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ABSTRACT

Estimation of effective stress has become an important task in reservoir characterization
and can guide the selection of fracturing area in unconventional hydrocarbon reservoirs.
Based on Gassmann’s fluid substitution model, we propose a workflow of employing ob-
served seismic data to implement nonlinear inversion for dry rock moduli, fluid factor and
stress-sensitive parameter. We first make an approximation of fluid substitution equation,
in which we replace the porosity term with a stress-sensitive parameter. Using stiffness
parameters related to the stress-sensitive parameter, we derive a linearized reflection co-
efficient as a function of reflectivity of stress-sensitive parameter, and we also transfer the
reflection coefficient to elastic impedance (EI). The proposed workflow involves estimating
EI datasets from seismic data stacked over different ranges of incidence angle and utilizing
the estimated EI to implement the inversion for the stress-sensitive parameter. We stress
that a model-based least-squares inversion algorithm is used to implement the estimation of
EI, and a nonlinear inversion approach is employed to estimate the unknown variables from
the estimated EI, which is implemented as a four-step inversion. Synthetic data generated
using Zoeppritz equation are utilized to verify the stability of the proposed approach. A
test on real data set acquired over a gas-bearing reservoir reveals that the propose workflow
appears to preserve as a useful tool to provide reliable results for fluid identification and
stress prediction.

INTRODUCTION

Fracturing has been an important tool in the development of unconventional reservoirs
(e.g. shale and tight sand reservoirs). Reliable estimation of subsurface effective stress
becomes a significant task, which may guide selection of fracturing area and design of
drilling trajectory. Effective stress is related to vertical stress and pore pressure. One
procedure to predict effective stress is first estimating vertical stress and pore pressure
separately and then calculating the effective stress using the estimated results of vertical
stress and pore pressure; hence, the accuracy of the effective stress prediction is affected by
both the vertical stress estimation and the pore pressure calculation. The other procedure
is relating reservoir properties (e.g. porosity) to stress parameter. In the present study,
based on a relation between porosity and effective stress (Athy, 1930; Zoback, 2010), we
will relate elastic properties (bulk and shear moduli, P- and S-wave velocities, etc.) to
stress-sensitive parameter.

Gassmann (1951) proposed a fluid substitution equation to compute effective bulk and
shear moduli for saturated rocks, in which the effective bulk modulus is related to mineral
bulk modulus, porosity, dry rock bulk modulus and fluid bulk modulus. Krief et al. (1990)
proposed a nonlinear equation to calculate the bulk modulus of dry rock using the total
porosity. Based on the critical porosity (CP) model proposed by Nur et al. (1998), a linear
relationship is proposed to compute the bulk modulus of dry rock using the total porosity
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and the critical porosity (Mavko et al., 2009). Combining the linear relationship between
dry rock bulk modulus and porosity and the relation between porosity and effective stress,
we will re-express the fluid substitution equation in terms of the dry rock bulk modulus and
the effective stress-sensitive parameter.

In order to estimate stress-sensitive parameter from observed seismic data, a reflec-
tion coefficient related to stress is required. Shaw and Sen (2006) proposed a relationship
between perturbation in stiffness matrix and linearized reflection coefficients. After obtain-
ing the re-expressed fluid substitution equation, we may derive the stiffness matrix using
the stress related bulk modulus of saturated rocks. With the derived stiffness matrix in
hand, we express the perturbation in each stiffness parameter in the case of an interface
separating two layers and obtain a linearized P-to-P reflection coefficient as a function of
stress-sensitive parameter. Based on the reflection coefficient, elastic impedance (EI) is
also formulated, which will become the foundation for establishing nonlinear inversion
algorithm.

Full waveform inversion (FWI) has been widely studied for estimating elastic param-
eters. Possibility of combining amplitude versus offset (AVO) and FWI is investigated by
Innanen (2014), in which the approximation of inverse Hessian matrix for different param-
eterizations is proposed. The procedure to implement the FWI is iteratively minimizing
errors between observed datasets and synthetic results generated using the estimated model
and forward modeling (Pan et al., 2017), and in FWI the calculation of gradient and Hessian
matrices is complicated (Innanen, 2014; Pan et al., 2018). In the present study, we aim to
establish a nonlinear inversion approach to estimate elastic properties and stress-sensitive
parameter using observed seismic data based on the procedure of FWI. Novel parts of the
inversion approach involves: 1) results of EI are employed as the input in the nonlinear
inversion, and 2) gradients of EI with respect to unknown variables are clearly expressed.
We finally apply the proposed inversion approach to synthetic and real data to verify the
stability and reliability of estimating elastic properties and stress-sensitive parameters.

THEORY AND METHOD

Elastic properties related to effective stress

Based on Gassmann (1951) fluid substitution model, the low-frequency saturated rock
bulk modulus, Ksat, is given by (Mavko et al., 2009)

Ksat = Kdry +
(1−Kdry/K0)

2

φ/Kf + (1− φ) /K0 −Kdry/K2
0

, (1)

where φ is the porosity, Kf is the effective bulk modulus of filling fluid, and Kdry and K0

are effective bulk moduli of dry rock and minerals that makes up the rock, respectively.
Nur et al. (1998) proposed a critical porosity (CP) model, from which relationship between
the effect bulk modulus of dry rock Kdry and porosity φ is given by

Kdry = K0

(
1− φ

φc

)
, (2)

where φc is the critical porosity, which separates the consolidated rock domain from the
suspension domain.
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We next model variation of dry rock bulk modulus (Kdry) with porosity, and compare
the result of Kdry calculated using the critical model and that computed using Krief’s equa-
tion (Krief et al., 1990) in the case of different values of clay volume and critical porosity,
as plotted in Figure 1. It is important to stress that we employ Voigt-Reuss-Hill average
model (Mavko et al., 2009) to compute the effective bulk and shear moduli of minerals (i.e.
K0 and µ0) in the present study.

0 0.1 0.2 0.3 0.4
φ

0

10

20

30

40

K
dr

y(G
P

a)

a)
Krief equation
CP model(φ

c
=0.25)

CP model(φ
c
=0.35)

CP model(φ
c
=0.45)

0 0.1 0.2 0.3 0.4
φ

0

10

20

30

40

K
dr

y(G
P

a)

b)
Krief equation
CP model(φ

c
=0.25)

CP model(φ
c
=0.35)

CP model(φ
c
=0.45)

FIG. 1. Variations of dry rock bulk modulus with with porosity, and comparisons between results
computed using CP model and that calculated using Krief’s equation in the case of different values
of critical porosity. Minerals making up the rock are clay and quartz. a) Clay volume Vclay is 0.1,
and b) Clay volume Vclay is 0.8.

From the comparison, we observe that there is a good match between results of dry
rock bulk modulus computed using the critical model and those calculated using Krief’s
equation in the case of φc is 0.35 and the porosity is less than 0.2; hence, we let the crit-
ical porosity φc approximately be 0.35 in the present study. Substituting equation 2 into
equation 1 yields

Ksat = Kdry +
(φ/φc)

2

φ/Kf + (1− φ) /K0 −
(

1− φ
φc

)
/K0

= Kdry +
K0 (φ/φc)

2

φK0/Kf −
(
φ− φ

φc

) . (3)

Because K0�Kf , we assume φK0/Kf�
(
φ− φ

φc

)
, and we may simply equation 3 as

Ksat≈Kdry +
φ

(φc)
2Kf . (4)

We next relate the effective bulk modulus of saturated rock Ksat to effective stress σe by
involving the stress dependent porosity φ(σe). Smith (1971) proposed a simple exponential
porosity-effective stress function as

φ≈φ0Pe, (5)
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where Pe is a stress-sensitive parameter, Pe = exp (−aσe), a is related to rock compaction,
and φ0 is the initial porosity, which is assumed to be equal to φc in the present study.
Following Hantschel and Kauerauf (2009), we assume parameter a to be 0.03. Substituting
equation 5 into equation 4 yields

Ksat≈Kdry +
Kf

φc

Pe. (6)

Combining equations 3 and 6, we first plot variations of stress-sensitive parameter with
porosity and water saturations in the case of different values of clay volumes in Figure 2.
Effective bulk modulus of fluid (the mixture of water and gas) is computed using Wood’s
equation (Mavko et al., 2009). We observe the stress-sensitive parameter increases with
porosity, and decreases as water saturation increases. From comparisons between Pe results
computed for the case of different values of clay volume, we conclude the variation of
stress-sensitive parameter with porosity and water saturation in shale rocks is much similar
to that in sand rocks.
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FIG. 2. Variation of stress-sensitive parameter Pe with porosity φ and water saturation SW. a)
Variation of Pe with porosity; b) Variation of Pe with water saturation.

Given different values of porosity and water saturation, we may compute the effective
bulk modulus of saturated rock, and we also compare the result computed using equation
6 and that calculated using Gassmann’s equation (equation 1), as shown in Figure 3. We
observe that the difference between the result calculated using Gassmann’s equation and
that computed using approximate formula increases with the porosity, and the effect of
water saturation on the difference is relatively small in the case of φ ≤ 0.2. It indicates
that the approximate formula is acceptable in the case that φ is less than 0.2. Based on
Gassmann’s model, we also assume the effective shear modulus of saturated rock to be
equal to that of dry rock (i.e. µ = µsat = µdry). The shear modulus µ is calculated by

µ = µ0

(
1− φ

φc

)
, (7)
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FIG. 3. Comparisons between results of saturated rock bulk modulus computed using Gassmann’s
equation and those calculated using approximate formula (equation 6). a) Water saturation SW is
1, and clay volume is 0.1; b) Clay volume is 0.1, and rock porosity φ is 0.2.

where µ0 is the effective shear modulus of minerals making up the rock. We next involve
the effect of stress in the rock stiffness matrix

C =

 C33 C33−2C55 C33−2C55 0 0 0
C33−2C55 C33 C33−2C55 0 0 0
C33−2C55 C33−2C55 C33 0 0 0

0 0 0 C55 0 0
0 0 0 0 C55 0
0 0 0 0 0 C55

 , (8)

where C33 = Ksat + 4
3
µ, and C55 = µ.

P-to-P linearized reflection coefficient

A relationship between the scattering function S and the P-to-P reflection coefficient
RPP is given by (Shaw and Sen, 2006)

RPP =
1

4ρ cos2 θ
S, (9)

where ρ is density of a reference medium, and θ is P-wave incidence angle. The scattering
function S is related to perturbation in density and stiffness parameters

S =∆ρ cos 2θ + ∆C33 (ξ11 + ξ22 + ξ33 + ξ12 + ξ21 + ξ13 + ξ31 + ξ23 + ξ32)

+ ∆C55(ξ44 + ξ55 + ξ66 − 2ξ12 − 2ξ21 − 2ξ13 − 2ξ31 − 2ξ23 − 2ξ32),
(10)

where ξij is related to the incidence angle θ given by (Shaw and Sen, 2006), ∆C33 and
∆C55 are perturbations in stiffness parameters C33 and C55, and ∆ρ is perturbation in
density across the reflection interface. Using the derived stiffness matrix shown in equation
8, we next express the perturbation ∆C33 as a function of stress. Figure 4 plots a model
of reflection interface separating two layers that have different values of effective bulk
modulus of dry rock, shear modulus of saturated rock, density and effective stress, in which
∆Kdry, ∆µdry and ∆σe represent perturbations in elastic properties and stress across the
reflection interface, respectively. The perturbation, ∆C33, is expressed as
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FIG. 4. A model of reflection interface separating two layers.

∆C33 =

(
Ksat +

4

3
µ

)
layer2

−
(
Ksat +

4

3
µ

)
layer1

≈Kdry + ∆Kdry +
Kf + ∆Kf

φc

(Pe + ∆Pe)−
(
Kdry +

Kf

φc

Pe

)
≈∆Kdry +

∆Kf

φc

Pe +
Kf

φc

∆Pe,

(11)

in which we neglect the term proportional to ∆Kf∆Pe under the assumption of small
changes in fluid bulk modulus and stress-sensitive parameter across the interface. Fur-
thermore, the perturbation in ∆C55 is given by

∆C55 = ∆µ. (12)

Combining equations 9-12, we derive the final expression of P-to-P linearized reflection
coefficient as (See Appendix A)

RPP =
1

2 cos2 θ

(
γsat
γdry
− 4

3
γsat

)
RKdry

− 4γsat sin2 θRµ +
cos 2θ

2 cos2 θ
RF

+
1

2 cos2 θ

(
2 sin2 θ − γsat

γdry

)
RKf

+
1

2 cos2 θ

(
1− γsat

γdry

)
RPe ,

(13)

where

RKdry
=

∆Kdry

2Kdry

, Rµ =
∆µ

2µ
,RF =

∆F

2F
,RKf

=
∆Kf

2Kf

, RPe =
∆Pe

2Pe

, (14)

and where F is a fluid-sensitive factor, F = ρKf , γsat = µ/ (Ksat + 4/3µ), Ksat is com-
puted using equation 6, and γdry = µ/ (Kdry + 4/3µ). The derived reflection coefficient
make it possible to model how dry rock properties, fluid and stress affect seismic amplitude
variation with offset/angle (AVO/AVA), and based on the derived reflection coefficient, we
may estimate dry rock moduli, fluid-sensitive factor, and stress-sensitive parameter using
observed seismic data.

Nonlinear inversion for dry rock elastic properties, fluid factor, and stress-sensitive
parameter based on elastic impedance

Based on the derived reflection coefficient, we proceed to seismic inversion for dry
rock bulk modulus, fluid-sensitive factor and stress-sensitive parameter. We first replace
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the reflection coefficient, RPP, and reflectivities, RKdry
, Rµ, RF , RKf

, and RPe , with the
following assumptions

RPP =
1

2

∆EI

EI
≈ 1

2
∆ ln (EI), RKdry

≈ 1

2
∆ ln (Kdry) , Rµ ≈

1

2
∆ ln (µ) ,

RF ≈
1

2
∆ ln (F ) , RKf

≈ 1

2
∆ ln (Kf) , RPe ≈

1

2
∆ ln (Pe) ,

(15)

where EI is elastic impedance (Connolly, 1999; Whitcombe, 2002; Chen et al., 2018).
Substituting equation 15 into equation 13 yields

∆ ln (EI) =
1

2 cos2 θ

(
γsat
γdry
− 4

3
γsat

)
∆ ln (Kdry)− 4γsat sin2 θ∆ ln (µ) +

cos 2θ

2 cos2 θ
∆ ln (F )

+
1

2 cos2 θ

(
2 sin2 θ − γsat

γdry

)
∆ ln (Kf) +

1

2 cos2 θ

(
1− γsat

γdry

)
∆ ln (Pe).

(16)

Taking an integral on both sides of the equation and removing the logarithmic terms,
we obtain the expression of EI

EI =EI0

(
Kdry

Kdry0

)aKdry
(θ)(

µ

µ0

)aµ(θ)( F
F0

)aF (θ)( Kf

Kf0

)aKf
(θ)(

Pe

Pe0

)aPe (θ)

, (17)

where aKdry
(θ) = 1

2 cos2 θ

(
γsat

γdry
− 4

3
γsat

)
, aµ (θ) = −4γsat sin2 θ, aF (θ) = cos 2θ

2 cos2 θ
, aKf

(θ) =

1
2 cos2 θ

(
2 sin2 θ − γsat

γdry

)
, aPe (θ) = 1

2 cos2 θ

(
1− γsat

γdry

)
, EI0 = α0ρ0, α0 and ρ0 are constants

of P-wave velocity and density, and Kdry0, µ0, F0, Kf0 and Pe0 are also constants of cor-
responding variables, which are calculated using well log data (Whitcombe, 2002). Re-
lationship between vector of seismic data and EI in case of n reflection interface is given
by

S (θi) = WDLEI (θi) , (18)

where

S (θi) =

[ s1
...
sn

]
n×1

,W =


w1 0 ... 0

w2 w1

. . .
...

...
...

. . . 0
wn wn−1 ... w1


n×n

,

D =
1

2

[ −1 1
−1 1

. . . . . .
−1 1

]
n×(n+1)

,LEI (θi) =

[
log(EI1)

...
log(EIn+1)

]
(n+1)×1

,

(19)

in which w1, ..., wn are samples in the extracted source wavelet, s1, ..., sn are samples in
the input seismic data of incidence angle θi, and log(EI1), ..., log(EIn+1) are samples in
logarithmic EI, respectively. Based on equation 18, we may estimate EI datasets from
the observed seismic data stacked over different ranges of incidence angle using a model-
constrained least-square inversion algorithm which is proposed by Chen et al. (2018). After
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obtaining the estimated EI, we proceed to nonlinear inversion for the unknown parameter
vector in which dry rock bulk modulus, fluid-sensitive factor and stress-sensitive parameter
are involved. A nonlinear relationship between EI and the unknown parameter vector in
the case of six incidence angles (θ1, θ2, θ3, θ4, θ5 and θ6) and n reflection interface is given
by

d = G(m), (20)

where

d = [ EI(θ1) EI(θ2) EI(θ3) EI(θ4) EI(θ5) EI(θ6) ]T ,

m = [ Kdry µ F Kf Pe ]T ,EI = [ EI1 ... EIn+1 ]T ,

Kdry = [ (Kdry)1 ... (Kdry)n+1 ]T ,µ = [ µ1 ... µn+1 ]T ,

Kf = [ (Kf )1 ... (Kf )n+1 ]T ,F = [ F1 ... Fn+1 ]T ,

Pe = [ (Pe)1 ... (Pe)n+1 ]T ,

(21)

and where subscripts of elements in vectors of unknown parameters and EI represent cor-
responding layers, and G is a vector related to parameters before reflectivities.

We assume the vector of estimated EI that is the input for the nonlinear inversion to be
dobs; and given a model mmod, we obtain the vector of synthetic EI data dmod. If the data
misfit or residual δd = dmod − dobs is small, the given model mmod can be approximately
equal to the true model m. Therefore we need to search for the model that makes the data
misfit be much smaller to implement the estimation of unknown parameters. The L2-norm
of the misfit is given by

E = ‖dmod − dobs‖2 =
1

2
(δd)T (δd), (22)

where E represents the energy of the data residual. From equation 22, we observe the
estimation of unknown parameter vector has been transfered to the problem of obtaining
a model that can make the energy of the data residual be smaller. We employ an iteration
procedure to obtain the appropriate model

m = mi + δm, (23)

where δm is the search direction for each iteration, and mi is an initial model, respectively.
The main task is to determine the search direction for each iteration. The L2-norm of the
misfit is expanded near the starting point in a Taylor series

E(mi + δm) ≈ E(mi) +

(
∂E

∂m

)
δm +

1

2

(
∂2E

∂2m

)
(δm)2 . (24)

By solving equation 24, we may obtain the result of δm. The derivative on both sides of
the equation with respect to δm is given by

∂E(mi + δm)

δm
=

(
∂E

∂m

)
+

(
∂2E

∂2m

)
(δm) . (25)
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Letting the derivation be zero, we may obtain the result of δm as

δm = −H−1g, (26)

where g =
(
∂E
∂m

)
, which represents the gradient of E with respect to m, H is the Hessian

matrix (Köhn, 2011; Innanen, 2014). Equation 26 implies that prior to computing the
direction δm we need to calculate the gradient g. We proceed to the calculation of the
gradient of residual energy with respect to m.

∂E

∂m
=
∂
[
1
2

(dmod − dobs)
T (dmod − dobs)

]
∂m

=
∂dmod (m)

∂m
(δd),

(27)

in which the gradient of synthetic EI data with respect to m, ∂dmod(m)
∂m

, is given by

∂dmod (m)

∂m
=
[

∂(EI)

∂(Kdry)
∂(EI)
∂(µ)

∂(EI)
∂(F)

∂(EI)

∂(Kf)
∂(EI)
∂(Pe)

]T
, (28)

where we assume the vectors of variables, Kdry, µ, F, Kf and Pe, involved in the vector
m are independent of each other. Therefore, substituting equation 17 into equation 28, we
obtain the components

∂ (EI)

∂(Kdry)
=
aKdry

(θ)EI0

Kdry0

(
Kdry

Kdry0

)aKdry
(θ)−1(

µ

µ0

)aµ(θ)( F
F0

)aF (θ)( Kf

Kf0

)aKf
(θ)(

Pe

Pe0

)aPe (θ)

,

∂ (EI)

∂(µ)
=
aµ (θ)EI0

µ0

(
Kdry

Kdry0

)aKdry
(θ)(

µ

µ0

)aµ(θ)−1(
F

F0

)aF (θ)( Kf

Kf0

)aKf
(θ)(

Pe

Pe0

)aPe (θ)

,

∂ (EI)

∂(F)
=
aF (θ)EI0

F0

(
Kdry

Kdry0

)aKdry
(θ)(

µ

µ0

)aµ(θ)( F
F0

)aF (θ)−1(
Kf

Kf0

)aKf
(θ)(

Pe

Pe0

)aPe (θ)

,

∂ (EI)

∂(Kf)
=
aKf

(θ)EI0
Kf0

(
Kdry

Kdry0

)aKdry
(θ)(

µ

µ0

)aµ(θ)( F
F0

)aF (θ)( Kf

Kf0

)aKf
(θ)−1(

Pe

Pe0

)aPe (θ)

,

∂ (EI)

∂(Pe)
=
aPe (θ)EI0

Pe0

(
Kdry

Kdry0

)aKdry
(θ)(

µ

µ0

)aµ(θ)( F
F0

)aF (θ)( Kf

Kf0

)aKf
(θ)(

Pe

Pe0

)aPe (θ)−1

.

(29)

EXAMPLES

Well log model construction

With curves of P- and S-wave velocities (α =
√

Ksat+4/3µ
ρ

, and β =
√

µ
ρ
) and density ρ

provided by well log in hand, we may roughly estimate clay volume Vclay, porosity φ and
effective stress σe using empirical relations. Castagna et al. (1985) proposed a relationship
among P-wave velocity, porosity and clay volume for shaley sands

α = 5.81− 9.42φ− 2.21Vclay. (30)
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Relationship among saturated rock density ρ, porosity and clay volume is given by (Mavko
et al., 2009)

ρ = [Vclayρclay + (1− Vclay) ρquartz] (1− φ) + φρf , (31)

where ρf is the density of fluid. Using the values of ρquartz and ρclay given by Blangy
(1992) (ρquartz = 2.65g/cm3; ρclay = 2.55g/cm3), we rewrite the empirical relationship a-
mong density, porosity and clay volume for water-saturated rock

ρ ≈ 2.65− 1.65φ− 0.1Vclay, (32)

in which we neglect the term proportional to Vclayφ. Combining equations 30 and 32, we
may utilize P-wave velocity and density to compute porosity and clay volume, and then we
employ the computed result of porosity to calculate the stress-sensitive parameter Pe using
equation 5. The effective bulk and shear moduli of minerals are calculated using the result
of clay volume, and the effective bulk and shear moduli of the dry rock are computed based
on equations 2 and 7. The bulk modulus of fluid is estimated using equation 4. Following
this procedure, when we apply the nonlinear inversion approach to real data sets, we may
also employ results of P- and S-wave velocities and density obtained by inversion of pre-
stack seismic data using a software package, to roughly estimate the values of Kdry, µ, F ,
Kf and Pe, and the estimated values are used as initial models in the inversion.

Figure 5(a) plots the curves of P- and S-wave velocities and density provided by the
well log; in Figure 5(b) we plot the computed results of porosity φ, clay volume Vclay and
stress-sensitive parameter Pe; and the estimated results of bulk moduli of dry rock and fluid
(Kdry and Kf) and shear modulus µ are shown in Figure 5(c).

1.5 3 4.5
α(km/s)

880

930

980

1030

1080

1130

1180

1230

1280

T
im

e(
m

s)

a)

0 1.5 3
β(m/s)

880

930

980

1030

1080

1130

1180

1230

1280

T
im

e(
m

s)

1.9 2.2 2.5

ρ(g/cm3)

880

930

980

1030

1080

1130

1180

1230

1280

T
im

e(
m

s)

0 0.2 0.4
φ

880

930

980

1030

1080

1130

1180

1230

1280

T
im

e(
m

s)

b)

0.2 0.4 0.6
V

clay

880

930

980

1030

1080

1130

1180

1230

1280

T
im

e(
m

s)

0 0.5 1
P

e

880

930

980

1030

1080

1130

1180

1230

1280

T
im

e(
m

s)

10 20
K

dry
(GPa)

880

930

980

1030

1080

1130

1180

1230

1280

T
im

e(
m

s)

c)

0 5 10 15
µ(GPa)

880

930

980

1030

1080

1130

1180

1230

1280

T
im

e(
m

s)

0 0.5 1 1.5
K

f
(GPa)

880

930

980

1030

1080

1130

1180

1230

1280

T
im

e(
m

s)

FIG. 5. Constructed well log model. (a) Curves of P- and S-wave velocities and density provided
by well log data; (b) Computed results of porosity, clay volume and stress-sensitive parameter; and
(c) Calculated results of effective bulk moduli of dry rock and fluid, and shear modulus.

Using a 20 Hz Ricker wavelet, we generate synthetic seismic data employing Zoeppritz
equation and the derived reflection coefficient (equation 13) respectively. Figure 6 plots
comparison between the generated results. We observe that the synthetic data generated
using the derived reflection coefficient match the data obtained using Zoeppritz equation
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FIG. 6. Comparison between synthetic seismic data generated using Zoeppritz equation (red) and
those generated using the derived reflection coefficient (blue).

closely in the case of the maximum incidence angle being around 30◦. Therefore we may
apply the derived reflection coefficient and the inversion approach proposed based on the
derived reflection coefficient to seismic data whose maximum incidence angle is around
30◦.

Synthetic test: verification of stability of the proposed inversion approach

We next utilize noisy synthetic seismic data, which are generated using Zoeppritz equa-
tion and added with random noise, to verify the robustness and accuracy of the proposed
inversion approach. In Figure 7 we plot profiles of noisy seismic data. Signal-to-noise ratio
(SNR) is 2, and the incidence angle range is 1◦−30◦. The input for EI inversion is obtained
by stacking the pre-stack seismic data over different ranges of incidence angle (i.e. 1◦−6◦,
7◦ − 12◦, 13◦ − 18◦, 19◦ − 24◦, and 25◦ − 30◦); therefore the incidence angles used in
equation 21 are approximately θ1 = 3◦, θ2 = 9◦, θ3 = 15◦, θ4 = 21◦ and θ5 = 27◦.
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FIG. 7. Profiles of noisy seismic data. The signal-to-noise ratio (SNR) is 2.

We implement the estimation of EI, and plot comparisons between inversion results of
EI and values computed using equation 17 in Figure 8. We observe there is a good match
between the inversion result and the true value, which indicates the inversion results of EI
can be used as a reasonable input in the inversion for unknown parameters.

We apply the proposed inversion approach to the noisy seismic data, and compare in-
version results of unknown parameters (Kdry, µ, F , Kf , and Pe) and their corresponding
true values (i.e. well log curves plotted in Figure 5), as displayed in Figure 9. Table 1 shows
the detailed steps of EI inversion for unknown parameters (i.e. a four-step inversion), in
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FIG. 8. Comparisons between inversion results and true values of EI.

which we explain how to implement the inversion. From Figure 9 we observe that using the
proposed inversion approach can generate inversion results that match true values closely,
which may confirm that the proposed approach is stable even in the case of seismic data
containing random noise (SNR=2).
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FIG. 9. Comparisons between inversion results and true values. a) Step 1: using EI (θ1) to estimate
Pe; b) Step 2: using EI (θ2) to obtain Kf ; c) Step 3: using EI (θ3) to estimate µ; d) Step 4: using
EI (θ4) and EI (θ5) to compute Kdry and F .

Table 1. A four-step inversion

Step1 Using EI (θ1) to obtain the stress-sensitive parameter Pe;

Step2 Using EI (θ2) and the estimated Pe to obtain the fluid bulk modulus Kf ;

Step3 Using EI (θ3) and the estimated Pe and Kf to obtain the shear modulus µ,

Step4 Using EI (θ4) and EI (θ5) and the estimated Pe, Kf and µ to obtain
the dry rock bulk modulus Kdry and fluid-sensitive parameter F .

Test on a real dataset

Since we have verified the stability of the proposed approach using synthetic data, we
proceed to illustrate how to apply the inversion approach to a real data set that is acquired
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over a hydrocarbon reservoir to confirm its accuracy and reliability. Figure 10 plots profiles
of stacked seismic data (θ1 = 3◦, θ2 = 9◦, θ3 = 15◦, θ4 = 21◦ and θ5 = 27◦), in which
P-wave velocity curve is spliced. The arrow in each figure indicates the location of the gas-
bearing reservoir. Prior to being used for the inversion, the seismic data have underwent
AVO-compliant preprocessing. From Figure 10 we observe that there is a strong reflection
around the gas-bearing reservoir.
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FIG. 10. Profiles of stacked seismic data. The incidence angles are θ1 = 3◦, θ2 = 9◦, θ3 = 15◦,
θ4 = 21◦ and θ5 = 27◦. Black curve represents P-wave velocity.

Again using the model-constrained least-square inversion algorithm (Chen et al., 2018),
we obtain the inversion results of EI at the corresponding incidence angles, as plotted in
Figure 11. We observe that EI exhibits a relatively low value at the location of gas-bearing
reservoir.
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FIG. 11. Inversion results of EI. The incidence angles are θ1 = 3◦, θ2 = 9◦, θ3 = 15◦, θ4 = 21◦ and
θ5 = 27◦. Black curve represents P-wave velocity.
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With the inversion results of EI in hand, we proceed to the four-step nonlinear inversion
for the bulk and shear moduli of dry rock, fluid-sensitive factor and bulk modulus of fluid,
and stress-sensitive parameter. For the construction of initial models, a software package is
employed to implement a rough estimation of P- and S-wave impedances and density using
pre-stack seismic data. Following the procedure presented in the section of well log model
construction we also roughly estimate the results of Kdry, µ, F , Kf and Pe using results
of P- and S-wave velocities and density that are estimated using a commercial software
package. The smoothed version of the roughly estimated result is used as the initial model
in the nonlinear inversion, as plotted in Figure 12. In Figure 13 we plot the final inversion
results of Kdry, µ, F , Kf and Pe.
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FIG. 12. Initial models of unknown parameters. Black curve represents P-wave velocity.
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FIG. 13. Inversion results of unknown parameters. Black curve represents P-wave velocity.

We observe that the proposed approach generate inversion results of bulk and shear
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moduli of dry rock, fluid factor, bulk modulus of fluid and stress-sensitive parameter, which
may match the curve of P-wave velocity well, and we also see that the inversion results of
Kdry, µ, F and Kf exhibit relatively low values at the location of the reservoir (as marked
by the arrow in each figure) and the estimated stress-sensitive parameter show relatively
high values.

DISCUSSIONS

In the present study, there are some conditions and assumptions under which we derive
the reflection coefficient and propose the approach of seismic inversion for stress-sensitive
parameter. We first obtain an approximation of the Gassmann (1951) fluid substitution
equation, and in the approximate equation we introduce a stress-sensitive parameter to
replace the porosity term, in which the critical porosity (CP) model is employed to relate the
bulk modulus of dry rock to the porosity term. The critical porosity used in the generation
of synthetic seismic data and the inversion of real data is approximately 0.35, which is
chosen by comparing results computed using the CP model and those calculated using
Krief’s equation. The approximate value of critical porosity is applicable in the case of the
porosity being less than 0.2. In order to obtain a more accurate result of critical porosity,
experimental measurements of rock cores are required.

Utilizing perturbations in stiffness parameters derived using the proposed approximate
expression of Gassmann’s equation, we obtain the linearized expression of reflection co-
efficient as a function of stress-sensitive parameter. Comparing the reflection coefficient
computed using Zoeppritz equation and that calculated using the linearized expression, we
confirm that the proposed reflection coefficient is applicable in the case of the maximum
incidence angle of seismic data being less than 30◦. It indicates that the inversion approach
proposed based on the derived reflection coefficient can be applied to the real data whose
maximum incidence angle is around 30◦.

After transferring the derived reflection coefficient to the corresponding EI, we propose
the nonlinear inversion approach of estimating stress-sensitive parameter using observed
seismic data. The nonlinear inversion approach is established on the basic of obtaining the
result that make the energy of data residual be smaller. In order to verify the accuracy of
the inversion approach, we implement the simultaneous inversion for unknown parameters
using synthetic seismic data shown in Figure 7. Figure 14 plots comparisons between true
values and inversion results obtained using the simultaneous inversion.
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FIG. 14. Comparisons between inversion results and true values of EI.
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Comparing the results shown in Figure 9(d) and the results plotted in Figure 14, we
observe that the simultaneous inversion may only obtain acceptable results of Kdry and F ;
however, the accuracy of the inversion for other unknown parameters(µ, Kf and Pe) should
be improved.

CONCLUSIONS

We first obtain simplification and approximation of fluid substitution equation, in which
we introduce a stress-sensitive parameter based on the critical porosity model. From the
variation of the stress-sensitive parameter with water saturation and porosity, we conclude
that the stress-sensitive parameter exhibits relatively high values in gas-bearing porous
reservoirs. Relating stiffness parameters to the stress-sensitive parameters, we express per-
turbations in stiffness parameters across an interface separating two layers. Using the per-
turbations, we derive a linearized reflection coefficient in terms of reflectivities of dry rock
bulk modulus, shear modulus, fluid-sensitive factor, fluid bulk modulus and stress-sensitive
parameter, and we also transfer the derived reflection coefficient to elastic impedance (EI).
Comparing results computed using the derived reflection coefficient and Zoeppritz equa-
tion, we confirm that the derived reflection is applicable in the case of the maximum in-
cidence angle being around 30◦. Based on the expression of EI, we establish a four-step
nonlinear inversion approach to estimate dry rock elastic properties, fluid factor, and stress-
sensitive parameter.

The stability of the nonlinear inversion is verified using noisy synthetic seismic da-
ta generated using Zoeppritz equation. We stress that the datasets stacked over different
ranges of incidence angle are employed to estimate results of EI using a least-squares in-
version algorithm, and the estimated results of EI preserve as the input in the nonlinear
inversion for dry rock elastic properties, fluid factor, and stress-sensitive parameter. Com-
paring results estimated using the proposed approach and those obtained using the simul-
taneous inversion, we confirm that the accuracy of the nonlinear inversion for the unknown
parameters is relatively higher than that of the simultaneous inversion. Applying the pro-
posed inversion approach to real data that have undergone careful amplitude processing, we
conclude the approach appears to provide results that can guide rock-physics interpretation,
specifically fluid identification and stress prediction.
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APPENDIX A. EXPRESSIONS OF FRACTURE WEAKNESSES

Following Shaw and Sen (2006), we express ξij parameters as

ξ11 =
sin4θcos4φ

α2
, ξ12 =

sin4θsin2φcos2φ

α2
, ξ13 =

sin2θcos2θcos2φ

α2
, ξ21 = ξ12,

ξ22 =
sin4θsin4φ

α2
, ξ23 =

sin2θcos2θsin2φ

α2
, ξ31 = ξ13, ξ32 = ξ23, ξ33 =

cos4θ

α2
,

ξ44 =
−4sin2θcos2θsin2φ

α2
, ξ55 =

−4sin2θcos2θcos2φ

α2
, ξ66 =

4sin4θsin2φcos2φ

α2
,

(A.1)

where (α =
√

Ksat+4/3µ
ρ

and β =
√

µ
ρ
). Combining equations 9-12 and A.1, we obtain

RPP =
1

4ρ cos2 θ
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∆ρ cos 2θ +
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(A.2)

where F is a fluid-sensitive factor, F = ρKf , γsat = µ/ (Ksat + 4/3µ), and γdry =
µ/ (Kdry + 4/3µ), respectively.
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