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ABSTRACT

We implemented an elastic reverse time migration based on a coupled system of pure
P- and S-wave particle velocities. The system utilizes finite difference wavefields for P-
and S-wave particle velocity in vertical and horizontal directions (vpx, vpz, vsx and vsz),
and for 2-D displacement divergence and curl (A and B). In contrast with the usual elastic
imaging conditions that cross-correlates vertical displacements to obtain the P-wave image
and vertical and horizontal displacements to obtain the converted wave image, we devised
P- and S-wave imaging conditions using the adjoint state method. The resulting imaging
conditions cross-correlate spatial derivatives ofA andB wavefields with P- and S-wave dis-
placements. The proposed migration shows a better reflector definition and more balanced
amplitudes than the usual vertical and horizontal particle displacement cross-correlations.

INTRODUCTION

Reverse time migration (RTM) is a migration method that uses the two-way wave equa-
tion and can cope with primaries, multiples and complex structures with all reflector dips
(Baysal et al., 1983; McMechan, 1983; Whitmore, 1983). RTM is usually used to migrate
P-wave seismic data using the scalar wave equation, however it can also be used with the
elastic wave equation. Sava and Hill (2009) show a tutorial of wave migration methods
including RTM.

The basic RTM algorithm is shown in Algorithm 1. The first input is the shot gathers
S that could be pressure or vertical displacement in acoustic RTM, or multicomponent
seismograms in elastic RTM. The second input is the parameter model m that, for example,
in P-wave acoustic RTM is P-wave velocity or Bulk modulus and density. For elastic RTM,
m is P- and S-wave velocity or the Lamé parameters and density. The last input is the
source wavelet that could be one dimensional in acoustic RTM or multidimensional in
elastic RTM.

The outer loop iterates over shot gathers with the final migrations being the stack of
each individual migrated shot. Inside this loop, the algorithm generates source and receiver
wavefields and calculates some imaging conditions to create the migrated images.

The first step is to calculate the source wavefields doing a forward propagation. De-
pending on the finite difference scheme various wavefield combinations F are stored. For
acoustic RTM they could be particle pressure or the scalar P-wave particle velocity/dis-
placement. For elastic RTM, they could be the Cartesian components of the particle veloc-
ity/displacement, the stresses, or the P- and S-wave potentials. Also, there is no need to
store the whole wavefields but just the borders and reconstruct them (Nguyen and McMechan,
2015).
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The middle loop iterates backward in time generating the receiver wavefields by run-
ning the finite difference scheme in reverse with the shot gathers S as input wavelets at
receiver positions. There is no need to store the whole wavefields B but just the one corre-
sponding to the current time step.

Finally, the inner loop calculates the imaging conditions based on wavefields F and
B (Claerbout, 1971). In acoustic migration they could be as simple as cross-correlating
forward and backward pressure wavefields, expecting large amplitudes at reflector positions
and destructive interference everywhere else. In the case of elastic RTM, the imaging
conditions are more complicated and suffer from various problems.

Data: Shot gathers S(x, t, i) for i = 1, . . . , Ns, parameter models m and source
wavelet s(t).

Result: Migrated images Iw(x), w = 1, . . . , Nw.
For each shot gather;
for s← 1 to Ns do

Do a complete forward propagation getting all forward (source) wavefields of
interest;
F ← FD(m,s);
Reverse time loop;
for t← tmax to 0 do

Do one step backwards using shot gathers as sources and getting all
backward (receiver) wavefields of interest;
B← OneStepFD(m,S(:, :, t));
Apply imaging conditions at current time;
for each type of imaging condition do

Iw(:, :)← Iw(:, :) + ImagCondw(F ,B);
end

end
end

Algorithm 1: Basic reverse time migration algorithm.

Regarding the elastic imaging conditions, there are two main approaches based on what
you want to obtain. The first approach, mentioned before, is to cross-correlate the Carte-
sian components of the particle velocity/displacement (Chang and McMechan, 1994; Jiang,
2012). In two dimensions the obtained migration images are Izz, Izx, Ixz and Ixx where
the first subscript corresponds to the forward wavefield component and the second to the
backward. Due to the seismic mode filter characteristics of the near surface, image Izz
could be considered akin to a P-wave migration while Izx could be to a PS-wave migration.
However, the practice shows that artifacts due to cross-talk between P and S modes are
present (Yan and Sava, 2008).

The other approach wants to obtain true PP, PS, SP and SS mode migration images be-
cause they have a more physical meaning. Three main paths are identified in the literature.
The first one is to propagate separately P- and S-waves (Sun and McMechan, 2001). The
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PS image could be calculated using this method by forward propagating the P-wave and
backward propagating the S-wave, both acoustically and using its corresponding velocity
models. However, the image shows artifacts and wrong amplitudes because there is no
conversion between modes.

The second path is to transform the velocity/displacement Cartesian components into P-
and S-wave potentials using the Helmholtz decomposition (Yan and Sava, 2008). The main
drawbacks are three. The first one is that P- and S-wave amplitude and phase are distorted
by the Helmholtz decomposition (Zhang et al., 2018). The second is that S-wave wavefields
have a polarity reversal that causes destructive interference when cross-correlated with P-
wave wavefields. When the reflector is not horizontal the polarity reversal does not occur
at zero offset and this makes it difficult to correct it. This destructive interference produces
low amplitude patches in the final PS and SP migrated images (Balch and Erdemir, 1994).
Du et al. (2012) solve this issue by calculating a polarity factor along reflectors using the
energy flux density vector. Others calculate this factor from poynting vectors (Wang and
McMechan, 2015) or by using the normal vector to the reflectors picked from a previous PP
migration (Duan and Sava, 2015). The third drawback occurs in three dimensions where
the S-wave potential has three components while the P-wave potential only have one. It
is not obvious how to generate single PS, SP and SS images by combining a vector and a
scalar field. Duan and Sava (2015) calculate the gradient of P-wave potential and the curl
of the S-wave potential and use a dot product with the interface normal vectors. On the
other hand, Rocha et al. (2016) use the energy norm to obtain a single image for PS and SP
converted migration.

The third path is to use a finite difference scheme that directly propagates P- and S-
waves. Some of such schemes are Ma and Zhu (2003) and Chen (2014). These schemes
preserve the P- and S-wave modes amplitude and phase (Duan and Sava, 2015). Gu et al.
(2015) use a similar scheme to calculate P- and S-wave vertical and horizontal displace-
ments and then cross-correlates corresponding wavefields, i.e. forward horizontal P-wave
with backward horizontal P-wave. However, they do not cross-correlate different modes
to obtain PS images or generate a single image for each mode. Du et al. (2017) aim to
obtain a single image by using dot product instead of multiplication in the wavefield cross-
correlations. Using this method, they avoid rather than correct the PS and SP polarity
reversal. However, the dot product implicitly multiplies by cos 2α with α being the inci-
dent angle and this generates polarity reversal in PP and SS reflections when they are more
than 90◦ apart.

For least squares RTM the adjoint state method is used to get the gradient of an objective
function that uses Born modelling (Schuster, 2017). This gradient is a migration operator
adjoint of the Born modelling operator. Zhu et al. (2009) use the adjoint state method
to invert for Lamé parameters and density using full waveform inversion (FWI) and then
combine these parameters to obtain the contrast between elastic impedances where the
reflectors are located. Alves and Biondi (2016) also uses the adjoint state method to obtain
multi-parameter RTM images not of PP or PS reflectivities but of Lamé moduli and density
that can be applied for structural interpretation.
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In this report we use the adjoint state method and the pure P- and S-wave finite dif-
ference method of Chen (2014) to obtain elastic migration operators that generate P- and
S-wave migrated images. The mentioned finite difference scheme also produces P- and
S-wave vertical and horizontal displacements that are combined to generate PP and PS
migrations.

The outline of the report is the following: first we describe the pure P- and S-wave finite
difference method, highlighting some of its properties. Next, we describe some elastic
imaging conditions that can be applied to the usual finite difference method (Levander,
1988) and the pure P- and S-wave one, including the imaging conditions derived with the
adjoint state method. Then we perform some numerical experiments showing the effect of
each imaging condition described earlier over a single shot gather and a simple velocity
model. The other numerical experiments involve applying all the imaging conditions to the
elastic Marmousi model (Versteeg, 1994). We follow with a discussion and a conclusion
section. Finally, the appendix includes the derivation of the adjoint state imaging conditions
and their extension to 3-D.

P- AND S-WAVE ELASTIC RTM

Finite difference scheme

The elastic RTM migration is based on the pure P- and S-wave finite difference system
of Chen (2014):
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In this system u and w are the horizontal and vertical particle displacements while vx
and vz are their time derivatives or particle velocities. However, the system splits these
velocities in their P- and S-wave components vpx, vpz, vsx and vsz to explicitly evolve
them. The wavefields A and B are the divergence and second curl component of the vector
(u, 0, w). Although not explicitly addressed by Chen (2014), the P-wave source fA and
S-wave source fB are injected to wavefields A and B, respectively. Finally, α and β are the
P- and S-wave velocities. Density does not appear explicitly but in combination with Lamé
moduli in both of these velocities.

It is important to say that this system simulates the coupled P- and S-wave propagation.
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This means that conversions between modes are possible. For example, when a P-wave
propagates, it is entirely contained in the P-wave wavefields vpx, vpz andA. When it reaches
an interface, the reflected and transmitted S-waves appear in the S-wave wavefields vsx, vsz
and B.

The system was implemented with a staggered grid and perfectly matched layer bound-
ary conditions Berenger (1994). All the details are in Chen (2014).

We perform two experiments, one using a pure P-wave source with fB = 0 and the other
with a pure S-wave source with fA = 0. The model is homogeneous with α = 2km/s and
β = 1.15km/s. The source is in the centre of the model. Figure 1 shows a snapshot of the
six wave fields at 0.25s. Without interfaces to do mode conversions, there is no S-waves.
On the other hand, Figure 2 displays the case for the S-wave source. There is no P-waves,
only S-waves.

FIG. 1. Wavefield snapshots at 0.25s in a homogeneous medium using a P-wave source. As there
are no velocity contrasts, there are no mode conversions and the S-wave wavefields are void.

Something that we want to discuss before going to the elastic RTM imaging conditions
is the symmetry difference between a P-wave and a S-wave. In the left part of Figure 3 are
two schematic diagrams of a P-wave source and the particle movement. The source is in
the centre (star). The arrows around show the particle displacement direction that is radial.
Four multicomponent geophones are located at the corners (inverted triangles). Above each
one of them are the directions of the horizontal and vertical displacements they record at
their locations. The centre and right parts of the figure show some snapshots. On one hand,
the two P-wave vertical snapshots on the top show a vertical asymmetry of the particle
displacement. On the other hand, the other two P-wave horizontal snapshots at the bottom
show a horizontal asymmetry. This asymmetry is what changes the polarity in seismogram
radial components.
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FIG. 2. Wavefield snapshots at 0.25s in a homogeneous medium using a S-wave source. Due that
there are no velocity contrasts, there are no mode conversions and the P-wave wavefields remain
empty.

FIG. 3. P-wave source perceived polarity. The diagrams in the left show a P-wave source in the
centre (star) and four receivers (inverted triangles) at the corners. Arrows show particle displace-
ment/velocity direction. Above each receiver are the particle directions they record. In the centre
and left the wavefield snapshots show that the P-wave vertical snapshots are vertically asymmet-
rical while horizontal snapshots are horizontally asymmetrical. Arrow colors over the wavefields
correspond to arrows in left diagrams.

But something different happens when the source is S-wave. Figure 4 exhibits this
case. As before, in the left part appear the schematic diagrams of the S-wave source at
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the centre and the particle displacement that now is tangential. The geophones are located
at the corners and the particle displacement directions are shown above each one of them.
The top S-wave vertical velocity snapshots show that there is horizontal asymmetry while
the bottom S-wave horizontal velocity snapshots show that there is a vertical one. This is
different from the P-wave source case and due to this we can expect a polarity reversal in
the seismogram vertical component instead of the radial.

FIG. 4. S-wave source perceived polarity. The diagrams in the left show a S-wave source in the
centre (star) and four receivers (inverted triangles) at the corners. Arrows show particle displace-
ment/velocity direction. Above each receiver are the particle directions they record. In the centre
and left the wavefield snapshots show that the S-wave vertical snapshots are horizontally asym-
metrical while horizontal snapshots are vertically asymmetrical. Arrow colors over the wavefields
correspond to arrows in left diagrams.

Figure 6 shows an example with PS conversions in the three-layer model from Figure
5. The three top snapshots correspond to A and the three bottom to B. As the source is
P-wave there is direct wave in the firstA snapshot but not on the first ofB. In the remaining
A snapshots we see reflections and transmissions. The last two B snapshots show S-waves
created by PS conversions.

Elastic imaging conditions

Acoustic imaging is scalar and its usual imaging condition is to cross-correlate forward
and backward pressure wavefields. In contrast, as elastic imaging is vectorial, the choice
of how to combine forward and backward wavefields is less obvious.

We would like to compare the pure P- and S-wave imaging conditions with those pro-
posed for RTM with systems that do not distinguish between pure modes like Levander
(1988). This system has vertical vz and horizontal vz particle velocities in addition to nor-
mal and shear stresses σxx, σzz and σxz. One option for imaging conditions is to take
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FIG. 5. Three layer P- and S-wave velocity models used in the numerical experiments.

FIG. 6. A and B snapshots at several times. The source is P-wave. In snapshots A appear the
direct wave and the P-wave reflections and transmissions. In snapshots B only appear converted
S-wave reflections and transmissions.

advantage of the near surface that works as a mode filter by making the P-waves almost
vertical and the S-waves almost horizontal with the following two equations for PP and PS
(Chang and McMechan, 1994; Jiang, 2012):

IPP =

∫ T

0

vzv̂zdt (2)

IPS =

∫ T

0

vzv̂xdt (3)

where T is the maximum seismogram time and the hat (“ˆ”) means reverse propagated.
Another option to image PP is to cross-correlate the sum or normal stresses relating this
sum to the P-wave propagation:
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IPP =

∫ T

0

(σxx + σzz)(σ̂xx + σ̂zz)dt. (4)

Helmholtz decomposition is applied to the particle velocities using divergence ∇· and
curl∇× operators to obtain the P- and S-wave wavefields. Those wavefields are combined
in two PP and PS imaging conditions (Yan and Sava, 2008):

IPP =

∫ T

0

∇ · (vx, vz)∇ · (v̂x, v̂z)dt (5)

IPS =

∫ T

0

∇ · (vx, vz)(∇× (v̂x, 0, v̂z))2dt (6)

where we use the 2D curl operator by extending the particle velocity vector and using only
the second component. However, this PS imaging condition using Helmholtz decomposi-
tion does not translate directly to 3D because the result of curl operator is a vector while
the divergence is still a scalar.

Regarding the P- and S-wave pure mode system, there are also several imaging condi-
tions. Du et al. (2017) propose to perform the dot product between the Cartesian compo-
nents of the P and S modes to obtain two PP and PS imaging conditions:

IPP =

∫ T

0

(vpx, vpz) · (v̂px, v̂pz)dt (7)

IPS =

∫ T

0

(vpx, vpz) · (v̂sx, v̂sz)dt. (8)

The interpretation of these imaging conditions is that they calculate the projection of
the source wavefield into the receiver wavefield. However, Du et al. (2017) use a different
finite difference system than us. In our system we identify the wavefield A with the dis-
placement divergence and B with the displacement curl. Another imaging condition is to
cross-correlate these two wavefields:

IPS =

∫ T

0

AB̂dt. (9)

Finally, we propose two imaging conditions for PP and PS that are obtained by the
adjoint state method (Feng and Schuster, 2017). Their derivations and 3D extension are in
the appendix:
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IPP = 2α

∫ T

0

(
∂A

∂x
,
∂A

∂z

)
· (v̂px, v̂pz)dt (10)

IPS = 2β

∫ T

0

(
∂B

∂z
,−∂B

∂x

)
· (v̂sx, v̂sz)dt. (11)

In these dot products the backpropagated wavefields are the Cartesian components of
particle velocities, while the forward propagated wavefields are spatial derivatives of A and
B. The imaging condition also multiplies the cross-correlation by twice the corresponding
velocity.

As several authors have suggested, to correct for uneven illumination a division by
the source or source plus receiver energy could make the migration results more balanced
(Chang and McMechan, 1994; Jiang, 2012). In the non-pure mode RTM we divide by:

∫ T

0

(v2x + v2z)dt

and in the pure mode RTM imaging conditions by:

∫ T

0

(A2 +B2)dt.

NUMERICAL EXPERIMENTS

We performed several numerical experiments to evaluate the different elastic imaging
conditions described in the previous section. The experiments are segregated in two sets.
The first one corresponds to equations 2-6 when there is no mode separation in the wave
simulation. The second set corresponds to equations 7-11 when there is mode separation.
All the images have a Laplacian filter applied to attenuate the low wavenumber noise that
is common in RTM images. No AGC or vertical gain were applied.

The first experiment used the three layer velocity models shown before in Figure 5. A
single source located in the top centre of the model was shot with receivers along all the
surface extension. The source was a stress source, i.e. the same wavelet is injected in the
normal stresses wavefields, when there is no mode separation. With mode separation a
pure P-wave source was used. In this first experiment the source was a Ricker wavelet with
dominant frequency of 12Hz.

Figure 7 displays the migrated results without mode separation using the imaging con-
ditions of equations 2-6. Top row corresponds to the PP images and bottom row to the PS
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FIG. 7. PP and PS RTM migration results without mode separation. Imaging conditions are those of
equations 2-6. Top row are PP imaging conditions and bottom one are PS imaging conditions. From
top to bottom and left to right they are vertical displacements, sum of normal stresses, divergence,
vertical and horizontal displacement, and divergence times curl.

images. Overall the images show noise due to the source and to crosstalk between different
modes. The PP images delineate the reflectors in the central part of the model where the PP
reflections are expected to happen. PS images delineate longer reflectors as the conversion
points tend to be closer to the receiver than to the source. They also show low amplitudes in
the centre due to low S-wave amplitudes close to the normal incidence angle. As expected,
the two PS images, VzVx and Div*Curl, exhibit polarity reversal.

Similarly, Figure 8 shows the migrated results with mode separation using image con-
ditions from equations 7-11. As before, top row are PP migrations and bottom row are PS
migrations. The PP images show almost no noise related to the crosstalk between modes.
The PS on the other hand show spurious events in the bottom part and between the two
reflectors. Also, the PS images do not have polarity reversals except for the AB image.

The second experiment uses the elastic Marmousi model (Versteeg, 1994). A total of
17 shots evenly spaced over the model top where simulated with receivers along the top
horizontal model extension. In this experiment a 20Hz Ricker wavelet was used as source
with and without mode separation.

Figure 9 displays the PP migration results when there is no mode separation. The
vertical displacement image shows much less resolution that the sum of normal stresses and
divergence images. The sum of stresses tends to show better balance, but the divergence is
able to delineate more cleanly the reflectors.

The PS migration results without mode separation appear on Figure 10. Both images
show low resolution and very unbalanced amplitudes at the bottom, although the div*curl is

CREWES Research Report — Volume 30 (2018) 11



Monsegny and Trad

FIG. 8. PP and PS RTM migration results with mode separation. Imaging conditions are those of
equations 7-11. Top row are PP imaging conditions and bottom one are PS imaging conditions.
From top to bottom and left to right they are P dot product, adjoint state method P, A times B, PS
dot product and adjoint state method S.

slightly better. The reason could be the destructive interference caused by polarity reversals
and the crosstalk between modes.

Figure 11 exhibits the PP migration results with separation. In both cases the images
have good resolution, are able to reconstruct most structures and have good balance. Maybe
the dot product one is slightly better than the adjoint state method image because it has less
source noise and more continuous reflectors.

Finally, Figure 12 shows the PS migration results with mode separation. The first im-
age, A*B, is not very good. This could be caused because this imaging condition has
polarity reversal, and this causes destructive interference that hampers the reflector delin-
eation. The second image is able to do a good reconstruction of most structures and also
has a good balance. The last image is better than the first one but not as good as the sec-
ond. It has too much noise in certain parts and is no capable of reconstruct the intricate
structures, just their outlines.

DISCUSSION

The first numerical experiments showed that RTM using pure P- and S-waves generates
less artifacts that the usual elastic RTM. In addition, two of the pure PS RTM did not show
the polarity reversal typical of those images. All these effects do not make much difference
in a single migrated shot but add up in a multishot RTM creating a much better image, like
the second numerical experiment exhibits.

The adjoint state method imaging conditions have their origin in the creation of an
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FIG. 9. PP RTM migration results without mode separation. Imaging conditions are those of equa-
tions 2, 4 and 5. From top to bottom they are vertical displacements, sum of normal stresses and
divergence.
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FIG. 10. PS RTM migration results when there is no mode separation. Imaging conditions are
those of equations 3 and 6. From top to bottom they are vertical and horizontal displacement, and
divergence times curl.
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FIG. 11. PP RTM migration results when there is mode separation. Imaging conditions are those
of equations 7 and 10. From top to bottom they are P dot product and adjoint state method P.
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FIG. 12. PS RTM migration results when there is mode separation. Imaging conditions are those of
equations 8, 9 and 11. ASM stands for adjoint state method. From top to bottom they are A times
B, PS dot product and adjoint state method S.
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adjoint of the Born operator that is applied in demigration. Their main objective is to
be used as an approximation of the gradient in least squares RTM. Although they were
not designed with the purpose of improving the seismic image, it is reassuring that these
imaging conditions come from a well established theory.

The problem of the polarity reversal seems trivial because it could be solved by just
flipping one half of the horizontal seismograms, as is usually done in practice. However,
this only works when the normal incidence is vertical. As mentioned before, two of the
pure P- and S-wave PS imaging conditions do not show this reversal. The explanation is
that these imaging conditions always cross-correlate pairs of wavefields when the reversal
is present or absent in both. For example, B have the reversal but its horizontal derivative
does not and is cross-correlated with vsz that do not have the reversal too.

However, as mentioned in the introduction, the PP dot product imaging condition cre-
ates a polarity reversal when the angle of incidence is greater that 45◦. We tried to create
this effect with synthetic data, but we were unable. Besides, none of the proposed imaging
conditions correct this issue.

As mentioned before, the near surface acts as a wave mode filter that makes most of
the P-waves go to the vertical geophone and most of the S-waves go to the horizontal ones.
It is possible that without this filter effect the imaging conditions evaluation tend to lean
towards the pure modes RTM.

The input data for the pure P- and S-wave RTM must be P- and S-wave seismograms.
This means that the normal vertical and horizontal particle or velocity seismograms should
be separated. Separating vertical and horizontal displacements is easy when you have the
whole wavefields and the depth dimension, but seismograms are recorded in time. How-
ever, some authors like Gong et al. (2018) have addressed this issue.

We regard the adjoint state method imaging conditions as PP and PS imaging condi-
tions because the source used in the experiments was P-wave. As mentioned before, these
imaging conditions were gradient of a least squares RTM objective function with respect
to P- and S-wave velocities, respectively.

CONCLUSIONS

Regarding the pure P- and S-wave RTM imaging conditions, the PP and PS dot product
generated the best images. These imaging conditions were reported before in (Du et al.,
2017) but they use a different finite difference system.

The adjoint state imaging conditions were second place. However, they performed
much better than the classical non-pure modes imaging conditions and they do not suffer
from PS polarity reversal. PP polarity reversal is still unknown.

To be fair, regarding the non-pure modes RTM imaging conditions, the sum of stresses
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and the divergence also produced very good migrated images. Although they are limited to
only PP imaging.

FUTURE WORK

We are very interested in applying the PP and PS imaging conditions to real data. We
think they could be useful when delineating changes produced by CO2 storage. Actu-
ally, there is a facility near Brooks where C02 is going to be injected and multicomponent
conventional and DAS seismic monitoring equipment is already installed. Some of the
monitoring is from a VSP survey, so we also want to accommodate the algorithms to this
survey geometry.

We want to implement the technique mentioned earlier to turn conventional multicom-
ponent seismograms into pure P- and S-waves seismograms. There is room for improve-
ment since this problem is still open.

We are going to delve more into the PP reversal problem mentioned in the literature.
As mentioned before, we still cannot produce it in our synthetic experiments.

Some modelling with the near surface included could show the real potential of the
cross-correlations between Cartesian components.

As stated earlier, the imaging conditions based on the adjoint state method are the
gradient of a least squares RTM. We have the aim to use them in that kind of migration
technology.
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APPENDIX

Adjoint state method imaging condition derivation

Following Feng and Schuster (2017), we can express the pure P- and S-wave system of
equations 1 as a matrix operator S:
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The adjoint state method proclaims the following expression for the elastic least squares
RTM migration gradient with respect to the model parameters m = [α, β]T :

∂ε

∂m
= −〈 ∂S

∂m
w, (S−1)∗∆d〉,

where ε is the elastic least squares RTM objective function and ∆d are the shot gathers.
The second element of the dot product could be seen as a backward wave propagation using
the adjoint operator S∗ and the shot gathers as sources:
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∂ε

∂m
= −〈 ∂S

∂m
w,w∗〉 (12)

w∗ = (S−1)∗∆d

S∗w∗ = ∆d

w∗ = [v̂px, v̂pz, v̂sx, v̂sz, Â, B̂]T

where vector w∗ contains the adjoint wavefields. They can be obtained by implement-
ing this system using finite differences. The especific expressions for the dot products in
equation 12 can be calculated in the following way for the two gradient vector components
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Something to notice is that the derivative with respect to P-wave particle velocity α
only involves P-wave velocity and A wavefields, while the derivative with respect to S-
wave velocity β only includes S-wave particle velocity and B wavefields.

Adjoint state method imaging condition in three dimensions

H. Khaniani and Trad (2017) show the complete 3-D version of the pure P- and S- wave
system of equations 1. Using this system and following the same methodology of the last
section, the 3-D adjoint state method imaging conditions are:

IPP = 2α
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