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ABSTRACT

Facies classification is the process to determine the local rocks lithology by analyzing
indirect measurements, such as well logs. Usually it is done manually by an interpreter. In
this work, I am presenting an automatic method for facies classification by the use of feature
engineering and gradient boosting trees. I used a set of classified well logs to train a multi-
class machine learning model, and compared the predictions with both raw and processed
features in a blind well. I could demonstrate that preparing the, by creating new features
from the original well logs, such as their gradients, polar coordinates transformations, and
clustering analysis, increased the predictions accuracy from 47% to 60%.

INTRODUCTION

During the mining and Oil&Gas well exploration, the local lithology can be determined,
with high accuracy, by core analysis (extracting the rocks at different depth and analyzing
their mineralogy). However, due to the high cost of such extraction, its not always an
option. In those cases, indirect methods to determine the rocks types are required (Richard
F. Wadleigh and Ward, 1984; Crampin, 2008).

Facies, or lithofacies, classification consists on determining a rock type, in a given
depth, by interpreting a series of measurements (well logs). This classification is often
done manually, which is very tedious and time consuming. Automatizing such work-flow
is usually done by applying machine learning algorithms, and it could help the interpreters
to understand better the patterns between measurements.

Machine learning is very popular in the moment, and highly used by Statisticians and
Data Scientists to help the analysis of big data. Machine learning is a sub-area of the Arti-
ficial Intelligence field, and it consists mostly on doing predictions by recognizing patterns
on the data features by using statistical learning methods (Hastie et al., 2001). Recently,
the geoscientists are applying machine learning algorithms combining with different pro-
cessing and interpretation methods. Maybe the most common application is for facies
classification, by the use of ensemble classifiers (Bestagini et al., 2017; Zhang and Zhan,
2017; Caté et al., 2017), neural networks, or NN (Silva et al., 2014), and support-vector
machines, or SVM (Caté et al., 2017; Alexsandro et al., 2017; Wrona et al., 2018), but
machine learning also has other applications in geophysics, such as in FWI, by using con-
volutional neural, or CNN, networks for salt identification (Lewis and Vigh, 2017), and
or using FLEXWIN for time-window selection (Chen et al., 2017). It is possible to find
works on trace interpolation using support-vector regression, or SVR (Jia and Ma, 2017),
or by using Monte-Carlo approximations (Jia et al., 2018). Deep neural networks (DNN)
is used by Araya-Polo et al. (2017) for fault detection and by Araya-Polo et al. (2018) for
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tomography. Nearest neighbors (k-NN) can be implemented to help on the CMP velocity
analysis (Smith, 2017). Russell et al. (2002) combine NN with AVO. Many others machine
learning algorithms applications can be found in the literature.

Hall (2016) proposed a contest to use machine learning for facies classification, and the
results of the contest were published on Hall and Hall (2017). Caté et al. (2017) shows
that ensemble classifiers, such as Random Forest and Gradient Boosting Trees, are a more
suitable choice to identify the rocks types using well logs. This paper is focused to clas-
sify Hall (2016)’s well log data by pre-processing the logs data, applying data imputation,
and classifying the rocks using the package XGBoost for Gradient Boosting Trees (Chen
and Guestrin, 2016). Programing language R (R Core Team, 2018) and RStudio (RStudio
Team, 2015) are used for the analysis and the resulting RMarkdown is attached in the Ap-
pendix, and shows that accuracy of the predictions are higher (an increase of 10 percentage
points) if the data is pre-processed (cleaned, data imputation, and feature engineering).

TREE-BASED METHODS

In this paper, the model used for predictions is the Gradient Boosting Tree (Hastie et al.,
2001), which is a guided ensemble of Decision Trees. In this section, the discussion starts
with the definition of regression and decision trees, introducing the Gradient Boosting Tree
lately. The theoretical development in this paper follows the one showed by Hastie et al.
(2001) and the algorithm called CART (Classification and Regression Trees) is the one used
in the research.

Background

Short explanation, tree-based methods split the feature (variable) space in rectangles
and assign a simple model (like a constant) in each one, as shown in figure 1 (each compo-
nent will be explained soon). It is conceptually simple, but shows to be powerful.

First, let’s solve the regression problem. Consider we have a continuous response Y
and input features (variables) X1 and X2. The idea is to create a set of partitions Rm in the
(X1, X2) space (figure 1a and b) and "predict" a constant c for each partition. Assuming bi-
nary partitions, the partitions of figure 1a is unlikely to happen. Figure 1b shows partitions
more realistic to the algorithm. The formulation of such partitions is:

f̂(X) =
M∑
m=1

cmI{(X1, X2) ∈ Rm} (1)

where f̂(X) are the predicted constants cm response for the feature space X = (X1, X2)
in the partition Rm. I = 1 while the features (X1, X2) are inside of each one of the M
partitions Rm. The partitions are included in the model each at a time, by selecting the
t values, as the tree of figure 1c grows. Figure 1d is the resultant regression of equation
1, where the vertical axis represents f̂ . This kind of method (tree) has the advantage of
interpretability, as it is build over a series of if conditions.
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FIG. 1. Diagram of a tree. a) shows a set of partitions not obtainable from recursive binary splitting.
b) shows a set of boundaries obtained on 2D feature space by recursive binary splitting. c) is the
tree obtained, corresponding panel a). d) is the predicted surface obtained by the tree. Figure
modified from Hastie et al. (2001).

The next step is to start to describe how to grow a tree, starting by a regression tree.

Regression trees

Let’s assume now that our data consists of p inputs (features) and one response for
each of the N observations. In others words, the data is represented by (xi, yi) for i =
1, 2, . . . , N , where N is the number of rows, with xi = (xi1, xi2, . . . , xip), where p is
the number of columns minus one. Now, consider M partitions (R1, R, 2, . . . , RM), the
equation 1 is:
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f(x) =
M∑
m=1

cmI{x ∈ Rm} (2)

The goal of the algorithm is to automatically decide which feature and points to split
(the feature to use the if condition, and with which value or rule), so the solution becomes
something similar to the figure 1c. For that, equation 2 needs to be optimized. A way for
that is to minimize the residual sum of squares, or RSS (in geoscience, it is called objective
function. In data science and statistics, it is called cost function):

Q(f) =
N∑
i=1

[yi − f(xi)]
2 (3)

The minimization of equation 3 leads to optimized ĉm that is just the average of yi in
region Rm:

ĉm = ave(yi|xi ∈ Rm) (4)

Hastie et al. (2001) suggest the minimization of the RSS to find the best partition is not
feasible in computational terms, so a greedy algorithm is usually chosen. The procedure is
to set a splitting point s and splitting variable (feature) j, and the partitions are:

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s} (5)

Then find the values of j and s that solves the following equation:

min
j,s

min
c1

∑
x1∈R1(j,s)

(yi − c1)2 + min
c2

∑
x1∈R2(j,s)

(yi − c2)2

 (6)

For each choice of j and s, the values of c1 and c2 of the inner minimization are solved
by:

ĉ1 = ave(yi|xi ∈ R1(j, s)) and ĉ2 = ave(yi|xi ∈ R2(j, s)) (7)

In others words, the choice of feature and point splitting parameters are done by trying
them all (or a selected batch of them) and select the ones that minimize equation 6.
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Train and test errors

The next step is to decide how deep (long) the tree must be. It is intuitive to imagine
that a too large tree will solve all the points of the data. But will this model (tree) be good
for a different dataset? Probably not, as the model is overfitting the first dataset. If the goal
of the created model is to do predictions on another dataset, we need to introduce the idea
of train and test errors.

Given a dataset D that consists of p features and one response for N observations, we
can split it into two datasets: the training Dtrain dataset with Ntrain observations and test
Dtest dataset with Ntest observations. Dtrain and Dtest have the same number of features
and response as the data D, and N = Ntrain +Ntest.

The model is created (or trained) using the training set Dtrain by minimizing equation
3, the train error. Figure 2 illustrates the behavior of the train error as the tree gets larger
(increasing the model complexity), represented by the solid blue curve. With a model
sufficient complex, the error goes to zero. The test error is computed using equation 3 by
applying the trained model on test data Dtest, and its behavior over model complexity is
represented by the solid red curve in figure 2. It reaches a minimum point on a certain
model complexity, then the error starts to increase, while the train error keeps decreasing.
That is the point when the model is overfitting the train data.

FIG. 2. The plots of train (light blue) and test (light red) errors. The curves were calculated using 100
different datasets with size of 50 each one. The solid curves are the expected errors (the average
of all the curves). Figure from Hastie et al. (2001).
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The "best" model is the one that minimizes the test error. It can be obtained by training
the model over the train data and using the test data to evaluate the model, to reach the
optimal balance between the errors.

Another way could be the implementation of a tuning parameter Hastie et al. (2001), in
order to penalize large models. First grow a large tree T0, then define a subtree T ⊂ T0 that
is obtained by pruning (collapsing internal nodes) T0. The terminal (last) nodes receive the
indexm, and the nodem is related to the partitionRm. Let’s denote the number of terminal
nodes in T by |T |. Using:

ĉm =
1

Nm

∑
xi∈Rm

yi

Qm(T ) =
1

Nm

∑
xi∈Rm

(yi − ĉm)2
(8)

Now we can define the cost complexity criteria:

Cα(T ) =

|T |∑
m=1

NmQm(T ) + α|T | (9)

where α is the tuning parameter and it governs the tradeoff between the tree size and its
precision to fit the data. A large α result in smaller trees, as small α can lead to overfitting.
This parameter must be chosen carefully.

Decision (classification) trees

At this point the idea of regression tress has been presented. But the goal of this paper
is to classify outcomes that can take values of 1, 2, . . . , K. Decision tree is a classification
algorithm and it is similar to the regression trees, with some changes on the criteria for
splitting nodes and pruning the tree. Now, the algorithm will split and classify an outcome
based on the majority class in the current depth of the tree (node). In a given node m on
region Rm with Nm observations, the proportion of class k counted in the node is:

p̂mk =
1

Nm

∑
xi∈Rm

I(yi = k) (10)

The classified observation in node m will be the class k(m) = arg maxk p̂mk. We can
compute the misclassification error by:

Qm(T ) =
1

Nm

∑
xi∈Rm

I(yi 6= k) = 1− p̂mk (11)
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The algorithm can keep splitting and growing the tree in order to minimize equation 11,
but the user needs always to be aware of the train and test errors, and must select the best
parameters for a good balance.

Boosting trees

Boosting has the premise to combine many "weak" classifiers (the ones such accuracy
is slightly higher than random guess) to produce a strong classifier. Boosting is one of the
most powerful learning methods. It was originally designed for classification, but it has
recently been expanded to regression as well.

Classification and regression trees were discussed previously. Just as a reminder, both
methods divide the feature space into partitions Rj, j = 1, 2, . . . , J , and each partition is
assigned to a constant (or classifier) γj:

x ∈ Rj ⇒ f(x) = γj

And the tree is expressed as:

T (x; Θ) =
J∑
j=1

γjI(x ∈ Rj) (12)

where the parameter Θ = {Rj, γj}J1 and are found by minimizing

Θ̂ = arg min
Θ

J∑
j=1

∑
xi∈Rj

L(yi, γj), (13)

in which L(yi, γj) is called the loss function, and it can be equal the cost function of equa-
tion 3 for regression, or the misclassification error of equation 11 for classification prob-
lems. Now the optimization problem is to find γj and Rj . Well, as showed before, for a
given Rj , γj = ȳj (average of yj, x ∈ Rj). The difficult part is to find Rj . Usually approx-
imate solutions are used, such as a greedy, top-down recursive partitioning algorithm. In
general, equation 13 is approximated by a smoother criterion to optimize Rj:

Θ̃ = arg min
Θ

N∑
i=1

L̃(yi, T (xi,Θ)), (14)

The boosted tree is a combination of all the "weak" trees, and the output is an optimized
tree. Hastie et al. (2001) point the final tree as the sum of all the trees:
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fM(x) =
M∑
m=1

T (x; Θm) (15)

Equation 15 is induced in a forward stagewise manner. This method approximates the
solution of equation 14 by adding new functions (in this case a new tree) to the model
without changing the parameters. Consider the squared-error loss:

L(y, f(x)) = [y − f(x)]2 (16)

For each iteration m, the forward stagewise manner solves for an optimal function
b(x; γm) and a corresponding coefficient βm, to be added to the current function (or tree)
fm−1(x), producing the new function fm(x), and then the repeat process again. In the end,
this is an iterative method. So, equation 16 becomes:

L(yi, fm−1(xi) + βb(xi; γ)) = [yi − fm−1(xi)− βb(xi; γ)]2

= [rim − βb(xi; γ)]2 (17)

where rim = [yi − fm−1(xi) is the residual of the current model on the ith iteration. This
optimization is better expressed on algorithm 1.

Algorithm 1: Forward stagewise additive modeling
Initialize f0(x) = 0
for m = 1 to M do

Compute: (βm, γm) = arg minβ,γ
∑N

i=1 L(yi, fm−1(xi) + βb(xi; γ))

Set: fm(x) = fm−1(x) + βmb(x; γm)

Now, with the forward stagewise manner method introduced, the parameters of equation
14 are iteratively solved:

Θ̂m = arg min
Θm

N∑
i=1

L(yi, fm−1(xi) + T (xi,Θm)) (18)

for regions and constants Θm = {Rjm, γjm}Jm1 of the next tree (model), given the current
model fm−1(x). As the region Rjm is set, the optimal values for the constants γjm are
computed:

γ̂jm = arg min
γjm

N∑
i=1

L(yi, fm−1(xi) + γjm) (19)

8 CREWES Research Report — Volume 30 (2018)



Facies classification with features engineering, clustering, and gradient boosting trees.

Equation 18 can be numerically optimized with any differentiable loss function. The
loss in setting f(x) to predict y is given by:

L(f) =
N∑
i=1

L(yi, f(xi)) (20)

We want to minimize the loss L(f) with respect to f , where f(x) is computed from
equation 15. Now let’s assume a generic function f(x) (not necessarily a tree). The mini-
mization can be expressed as a numerical optimization:

f̂ = arg min
f
L(f) (21)

where f̂ ∈ IRN are the approximations of function f(xi) → f̂{f(x1), f(x2), . . . , f(xN)}.
The numerical optimization will assume the form:

f̂M =
M∑
m=0

ĥm, ĥm ∈ IRN (22)

where ĥm is a step function, that is solve iteratively (such as the trees for the forward
stagewise manner). Following, we will show that the step function can be replaced by the
gradient boosting trees, a steepest descent solution given a loss function.

Steepest descent

The steepest descent method replaces the step function ĥm of equation 22 for −ρmgm,
where ρm is a scalar, named step length, and gm ∈ IRN is the partial derivative (gradient)
of the loss function L(f) evaluated at f = fm−1. The components of the gradient are:

gim =

[
∂L(xi, f(xi))

∂f(xi)

]
(23)

And the step length is:

ρm = arg min
ρ
L(fm−1−ρgm) (24)

Where the current solution is then updated:

fm = fm−1 − ρmgm (25)

CREWES Research Report — Volume 30 (2018) 9



Marcelo Guarido

This process is then repeated at the iteration. Steepest descent is considered as a greedy
solution, as the computed gradient is the local direction that most rapidly decreases the loss
function at the current iteration. The most commonly used loss functions for minimization
and their corresponding gradient are show on table 1.

Table 1. Gradients for the most commonly used loss functions.
Setting Loss Function −∂L(yi, f(xi))/∂f(xi)

Regression 1
2
[yi − f(xi)]

2 yi − f(xi)

Regression |yi − f(xi)| sign[yi − f(xi)]

Classification Deviance kth component: I(yi = Gk)− pk(xi)

Gradient boosting trees

The gradient boosting is the solution of the steepest descent when a loss function is
given and the gradient can be mathematically and numerically computed. The algorithm 2
represents a generic gradient boosting tree algorithm for regression.

Algorithm 2: Gradient boosting tree

Initialize f0(x) = arg minγ
∑N

i=1 L(yi, γ)
for m = 1 to M do

for i = 1 to N do

rim = −
[
∂L(yi, f(xi))

∂f(xi)

]
Fit a tree to the targets rim setting terminal regions Rjm = 1, 2, . . . , JM
for j = 1 to Jm do

γjm = arg min
γ

∑
xi∈Rjm

L(yi, fm−1(xi) + γ)

Update:

fm(x) = fm−1(x) +
Jm∑
j=1

γjmI(x ∈ Rjm)

Output: f̂(x) = fM(x)

Note that, differently from forward stagewise manner, the parameters, at each iteration,
are computed by fitting a tree to the gradient:

Θ̃m = arg min
Θ

N∑
i=1

[−gim − T (xi; Θ)]2 (26)

The gradient is the partial derivative of the loss function with respect to the tree. Table
1 shows the gradient for the most commonly used loss functions. The L1 and L2 norms
are usually used for regression.
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For classification the deviance is usually chosen. For a problem with K classes, the
response Y takes values of the unordered set ζ = {ζ1, ζ2, . . . , ζK} that are the classes. We
need to find a classifierG(x) that takes the values of ζ . For a given point x, we can compute
the probability of the class classification pk(x) = Pr(Y = ζk|x), k = 1, 2, . . . , K, for then
the Bayes classifier is:

G(x) = ζk where k = arg max
l
pl(x) (27)

So the classifier will select the class with the higher probability to be correct, and it can
be obtained by a logistic model:

pk(x) =
efk(x)∑K
l=1 e

fl(x)
(28)

which ensures that the probabilities are between 0 and 1, with their sum equals 1. Now we
can introduce a K-class multinomial deviance loss function:

L(y, p(x)) = −
K∑
k=1

I(y = ζk) log pk(x)

= −
K∑
k=1

I(y = ζk)fk(x) + log

(
K∑
l=1

efl(x)

)
(29)

For the gradient boosting tree, we can compute the gradient of equation 29 to use on
algorithm 2:

−gikm =
∂L(y, f1m(xi), . . . , f1m(xi))

∂fkm(xi)

= I(yi = ζk)− pk(xi) (30)

where the higher probability for the class is chosen.

Equation 26 gives us a very interesting insight about the gradient boosting method: it
fits a new tree over the wrong predictions. At each iteration, the new tree will focus on the
larger gradients, that are related to the larger residuals. In the classification problem, the
method focus on the misclassified part of the model.

THE DATA

Hall (2016) proposed a facies classification contest after applying a support vector ma-
chine algorithm to predict the rocks classes. The data consists of a set of well logs and in-
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dicators that comes from a University of Kansas class exercise on the Hugoton and Panoma
gas fields.

Five well logs and two indicators are given as features of ten well locations for the
analysis. The data contains a total of 4149 rows and 11 columns, the seven features, the
target column (classified facies), plus some meta information, such as well name and depth.
The seven features are:

1. Gamma ray (GR)
2. Resistivity (ILD_log10)
3. Photoelectric effect (PE)
4. Neutron-density porosity difference (DeltaPHI)
5. Average neutron-density porosity (PHIND)
6. Nonmarine/marine indicator (NM_M)
7. Relative position (RELPOS)

Different rock types are found in the data and they are represented (classified) by a
integer value that goes from 1 to 9, as shown on table 2. It is interesting to see the column
adjacent facies. Those are the rocks types usually found close to each one. So, this give us a
priori information that misclassifications as these "neighbors" types will be more common
(at least, we can expect that).

Table 2. Facies labels and their descriptions.
Facies Description Label Adjacent Facies

1 Nonmarine Sandstone SS 2
2 Nonmarine coarse siltstone CSiS 1,3
3 Nonmarine fine siltstone FSiS 2
4 Marine siltstone and shale SiSh 5
5 Mudstone MS 4,6
6 Wackestone WS 5,7,8
7 Dolomite DPhi 6,8
8 Packstone-grainstone PS 6,7,9
9 Phylloid-algal bafflestone BS 7,8

Ten wells are presented in the data. One of the wells will be separated (removed) from
the dataset to be used as the blind well for the evaluation of the predictions. The well names
are listed below:

1. Shrimplin
2. Alexander D
3. Shankle
4. Luke G U
5. Kimzey A
6. Cross H Cattle
7. Nolan
8. Recruit F9
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9. Newby
10. Churchman Bible

Figure 3 shows the Shankle well and its five logs: gamma ray (red), resistivity (yellow),
neutron-density porosity difference (green), average neutron-density porosity (blue), and
photoelectric effect (magenta). The colors in right are the given classification of the rocks
at the given depth. This well in the figure is the one that will be separated from the data
and used as the blind/evaluation well.

FIG. 3. The Churchman Bible well logs and the facies classification on the right.

FEATURES PROCESSING

This section is focused on the features processing, pointing the steps taken to improve
the classification accuracy. It was applied data filtering (removal of "broken" data), data im-
putation (treatment over missing data), feature engineering (creation of new features based
on the given ones), and predictions adjustments (corrections applied to the predictions).

Filtering

Initially, all the ten well logs and indicators were plotted and analyzed. The first thing
that came to my eyes was the well Recruit F9 logs and facies classification (figure 4). The
well has around 300m depth and all the logs present a weird behavior: they are very smooth
with the presence of spikes. Also, it looks to be formed for only one type of rock for the
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300m length, the nonmarine sandstone (SS). This seems to be highly unlikely and indicates
that the well may be "broken".

FIG. 4. Recruit F9 well shows to be "broken".

This kind of data can cause to bias the trained model (gradient boosting trees), as it
shows inconsistent behavior. To avoid a biased model, this well was deleted from the
data, leaving me with a total of nine wells (eight to train the model, and one for model
evaluation).

Any other filtering process was applied to the data, as it seemed unnecessary.

Data imputation

The gradient boosting tree method has the advantage to handle better missing data. But
having a complete dataset usually leads to a more accurate prediction.

All the features were analyzed for missing data, and the photoelectric effect (PE) came
with 905 (of 4149) missing points, or almost 22% of non-available data. Most of the solu-
tions of the facies classification contest (Hall, 2016), such as Bestagini et al. (2017), just
replace the missing data by the global mean of the feature. Well, all the missing PE data are
related to two wells, the Alexander D (figure 5a) and Kimzey A (figure 5b), and the entire PE
measurements are missing on both wells, as shown in figure 5. Completing the data with
its global mean does not sound as an optimal solution. Maybe the data imputation requires
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a more sophisticated solutions, that can lead to predictions of the missing PE. Gelman and
Hill (2007) cite different methods for data imputation, such as random values completion,
nearest neighbors, regression, and others.

(a) (b)
FIG. 5. Missing data on the wells (a) Alexander D, and (b) Kimzey A. The photoelectric effect is
completely missing. For plotting purposes, the missing PE was filled with the global mean.

The data contains 7 complete wells and 2 with the missing data. As all the logs are
giving a measurement of each rock type, I believe the logs may contain some relationship
(they are not independent variables). A regression model can be created by training it on
the 7 good wells and then predict the PE values on the other 2 wells. The PE values can be
"recovered" from the other logs. Equation 31 is a multivariate regression model for the PE
values:

PE = α0 + w1 ∗GR + w2 ∗ ILD_log10 + w3 ∗DeltaPHI + w4 ∗ PHIND (31)

where α0 is the intercept and the w’s are the slopes for each feature.

By training the regression model of equation 31 with the 7 good wells, all the coeffi-
cients were computed, as shown on equation 32, and the results are plotted in figure 6.

PE = 4.394027− 0.00284 ∗GR + 0.489608 ∗ ILD_log10 + . . .

− 0.01147 ∗DeltaPHI − 0.05867 ∗ PHIND (32)

The coefficients of equation 32 point feature PHIND as the one giving the largest con-
tribution on predicting PE.

Feature engineering

Bestagini et al. (2017) proposes the use of feature augment, or feature engineering,
that consists of creating new features from the available ones. Making different plots of
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(a) (b)
FIG. 6. Predicted photoelectric effect using multivariate regression for (a) Alexander D, and (b)
Kimzey A.

the data can help to identify patters on the data, and the feature engineering can be done
wisely. Figure 7 is the pairs plot of all the well logs (indicators are not included). The
colors of the points are the rocks classifications. The diagonal are the histogram plot with
the classification counts. The bottom left are the scattering plots, and the top right are the
density plots.

FIG. 7. Pairs plot (or scattering plots matrix), of all the well logs. The colors represent facies
classification. Note at the circular behavior of the features. The diagonal are the histogram plot with
the classification counts. The bottom left are the scattering plots, and the top right are the density
plots.

The most notorious observation taken from figure 7 is the circular behavior of the plots.
When creating a classifier model, it is complicated to define circular classification bound-
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aries. One way to deal with it is to transform the features to a domain where circular pat-
terns become more linear. In the case of the well logs, a polar coordinates transformation
can do the trick.

Assume we have 2 continuous features X1 and X2. The polar coordinates transforma-
tion will return 2 new features for each pair of feature, the the radial coordinate r and the
angle φ, and the conversion follow the relations of equation 33:

r =
√
X1

2 +X2
2

φ = arctan

(
X2

X1

) (33)

Those sets of relations were applied in the data combining all the pairs of well logs (the
indicators were not used), and from 7 initial features, I ended up with 27.

Another feature engineering used in this work is proposed by Bestagini et al. (2017),
where the features gradients are computed, according to equation

5d
fi

=
fd−1
i − fdi
∆Depth

(34)

where 5d
fi

is the gradient of the feature fi at depth d. The gradient is computed over the
features after the polar coordinates conversion, and the final number of features are raised
to 54.

Clustering: k-means

Clustering is the task of grouping a set of objects in such a way that objects in the same
group (called a cluster) are more similar (in some sense) to each other than to those in other
groups (clusters). In other words, in a dataset with N observations, can be assigned to a
cluster k ∈ {1, . . . , K}, with K < N , and K is the total number of clusters. These assign-
ments can be characterized by an encoder k = C(i), that assigns the ith observation to the
kth cluster, based on the dissimilarities (or distance) d(xi, xi′), based on the observations
x.

The goal is to assign close points to a cluster, so the minimization can be applied to a
loss function of the form:

W (C) =
1

2

K∑
k=1

∑
C(i)=k

∑
C(i′)=k

d(xi, xi′) (35)

A very popular algorithm for clustering analysis is the k-means (Lloyd, 1982), which is
applied to quantitative type data, and uses the Euclidean distance:
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Algorithm 3: K-means clustering
1 - For a given cluster assignment C, the total cluster variance, obtained from
equation 41, is minimized to {m1, . . . ,mk} yielding the means of the currently
assigned clusters (equation 40).

2 - Given a current set of means {m1, . . . ,mk}, equation 41 is minimized by
assign each observation to the closest (current) cluster mean (center):

C(i) = arg min
1≤k≤K

‖xi −mk‖2 (36)

3 - Steps 1 and 2 are repeated until the assignments do not change.

d(xi, xi′) =

p∑
j=1

(xij − xi′j)2 = ‖xi − xi′‖2 (37)

Equation 35 can be written as:

W (C) =
1

2

K∑
k=1

∑
C(i)=k

∑
C(i′)=k

‖xi − xi′‖2 =
K∑
k=1

Nk

∑
C(i′)=k

‖xi − x̄k‖2 (38)

where x̄ = (x̄1k, . . . , x̄pk) is the mean vector associated with the kth cluster, and Nk =∑N
i=1 I(C(i) = k). The minimization criteria is to assign all the N observations to all

the K clusters in a such way that x̄k is minimized. This can be obtained by an iterative
algorithms that solves:

C∗ = min
C

K∑
k=1

Nk

∑
C(i′)=k

‖xi − x̄k‖2 (39)

by noting that for any set of observations S, for the cluster with mean (center) m:

x̄S = arg min
m

∑
i∈S

‖xi −m‖2 (40)

C∗ can be obtained by solving:

min
C,{mk}K1

K∑
k=1

Nk

∑
C(i′)=k

‖xi −mk‖2 (41)
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This minimization is done by an alternating optimization procedure given in algorithm
3, which is used, in this analysis, to create a new feature cluster. It inputs all the original and
engineered features to the algorithm and estimate the closest observations into the chosen
number of clusters K. It is expected that this new feature helps to improve the gradient
boosting predictions.

Predictions adjustments

To avoid overfitting, the gradient boosting model is created to be relatively smooth,
meaning that, if we have a segment of classified rocks that are most sandstone, for example,
it would be unlikely that inside this segment a single mudstone is correctly classified. As
the rock types are categorized as numbers (1 to 9), a median filter with fixed window length
can be applied to remove single classifications. I use a window with fixed length of 5 depth
steps.

FACIES CLASSIFICATION

First predictions

Train and test data are split by selecting Shankle as the blind/evaluation well. Recruit
F9 is deleted from the data, as mentioned previously, due to its strange behavior and my
lack of trust on it. And that is all the process done for the first predictions.

FIG. 8. Predictions on the blind/evaluate well without data processing.
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A gradient boosting tree model were trained on the 8 train wells with 7 features each,
and the optimum model after 30 iterations, with an accuracy of 47%. Figure 8 compares
the true and predicted facies classification for this firs test.

The predictions worked reasonably well, finding properly most of the beginning and
ending of the large segments, and several misclassifications in between interfaces. The
shallow part of the well showed to be tricky and is mostly misclassified. The next step is to
try improving the predictions.

Tuned predictions

In the second part of the tests, all the processing is applied on the train and test datasets
(the processing is not done at the target column). Now, instead of 7 features to run the gra-
dient boosting model, 55 features are available (including the clustering process). For the
k-means algorithm, the observed data is assigned to 8 different clusters. The expectations
are that with more features, the model can recognize different patterns and create more
optimized classification boundaries.

Model training was completed after 27 iterations, using the same 8 wells as before, but
including the new features, and the new predictions had an improved accuracy of 60%.
Figure 9 shows the new predictions compared to the true classification.

FIG. 9. Tuned predictions on the blind/evaluate well after data processing.

The new predictions are visibly more consistent to the true classification, but the shal-
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low part is still tricky. Predictions now are more smooth due to the application of median
filter, but improved the overall accuracy. Without the filter, predictions accuracy is 55%.
The improvement of the final predictions is better demonstrated on the confusion matrices
of figure 10.

(a) (b)
FIG. 10. Confusion matrix of the prediction on the blind well with (a) raw data and (b) processed
data.

Figures 10a and 10b show the proportion of the rocks that are classified as the correct
one, or any of the misclassified ones. The expectation, for a perfect classifier, that the diag-
onal of the confusion matrix is populated by 1’s. From the initial to final predictions, most
of the misclassifications started to focus closer to the diagonal, showing the data processing
was effective. Most, but not all, of the rocks are better classified (the big exception is the
dolomite). Figure 10b also shows that the misclassification of each rock tends to be at the
adjacent facies (table 2), in accordance with the initial hypothesis.

The most important features for the facies classification can also be determined by their
coefficients values. The highest ones are the most important. On figure 11 the 10 most
important are listed, with their relative importance to the first place.

FIG. 11. The 10 most important features for the facies classification.
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Nonmarine/marine indicator (NM_M) is presented as the most important feature. It is
a binary vector that assumes values 1 or −1, and it should give "half" of the answer. So, it
makes sense to be on first place. The following ones are the gradient of the relative position
and the relative position itself. The next 5 places are the original features, followed by the
polar coordinates transformed ones. The feature engineering improved the predictions with
relative high importance. This shows how important it is to recognize patterns of the data
before the training step, helping to train a more precise model.

CONCLUSIONS

Gradient boosting trees were used for facies classification using the dataset from a 2016
contest. The data needed to be analyzed and filtered. It was showed that the processed data
increased the predictions accuracy in 13 percentual points, from 47% to 60%.

It was verified that the trained model can handle missing data, and is less susceptible
to overfitting choosing the right parameters. However, predictions accuracy is improved by
processing the data. First, PE missing data were "recovered" using a regressing model and
a relationship between the others well logs.

Feature engineering improved was applied in two steps. For the first one, analyzing the
pairs plots of the well logs and the rocks classifications, circular patterns were observed
and the polar coordinate transformation was used to create new features. The second step
was to calculate the gradient over depth of each feature. The final step was to use all the
available features to assign similar observations into clusters.

The predictions were adjusted by a median filter, and the filtered classification showed
to be smoother and more coherent to the true classification of the blind well. The confu-
sion matrix pointed that the predictions converged better to the true values after the data
processing.

In the end, machine learning algorithms can help the geoscientists on the daily job by
point new insights and/or automatizing tedious work.
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