unknown parameter vector involving the tangential fracture weakness and
tilted fracture weaknesses is estimated stably and reliably in the case of seismic data con-
taining a moderate Gaussian noise. The inversion approach is also applied to a field data
set acquired from a fractured carbonate reservoir, from which reasonable results of tilted
fracture weaknesses are obtained. We conclude that the proposed inversion approach may
provide additional proofs for fracture characterization, and it also make the estimation of
tilt angle from observed seismic data for fractured reservoirs be available.

INTRODUCTION

Seismic wave propagation in most subsurface layers exhibits phenomenon of anisotropy.
Transversely isotropic (TI) model plays a important role in characterization of seismic wave
propagation in anisotropic media (Alkhalifah and Larner, 1994; Alkhalifah, 1995; Grech-
ka et al., 2001; Bakulin et al., 2010; Wang and Tsvankin, 2013). Rocks containing a set
of parallel vertical fractures is equivalent to horizontal transversely isotropic (HTI) media
(Schoenberg and Douma, 1988; Schoenberg and Sayers, 1995; Bakulin et al., 2000; Chen
et al., 2014), and finely layered rocks with a vertical symmetry axis are assumed to be ver-
tical transversely isotropic (VTI) media (Thomsen, 1986; Carcione, 1992; Berryman et al.,
1999; Carcione, 2000; Stovas et al., 2006). Moreover, TI media with a tilted symmetry
axis are named tilted TI (TTI) media, which are usually formed by rotating HTI media or
VTI media (Behera and Tsvankin, 2009; Fletcher et al., 2009; Nadri et al., 2012; Stovas
and Alkhalifah, 2013; Wang and Tsvankin, 2013; Wang and Peng, 2015; Shragge, 2016).
In the present study, we focus on the TTI media formed by rotating the vertically fractured
rocks (i.e. rocks containing a set of parallel fractures with a tilted symmetry axis).

Zoeppritz formula is proposed to describe how seismic wave energy partitions at a
reflection interface, which is well applied to measure exact reflection and transmission
coefficients of seismic wave (Shuey, 1985; Sheriff and Geldart, 1995; Aki and Richard-
s, 2002; Avseth et al., 2010), and it has been extended to weakly anisotropic media to
compute exact solutions of seismic wave transmission and reflection coefficients (Schoen-
berg and Protázio, 1992; Rüger, 1996; Pšenčík and Vavryčuk, 1998). Quantities required
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to compute exact solutions of reflection coefficients in weakly anisotropic media involve
polarization vectors and azimuthal angles (Thomsen, 1988; Tsvankin, 1997; Pšenčík and
Gajewski, 1998); however, the complexity of Zoeppritz formula restricts its application in
the calculation of reflection coefficients and the inversion of observed seismic data, which
makes the derivation of a linearized reflection coefficient for TTI media be our first goal.

Hudson (1980) proposed an effective model to study how penny-shaped cracks affect
stiffness matrix of anisotropic rocks. In the case of rocks containing a set of vertical and
rotationally invariant fractures, a linear slip model is established to characterize influences
of fractures on total properties of rocks as a function of the normal and tangential fracture
weaknesses (Schoenberg and Douma, 1988; Schoenberg and Sayers, 1995). Combining
the penny-shaped crack model and the linear slip model, Bakulin et al. (2000) related the
normal and tangential fracture weaknesses to fracture properties (fracture density and as-
pect ratio). In order to implement seismic inversion for fracture weaknesses and fracture
tilt angle, we will derive the derived reflection coefficient of P-wave incidence and P-wave
reflection (P-to-P) in terms of tilted fracture weaknesses based on the linear slip model.

In this study, using the stiffness matrix of HTI media given by the linear slip model,
we first express the stiffness matrix of TTI media in terms of tilted fracture weaknesses.
Using perturbations in stiffness parameters and relationship between scattering function
and reflection coefficients, we obtain the P-to-P linearized reflection coefficient a function
of tilted fracture weaknesses. Base on the derived reflection coefficient, we demonstrate an
inversion approach to employ amplitude differences between seismic data along different
azimuths to estimate tilted fracture weaknesses. We testify the stability and robustness
of the proposed inversion using synthetic seismic data in which random noise are added,
and applying the proposed approach to a real data set, we confirm that our approach may
generate valuable and meaningful results for detecting fractures and computing fracture tilt
angles.

THEORY AND METHOD

Stiffness matrix related to tilted fracture weaknesses

The stiffness matrix of TTI medium, CTTI, is expressed using the stiffness matrix of
corresponding VTI medium, CVTI, which is given by (Auld, 1990)

CTTI =MνCVTIM
T
ν , (1)

where

Mν =

 cos2ν 0 sin2ν 0 − sin 2ν 0
0 1 0 0 0 0

sin2ν 0 cos2ν 0 sin 2ν 0
0 0 0 cos ν 0 sin ν

1
2 sin 2ν 0 − 1

2 sin 2ν 0 cos 2ν 0

0 0 0 − sin ν 0 cos ν

 , (2)

and MT
ν is the transpose of Mν , ν denotes the tilt angle, which indicates the angle between

the symmetry axis and the z axis, as plotted in Figure 1. In the case of ν being 90◦, the TTI
medium becomes HTI medium, and when ν is equal to 0◦, the TTI medium becomes VTI
medium. For the TTI medium, which is equivalent of a rock containing a set of parallel
fractures with a tilted symmetry axis, we first express stiffness matrix of corresponding
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FIG. 1. P-wave propagation in tilted transversely isotropic media. Quantities θ and φ are incidence
angle of P-wave and azimuthal angle of observation, respectively.

VTI medium using the stiffness matrix of HTI medium proposed by the linear slip model.
Given a tilt angle, we may derive stiffness parameters of TTI medium in terms of fracture
weaknesses. In the linear slip model, the stiffness matrix of HTI medium is given by
(Schoenberg and Douma, 1988; Schoenberg and Sayers, 1995; Gurevich, 2003)

CHTI =


M(1−δN ) λ(1−δN ) λ(1−δN ) 0 0 0

λ(1−δN ) M(1−χ2δN) λ(1−χδN ) 0 0 0

λ(1−δN ) λ(1−χδN ) M(1−χ2δN) 0 0 0

0 0 0 µ 0 0
0 0 0 0 µ(1−δT ) 0
0 0 0 0 0 µ(1−δT )

 , (3)

where M = λ + 2µ, λ and µ are Lamé constants of the homogeneous isotropic host rock,
χ = λ/M , and δN and δT are the normal and tangential fracture weaknesses, which are
related to fracture properties (e.g. fracture density and filling fluid moduli). Letting the tilt
angle ν be 90◦ and CTTI be equal to CHTI, we use equation 1 to express the stiffness matrix
of corresponding VTI medium as

CVTI = (Mν=90◦)−1 CHTI
(
MT

ν=90◦

)−1
, (4)

where (Mν=90◦)−1 and
(
MT

ν=90◦

)−1
are inverse matrices of Mν=90◦ and MT

ν=90◦ respec-
tively. Combining equations 1-4, we derive the stiffness matrix of TTI medium in terms of
fracture weaknesses

CTTI =

 C11 C12 C13 0 C15 0
C12 C22 C23 0 C25 0
C13 C23 C33 0 C35 0

0 0 0 C44 0 C46

C15 C25 C35 0 C55 0
0 0 0 C46 0 C66

 = Mν(Mν=90◦)−1 CHTI
(
MT

ν=90◦

)−1
MT

ν , (5)

where

C11 =M
(
1− χ2δN

)
cos4ν +

1

2
λ (1− δN) (sin 2ν)2

+M (1− δN) sin4ν + µ (1− δT ) (sin 2ν)2,

C12 = λ (1− χδN) cos2ν + λ (1− δN) sin2ν,

CREWES Research Report — Volume 30 (2018) 3



Chen and Innanen

C13 =
1

4
M
(
1− χ2δN

)
(sin 2ν)2 + λ (1− δN) sin4ν + λ (1− δN) cos4ν

+
1

4
M (1− δN) (sin 2ν)2 − µ (1− δT ) (sin 2ν)2,

C15 =M
(
1− χ2δN

)
sin νcos3ν − λ (1− δN) sin νcos3ν

− 2µ (1− δN) sin3ν cos ν − µ (1− δT ) sin 2ν cos 2ν,

C22 =M
(
1− χ2δN

)
,

C23 = λ (1− χδN) sin2ν + λ (1− δN) cos2ν,

C25 =λ (1− χδN)

(
1

2
sin 2ν

)
− λ (1− δN)

(
1

2
sin 2ν

)
,

C33 =M
(
1− χ2δN

)
sin4ν +

1

2
λ (1− δN) (sin 2ν)2 +M (1− δN) cos4ν,

C35 =M
(
1− χ2δN

)
sin3ν cos ν − λ (1− δN) sin3ν cos ν

− 2µ (1− δN) sin νcos3ν + µ (1− δT ) cos 2ν sin 2ν,

C44 = µ− µδT cos2ν, C46 =µδT sin ν cos ν,

C55 =
1

4
M
(
1− χ2δN

)
(sin 2ν)2 +

1

4
M (1− δN) (sin 2ν)2

− 1

2
λ (1− δN) (sin 2ν)2 + µ (1− δT ) (cos 2ν)2,

C66 =µ− µδT sin2ν. (6)

Derivation of P-to-P reflection coefficient for TTI media

Using the derived stiffness matrix, we next express perturbations in stiffness parameters
in the case of one interface separating an isotropic layer and a TTI layer. The perturbation
in stiffness matrix is given by

∆CTTI =

 ∆C11 ∆C12 ∆C13 0 ∆C15 0
∆C12 ∆C22 ∆C23 0 ∆C25 0
∆C13 ∆C23 ∆C33 0 ∆C35 0

0 0 0 ∆C44 0 ∆C46

∆C15 ∆C25 ∆C35 0 ∆C55 0
0 0 0 ∆C46 0 ∆C66

 , (7)

where

∆C11≈
(
4µ cos4 ν − 4µ cos2 ν

)
δT +

[(
−Mχ2 +M − 4µ

)
cos4 ν + 4µ cos2 ν −M

]
δN + ∆M,

∆C12≈
[
− (χ− 1) (M − 2µ) cos2 ν −M + 2µ

]
δN − 2∆µ+ ∆M,

∆C13≈
[(
Mχ2 −M + 4µ

)
cos4 ν +

(
−Mχ2 +M − 4µ

)
cos2 ν −M + 2µ

]
δN

+
(
−4µ cos4 ν + 4µ cos2 ν

)
δT + ∆M − 2∆µ,

∆C15≈−
1

2
sin 2ν

[(
Mχ2 −M + 4µ

)
cos2 ν − 2µ

]
δN − sin 2ν

(
−2µ cos2 ν + µ

)
δT ,

∆C22≈−Mχ2δN + ∆M,
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∆C23≈
[
(χ− 1) (M − 2µ) cos2 ν − χ (M − 2µ)

]
δN + ∆M − 2∆µ,

∆C25≈
1

2
(M − 2µ) (χ− 1) sin 2νδN ,

∆C33≈
[(
−Mχ2 +M − 4µ

)
cos4 ν +

(
2Mχ2 − 2M + 4µ

)
cos2 ν −Mχ2

]
δN

+
(
4 cos4 ν − 4 cos2 ν

)
∆µ+ 4µ cos4 ν − 4µ cos2 ν + ∆M,

∆C35≈
1

2
sin 2ν

[(
Mχ2 −M + 4µ

)
cos2 ν −Mχ2 +M − 2µ

]
δN + sin 2ν

(
−2µ cos2 ν + µ

)
δT ,

∆C44≈∆µ− µ cos2 νδT ,∆C46≈
1

2
µ sin 2νδT ,

∆C55≈
[(

M

4
χ2 −M + 4µ

)
(cos 2ν)2 − M

4
χ2 +

M

4
− µ

]
δN − µ (cos 2ν)2 δT + ∆µ,

∆C66≈
(
µ cos2 ν − µ

)
δT + ∆µ. (8)

It is important to stress that in the derivation of perturbations in stiffness parameters, we
neglect the term proportional to ∆MδN , ∆µδN , ∆MδT and ∆µδT under the assumptions
of small changes in elastic properties of host rock across the interface and weak fracture
weaknesses. The relationship between P-to-P reflection coefficient and perturbations in
stiffness parameters is given by (Shaw and Sen, 2006; Chen et al., 2018)

RPP =
1

4ρ cos2 θ

[
∆ρcos2θ+∆C11ξ11+∆C12(ξ12+ξ21)+∆C13(ξ13+ξ31)

+∆C15(ξ15+ξ51)+∆C22ξ22+∆C23(ξ23+ξ32)+
∆C25(ξ25+ξ52)+∆C33ξ33+∆C35(ξ35+ξ53)+∆C44ξ44

+∆C46(ξ46+ξ64)+∆C55ξ55+∆C66ξ66

]
, (9)

where ξij is related to P-wave incidence angle θ and observation azimuth φ (Shaw and Sen,
2006). Substituting equation 8 into equation 9, we obtain a P-to-P linearized reflection
coefficient for the interface separating an isotropic layer and a TTI layer as

RPP(θ, φ) =
1

2
sec2 θ

(
∆M

2M

)
−
(
4 sin2 θ + 2 cos2 ν − 2 cos4 ν

)(∆µ

2µ

)
+

1

2

cos 2θ

cos2 θ

(
∆ρ

2ρ

)
−
[ 1

4
sec2 θ(1−2g)2+g(1−2g) tan2 θ cos2 φ

+g2 cos2 θ cos4 ν−g(1−2g) tan2 θ cos2 φ cos2 ν

g(1−2g) cos2 ν+g2 sin2 θ tan2 θ cos4 φ sin4 ν

]
δN

+ g

[
2 sin2 θ cos2 φ−tan2 θ cos2 φ

2 sin2 θ cos2 φ cos4 ν+sin2 θ tan2 θ cos4 φ sin4 ν
−4 sin2 θ cos2 φ cos2 ν+tan2 θ cos2 φ cos2 ν+sin2 θ cos2 ν

]
δT ,

(10)

where g = µ/M , and ∆M/(2M), ∆µ/(2µ) and ∆ρ/(2ρ) are reflectivities of P- and S-
wave moduli and density, respectively. We observe that the effect of tilt angle on the
reflection coefficient is coupled with effects of S-wave modulus reflectivity and fracture
weaknesses.

We next simplify the derived reflection coefficient and analyze the effect of tilt angle
on reflection coefficient. Under the assumption that the P-wave incidence angle is less than
30◦, we neglect the term proportional to sin2 θ tan2 θ, and in the case that the set of parallel
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fractures has a relatively high tilt angle, we neglect the term proportional to cos4 ν. The
reflection coefficient is simplified to

RPP(θ, φ)≈1

4
sec2 θ

∆M

M
− (1 + 2 sin2 θ)

∆µ

µ
+

1

4

cos 2θ

cos2 θ

∆ρ

ρ

− 1

4
(1− 2g)

[
(1− 2g) sec2 θ + 4g

]
δN − g sin2 θ cos 2φδT

+ δνµ + g(1− 2g)(1− tan2 θ cos2 φ)δνN

+
(
4g sin2 θ cos2 φ− g tan2 θ cos2 φ− g sin2 θ

)
δνT ,

(11)

where δνµ = sin2 ν∆µ/µ, δνN = sin2 νδN and δνT = sin2 νδT , which are named tilted
S-wave modulus reflectivity and fracture weaknesses, respectively. We next compare the
reflection coefficients calculated using equations 10 and 11 to verify the accuracy of the
simplified reflection coefficient. Figure 2 shows a model of an interface formed by involv-
ing a set of tilted fractures into a rock. In the case that tilted fractures are filled with gas,
we plot variations of reflection coefficient with fracture density e, incidence angle θ and
tilt angle ν in Figure 3. We observe that differences between the reflection coefficients cal-
culated using equations 10 and 11 respectively increase with P-wave incidence angle and
fracture density, and decreases as the tilt angle increases, which indicates the simplified
reflection coefficient (equation 11) is applicable in gas-saturated fractured reservoirs those
have a small fracture density and a high tilt angle, and the accuracy of the simplified re-
flection coefficient is also confirmed in the case of the incidence angle being less than 30◦.

Isotropic

TTI

FIG. 2. A model of an interface separating an isotropic layer and a TTI layer.

0 10 20 30 40

θ (o)

-0.2

-0.15

-0.1

-0.05

0

R
PP

e=0.2, ν=70o

Equation 10
Equation 11

50 60 70 80 90

ν (o)

-0.2

-0.15

-0.1

-0.05

0

R
PP

e=0.2, θ=30o

Equation 10
Equation 11

0 0.1 0.2
e

-0.2

-0.15

-0.1

-0.05

0

R
PP

ν=50o, θ=30o

Equation 10
Equation 11

FIG. 3. Variations of reflection coefficients with fracture density e, P-wave incidence angle θ and tilt
angle ν. S-to-P wave moduli ratio g is 0.25.
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Azimuthal seismic inversion for tangential fracture weaknesses and tilted fracture
weaknesses

We proceed to the estimation of tangential fracture weakness and tilted fracture weak-
nesses from amplitude differences among seismic data at different azimuthal angles. Based
on the simplified reflection coefficient, we first express the difference between reflection
coefficients at two azimuthal angles (φ1 and φ2)

∆RPP =RPP(θ, φ2)−RPP(θ, φ1)

=− g sin2 θ (cos 2φ2 − cos 2φ1) δT

− g(1− 2g) tan2 θ
(
cos2 φ2 − cos2 φ1

)
δνN

+ g(4 sin2 θ − tan2 θ)(cos2 φ2 − cos2 φ1)δνT .

(12)

We observe that the difference between azimuthal reflection coefficients is influenced
by the tangential fracture weaknesses and tilted fracture weaknesses. We next study how
the normal and tangential fracture weaknesses affect the difference between azimuthal re-
flection coefficients in TTI media. Given different fracture weaknesses and tilt angles, we
plot variations of differences between azimuthal reflection coefficients with P-wave inci-
dence angle, as plotted in Figure 4.
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FIG. 4. Effects of fracture weaknesses on differences between azimuthal reflection coefficients.
Parameters for computing azimuthal reflection coefficients are g = 0.25, φ2 = 90◦ and φ1 = 0◦. a)
Tilt angle ν is 60◦; b)Tilt angle ν is 70◦; and c) Tilt angle ν is 80◦.

We observe that the difference between azimuthal reflection coefficients increases with
the normal fracture weakness, and decreases as the tangential fracture weakness increases.
Comparing Figure 4(a), (b) and (c), we observe that the tilt angle mainly affects the effect
of tangential fracture weakness on differences between azimuthal reflection coefficients. It
indicates that the effect of tangential fracture weakness on reflection coefficient difference
is coupled with the influence of tilt angle, which may induce uncertainties in the estimation
of tangential fracture weaknesses. Hence, we consider the tangential fracture weakness (δT )
and tilted fracture weaknesses (δνN and δνT ) as unknown variables required to be estimated
from azimuthal seismic data, which may allow us to implement a linear inversion.

We demonstrate an approach of using azimuthal seismic amplitude differences to esti-
mate unknown parameters (i.e. δT , δνN and δνT ). In the case of n reflection interface and
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m incidence angle, seismic amplitude difference is generated by

d = Gx, (13)

where

d =

[
W RPP(θ1,φ2)−W RPP(θ1,φ1)

...
W RPP(θm,φ2)−W RPP(θm,φ1)

]
mn×1

,W =


w1 0 ... 0

w2 w1

. . .
...

...
...

. . . 0
wn wn−1 ... w1


n×n

, x =

[
RδT

RδνN
RδνT

]
3n×1

,

RPP(θ, φ) =

[
R1

PP(θ,φ)

...
RnPP(θ,φ)

]
n×1

,RδT =

[
(δT )1

...
(δT )n

]
n×1

,RδνN =

[
(δνN )1

...
(δνN )n

]
n×1

,RδνT =

[
(δνT )1

...
(δνT )n

]
n×1

,

G =

[
A(θ1) B(θ1) C(θ1)

...
...

...
A(θm) B(θm) C(θm)

]
mn×3n

,A(θ) = a sin2 θ

[ −g1
. . .
−gn

]
n×n

,

B(θ) = b tan2 θ

[
−g1(1−2g1)

. . .
−gn(1−2gn)

]
n×n

,

C(θ) = b(4 sin2 θ − tan2 θ)

[ g1
. . .

gn

]
n×n

,

(14)

in which a = cos 2φ2 − cos 2φ1, b = cos2 φ2 − cos2 φ1, w1, ..., wn are elements of wavelet
extracted from input seismic data, and g1, ..., gn are average results calculated using S-to-P
wave moduli ratios across the corresponding reflection interface.

In order to obtain the tangential fracture weakness and tilted fracture weaknesses, we
implement the inversion of azimuthal amplitude differences for the unknown parameter
vector x. We next propose an approach to constrain the inversion using probabilistic con-
straints. Following a Bayesian framework, the posterior Probability Distribution function
(PDF) is given by (Buland and Omre, 2003)

P (x|d) ∝ P (d|x)P (x) , (15)

where P (x|d) is the posterior PDF, P (d|x) is the likelihood function, and P (x) is the prior
constraint PDF. Under the assumption of Gaussian random noise in observed seismic data,
the likelihood function is given by (Downton, 2005)

P (d|x) =
1√

2πσ2
e

exp

[ − (d−Gx)†(d−Gx)

2σ2
e

]
, (16)

where σ2
e is the variance of random noise, and † denotes the transpose of matrix. Following

Alemie (2010), we assume the priori constraint follows Cauchy distribution, and the priori
constraint PDF is given by

P (x) =
1

(πσx)
3n exp

[
−

3n∑
i=1

ln

(
1 +

xi
2

σ2
x

)]
, (17)
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where σ2
x represents the variance of unknown parameter vector x, and xi represents the

element of x. Combining equations 15-17, we express the posterior PDF as

P (x|d) ∝
1√

2πσ2
e

1

(πσx)
3n exp [J(x)] , (18)

where

J(x) =
(d−Gx)†(d−Gx)

2σ2
e

+
3n∑
i=1

ln

(
1 +

xi
2

σ2
x

)
. (19)

We next obtain the maximum posterior probability by searching for the minimum of
J(x). Differentiating J(x) with respect to x and letting the resulting expression be zero
yields (

G†G +
2σ2

e

σ2
x + x2

i

)
x = G†d. (20)

The iterative re-weighted least squares(IRLS) algorithm, which is proposed by Daubechies
et al. (2010) and Alemie (2010), is employed to solve the inversion problem.

RESULTS

Synthetic examples: Stability and robustness verification

Well log model

We first use a well log model to generate synthetic seismic amplitude differences, and
then we implement the inversion for the tangential fracture weaknesses and tilted fracture
weaknesses to verify the stability and robustness of the proposed inversion approach. In
Figure 5(a) we plot curves of P- and S-wave velocities (VP and VS), density ρ, and fracture
density e, and in Figure 5(b) we plot the model of tilt angle ν and the computed tangen-
tial fracture weakness and tilted fracture weaknesses computed using expressions of dry
fracture weaknesses (Chen et al., 2018).
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FIG. 5. A well log model. a) Curves of P- and S-wave velocities, density and fracture density;
and b) the model of of tilt angle and the computed tangential fracture weakness and tilted fracture
weaknesses.

Using equation 13, we generate synthetic seismic amplitude differences utilizing a
35Hz Ricker wavelet, and azimuthal angles φ1 and φ2 are 0◦ and 90◦. Figure 6(a)-6(c)
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FIG. 6. Synthetic seismic amplitude differences. (a) No noise; (b) SNR=5; and (c) SNR=2.

plot the generated seismic amplitude differences in the case of no noise and signal-to-ratio
(SNR) of 5 and 2. We observe that seismic amplitude differences mainly exist at the mid-
dle and large incidence angles (15◦ ≤ θ ≤ 30◦), which is essentially in agreement with the
variation of reflection coefficient difference with incidence angle. It indicates that in or-
der to estimate the tangential fracture weakness and tilted fracture weaknesses, we should
employ azimuthal seismic amplitude differences of middle and large incidence angles as
much as possible. We next employ the generated seismic amplitude differences (the inci-
dence angle range 15◦-30◦) to estimate the tangential fracture weakness and tilted fracture
weaknesses. Comparisons between true and inversion values of tangential fracture weak-
ness and tilted fracture weaknesses are plotted in Figure 7(a)-7(d). From Figure 7(a), we
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FIG. 7. Comparisons between true values and inversion results of tangential fracture weakness
and tilted fracture weaknesses. a) No noise; b) SNR=5; c) SNR=2; and d) Errors between inver-
sion results and true values, e.g. E(δT ) = Inv(δT ) − True(δT ), True(δT ) is the true value of δT ,
and Inv(δT ) is the inversion result of δT . Green curve represents the initial model of unknown
parameter, which is the smoothed version of true value.
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observe that the unknown parameters are estimated correctly in the case of no noise being
added into synthetic data; From Figure 7(b)-7(c), we see that there is a good match between
inversion results and true values in the case of seismic data being added with a moderate
noise (i.e. SNR ≥ 2); and Figure 7(d) plots errors between true values and inversion result-
s, which fluctuate near zero. We conclude that tests on synthetic data confirm the stability
and robustness of the proposed inversion approach.

2D overthrust model

We proceed to the verification of robustness and stability of the proposed approach
using a 2D overthrust model. P- and S-wave velocities and density are plotted in Figure
8(a); in Figure 8(b), we plot a model of fracture density e, in which we assume there are four
fractured layers, and we compute the normal and tangential fracture weaknesses (δN and
δT ) again using expressions of dry fracture weaknesses (Chen et al., 2018). Assuming the
fractured layers have different tilt angles, we calculate tilted fracture weaknesses (δνN and
δνT ), as plotted in Figure 8(c). Using a 35 Hz Ricker wavelet, we generate synthetic seismic
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FIG. 8. a) P- and S-wave velocities and density of overthrust model; b) Model of fracture density,
and computed fracture weaknesses δN and δT ; c) Model of tilt angles, and calculated tilted fracture
weaknesses δνN and δνT .

amplitude differences based on equation 13, and we also add Gaussian random noise (SNR
of 2) into the synthetic seismic data. Utilizing the noisy seismic data, we implement the
inversion for the tangential fracture weakness and tilted fracture weaknesses for each CDP
of the overthrust model. Figure 9(a) plots initial models of δT , δνN and δνT used in the
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inversion, which are the smoothed version of the corresponding true value; and in Figure
9(b), we plot the inversion results of unknown parameters. Figure 9(c) plots comparisons
between true values (blue curves) and inversion results (red curves) of tangential fracture
weakness and tilted fracture weaknesses at CDP 500.
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FIG. 9. a) Initial models used in the inversion; b) Inversion results of tangential fracture weakness
and tilted fracture weaknesses. The initial model is a smoothed version of true value; and c)
Comparisons between inversion result and true value, and green curves represent the initial model.

Comparing true values plotted in Figure 8 and inversion results shown in Figure 9, we
observe that the tangential fracture weakness δT and tilted normal fracture weakness δνN of
fractured layers L1, L2, L3 and L4 are predicted stably and reliably even in the case of SNR
of 2. From the inversion result of δνT , we may obtain reliable results for fractured layers
L2 and L3; however, the accuracy of inversion for layer L1 and L4 should be improved.

Real data example

We proceed to applying the proposed approach to a real data set to further confirm its
feasibility. The data are acquired over a fractured carbonate rock reservoir, and they have
been sorted to common azimuth gathers and transferred from offset domain to incidence
angle domain for each azimuth sector. It is important to stress that the processing is imple-
mented by the institute who provides us the data. In Figure 10(a), we plot seismic angle
gathers along azimuths φ1 = 30◦ and φ2 = 150◦ and differences between the angle gathers
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at the location of CDP 195; in Figure 10(b), we also show stacked seismic profiles along
azimuths φ1 and φ2 and differences between stacked seismic profiles. The ellipse in the
figure indicates the location of the fractured reservoir.
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FIG. 10. a) Seismic angle gathers along two different azimuths φ1 = 30◦ and φ2 = 150◦, and
differences between these two azimuthal angle gathers; b) Stacked seismic profiles at azimuths φ1

and φ2, and differences between stacked seismic data.

From Figure 10(a) and 10(b), we observe that a strong reflection amplitude exhibits
at the location of the fractured reservoir in both the angle gather and the stacked data,
and there are also large amplitude residuals at the location of the fractured reservoir. We
next use seismic angle gather differences to implement the inversion for the tangential
fracture weakness and tilted fracture weaknesses using the proposed inversion approach.
We first plot constructed initial models of unknown parameters in Figure 11. The method
to construct initial models is presented in Discussion section.
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FIG. 11. Initial models of tangential fracture weakness and tilted fracture weaknesses.

Figure 12 plots inversion results of tangential fracture weakness and tilted fracture
weaknesses. We observe that at the location of fractured reservoir marked by the ellipse, the
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tangential fracture weakness and tilted fracture weaknesses exhibit relatively large values.
Comparing the inverted tangential fracture weakness δT and the estimated tilted tangential
fracture weakness δνT , we see that there is an apparent difference between inversion results
of δT and δνT at the location of fractured reservoir, which reveals that the fractures are
tilted.
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FIG. 12. Inversion results of tangential fracture weakness and tilted fracture weaknesses.

Using the inversion results of δT and δνT , we may compute values related to tilt angle
(i.e. sin2 ν), as plotted in Figure 13. We observe that the computed result shows a relatively
low value at the fractured reservoir, which again confirms the fractures in the reservoir are
tilted.
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FIG. 13. Computed results related to tilt angles of fractures (i.e. sin2 ν).

DISCUSSIONS

We derive a linearized reflection coefficient in terms of fracture weaknesses for titled
transversely isotropic (TTI) media. Based on the derived reflection coefficient, we demon-
strate a stable approach to estimate the tangential fracture weakness and tilted fracture
weaknesses from azimuthal seismic amplitude differences. Some assumptions should be
satisfied while using the derived reflection coefficient and the proposed inversion approach,
which involve:

1) The derived reflection coefficient is applicable to the case of the reflection interfaces
separating one isotropic medium and a tilted fracture medium, which means the overlying
and underlying media of fractured reservoirs are approximately isotropic;
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2) The layer only contains one set of parallel and tilted fractures. The tilt angle of frac-
tures is relatively high because the accuracy of derived reflection coefficient is acceptable
in the case of ν ≥ 60◦, and the fractured layer has a small fracture density (i.e., e ≤ 0.2).
In addition, we assume the tilt angle of non-fractured layers to be 90◦;

3) The maximum incidence angle of input seismic data employed to implement the
proposed inversion for tilted fracture weaknesses is around 30◦.

Initial models of unknown parameters are required in the proposed inversion approach.
For synthetic examples, we use the smoothed version of true value as the initial model. Here
we discuss how to construct initial models while applying the inversion approach to real
data. Rüger (1998) proposed PP-wave linearized reflection for HTI media, and Bachrach
et al. (2009) presented two-term reflection coefficient based on Rüger’s equation

RPP (θ, φ) = I + Usin2θ = I +
(
Uiso + Uanicos2φ

)
sin2θ, (21)

where I is Amplitude-Versus-Offset (AVO) intercept, U is AVO gradient, and Uiso and
Uani are isotropic and anisotropic parts of AVO gradient, respectively. Chen et al. (2017)
expressed the anisotropic part of AVO gradient in terms of fracture weaknesses

Uani = −g (1− 2g) δN + gδT . (22)

We first employ azimuthal seismic data to implement the estimation of AVO intercept
and gradient using a commercial software package. Using equation 21, we may compute
the anisotropic part of AVO gradient. Again using the commercial software package, we
estimate P- and S-wave velocity from input seismic data to compute the S-to-P wave mod-
uli ratio g. For dry fractures, the relationship between the normal and tangential fracture
weaknesses is given by

δN =
3− 2g

4g (1− g)
δT . (23)

Substituting equation 23 into equation 22, we may compute the normal fracture weak-
ness using the estimated results of anisotropic part of AVO gradient and S-to-P moduli
ratio, and then we calculate the tangential fracture weakness. The smoothed version of
tangential fracture weakness is used as initial models of both δT and δνT , and the smoothed
version of normal fracture weakness is used as initial model of δνN .

CONCLUSIONS

Based on the stiffness matrix of horizontal transversely isotropic (HTI) media proposed
by the linear slip model, we express the stiffness matrix of tilted transversely isotropic
(TTI) media in terms of tilted fracture weaknesses. Using perturbations in stiffness param-
eters in the case of an interface separating an isotropic layer and a TTI layer, we derive a
linearized reflection coefficient in terms of tilted fracture weaknesses. Based on the derived
reflection coefficient, we propose a stable inversion approach to employ amplitude differ-
ences between azimuthal seismic data to estimate tangential fracture weakness (δT ), tilted
normal fracture weakness (δνN ) and tilted tangential fracture weakness (δνT ). Applying
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the proposed inversion approach to synthetic seismic data generated using a well log model
and a 2D overthrust model respectively, we conclude that the unknown parameter vector in-
volving the tangential fracture weakness and titled fracture weaknesses is estimated stably
and reliably in the case of synthetic data containing a moderate noise/error (SNR≥2). A
test on a real data set acquired over a fractured carbonate reservoir reveals that the proposed
inversion method may provide realistic and meaningful results of tangential fracture weak-
ness and tilted fracture weaknesses. Combining the estimated tangential fracture weakness
and tilted tangential fracture weakness, we may compute the tilt angle of fractures, which
can guide more accurate fracture characterization in unconventional reservoirs. Therefore,
the proposed inversion approach has been demonstrated to implement interpretable and
verifiable predictions, and it appears to be an additional tool for detecting tilted natural
fractures.
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Pšenčík, I., and Vavryčuk, V., 1998, Weak contrast pp wave displacement r/t coefficients in weakly anisotropic
elastic media: Pure and Applied Geophysics, 151, No. 2-4, 699–718.

Rüger, A., 1996, Reflection coefficients and azimuthal avo analysis in anisotropic media.: Ph.D. thesis,
Colorado School of Mines.

Rüger, A., 1998, Variation of p-wave reflectivity with offset and azimuth in anisotropic media: Geophysics,
63, No. 3, 935–947.

Schoenberg, M., and Douma, J., 1988, Elastic wave propagation in media with parallel fractures and aligned
cracks: Geophysical Prospecting, 36, No. 6, 571–590.

Schoenberg, M., and Protázio, J., 1992, ′zoeppritz′rationalized and generalized to anisotropy: Journal of
seismic exploration, 1, No. S1, 125–144.

Schoenberg, M., and Sayers, C. M., 1995, Seismic anisotropy of fractured rock: Geophysics, 60, No. 1,
204–211.

Shaw, R. K., and Sen, M. K., 2006, Use of avoa data to estimate fluid indicator in a vertically fractured
medium: Geophysics, 71, No. 3, C15–C24.

Sheriff, R. E., and Geldart, L. P., 1995, Exploration seismology: Cambridge university press.

Shragge, J., 2016, Acoustic wave propagation in tilted transversely isotropic media: Incorporating topogra-
phy: Geophysics.

Shuey, R., 1985, A simplification of the zoeppritz equations: Geophysics, 50, No. 4, 609–614.

Stovas, A., and Alkhalifah, T., 2013, Mapping of moveout in tilted transversely isotropic media: Geophysical
Prospecting, 61, No. 6, 1171–1177.

Stovas, A., Landrø, M., and Avseth, P., 2006, Avo attribute inversion for finely layered reservoirs: Geophysic-
s, 71, No. 3, C25–C36.

Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51, No. 10, 1954–1966.

Thomsen, L., 1988, Reflection seismology over azimuthally anisotropic media: Geophysics, 53, No. 3, 304–
313.

Tsvankin, I., 1997, Anisotropic parameters and p-wave velocity for orthorhombic media: Geophysics, 62,
No. 4, 1292–1309.

Wang, H., and Peng, S., 2015, Reflection coefficient of qp, qs and sh at a plane boundary between viscoelastic
tti media: Geophysical Journal International, 204, No. 1, 555–568.

Wang, X., and Tsvankin, I., 2013, Ray-based gridded tomography for tilted transversely isotropic media:
Geophysics.

18 CREWES Research Report — Volume 30 (2018)


