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ABSTRACT

Deep learning becomes to be a very powerful and efficient technique in many fields,
where the recurrent neural network (RNN) has significant benefits of exhibiting temporal
dynamic behavior for time dependency tasks by building a directed graph of a sequence. In
this paper, with a self-designed RNN framework, the forward modeling of wave propaga-
tion is casted into a forward propagation of RNN, which allows the inversion problem being
treated as the training process of RNN. Using this specific network, we numerically ana-
lyze the influence and playing role of learning rate (i.e., step-size) for each gradient-based
optimization algorithm. Comparisons of gradient-based and non-linear algorithms are also
discussed and analyzed. To examine our analysis, the Marmousi model is employed to
perform the inversion on the proposed RNN using both gradient-based and non-linear al-
gorithms.

INTRODUCTION

The physical properties of earth can be retrieved by evaluating changes of wave propa-
gation through the source to receivers located either on the surface or in the drilling wells.
Hundreds of theories and methods in thousands of literatures have been proposed on ap-
proaches of utilizing the gathered seismic information to obtain a better illumination of
subsurface structures and to predict more precisely elastic parameters of the interested
zone, both in modern seismology and exploration geophysics. One of the most popular
methods is full waveform inversion (i.e,. FWI, Lailly and Bednar, 1983; Tarantola, 1984),
which uses full wavefield information to reconstruct subsurface parameters by minimizing
the misfit between recorded data (the local measurements of seismic wavefield) and the
predicted data (a solution of the wave propagation problem using current model). They
further showed that, by considering the least-squares minimization, which is not convex, as
a local optimization problem.

The gradient, the multidimensional derivatives of the objective function with respect to
the model parameters, is usually studied in the framework of Fréchet derivative (McGillivray
and Oldenburg, 1990), or Gâteaux derivative. Virieux and Operto (2009) showed that the
gradient of the misfit function with respect to the parameters can be built by the crosscorre-
lation of forward wavefield emitted from the source and the time-reversal wavefield using
the data residuals. The nonlinearity of the perturbation wavefield and the perturbed model
parameters are usually introduced by the adjoint state techniques (Plessix, 2006; Liu and
Tromp, 2006; Yedlin and Van Vorst, 2010) by involving the partial derivatives of the gradi-
ent with respect to the model parameters, which is namely called the sensitivity kernel of
FWI.

The adjoint state methods are very powerful tool to solve the nonlinear optimizations in
the filed of convex problems and proven to be capable of accelerating the convergence of the
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objective function for FWI. However, two major problems remain in the implementation
of FWI using adjoint state. First, the adjoint state technique requires a prohibitive com-
putational costs, especially when considering the large amounts of subsurface model pa-
rameters. To avoid the direct calculation of Jacobian matrix, many iterative approaches are
proposed and applied on FWI. For example, the nonlinear conjugate gradient (CG), which
the searching direction is a linear combination of the current gradient direction and the pre-
vious searching direction (Fletcher and Reeves, 1964). By avoiding explicitly constructing
Hessian matrix, the quasi-Newton methods, such as BFGS (Broyden, 1970; Fletcher, 1970;
Goldfarb, 1970; Shanno, 1970), provides the approximation of the inverse Hessian using
stored models and gradients at previous iterations (Nocedal and Wright, 2006). To reduce
the storage requirement and the computation cost of preconditioning, a limited-memory
BFGS (L-BFGS) is presented by using limited iterations of recent gradients and models,
which provides faster convergence for large-scale bound-constrained optimizations (Byrd
et al., 1995; Zhu et al., 1997; Morales and Nocedal, 2011). Another popular approach
is truncated Newton (TNC) method, which the searching direction is obtained by solving
the Newton system with a matrix-free fashion of conjugate gradient algorithm. Second,
the implementation of FWI using adjoint state method is based on the assumption of the
convex optimization. This assumption requires a convex optimization problem for which
the Hessian matrix is positive semidefinite everywhere and the local minima of the objec-
tive function are nearly global minima. To approximately satisfying these conditions, the
global optimization problem becomes to be a local optimization, which makes FWI using
adjoint state methods heavily relies on the availability of low frequency or high-angle seis-
mic measurements and a good initial model. The detailed discussion is illustrated later in
this paper.

Deep learning, also known as deep structured learning or hierarchical learning, is a
powerful technique (Dechter, 1986; Schmidhuber, 2015) and becomes to be the most pop-
ular method and solutions for variant fields since the successively introduced by Hinton
et al. (2006). Deep learning architectures, such as deep neural networks (DNNs), deep be-
lief networks (DBNs) and recurrent neural networks (RNNs), have been applied to fields
including computer vision (Cireşan et al., 2012), speech recognition (Hinton et al., 2012a;
Graves et al., 2013a,b), natural language processing, audio recognition (Collobert and We-
ston, 2008), social network filtering (Defferrard et al., 2016), machine translation (Bah-
danau et al., 2014), and board game programs (Silver et al., 2016), where they have pro-
duced results comparable to and in some cases superior to human experts. The framework
of RNN has been shown significant benefits for time-sequence tasks.

To take full advantages of deep learning technique, in this paper, we recast the for-
ward modeling of wave propagation into a RNN framework, which allows us retrieving
subsurface model parameters through the training process of neural network. Instead of
using Fréchet derivative, we also present the gradient derivation of the objective function
with respect to model parameters in a neural network perspective. By illustrating the in-
version into a framework of RNN, advance deep learning libraries (such as TensorFlow,
PyTorch, Keras, Caffe, and so on) can be directly utilized for geophysical problems. Same
to FWI, the training process also employs full wavefield information because the forward
propagation of RNN is built by the wave equation. Beyond that, we discuss the efficient
and effectiveness of implementing gradient-based optimization algorithms on this inver-
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sion problem. The convergence of the objective function and the influence of learning rate
(i.e., step-size) for each algorithm is numerically investigated. By theoretically analyzing
the learning rate effects on each gradient-based algorithm, we proposed the best appropri-
ate range of learning rate using each algorithm for geophysical velocity inversion problem.
Furthermore, the comparison between the best performance of gradient-based methods and
CG, L-BFGS, TNC are discussed. Finally, to examine our conclusion, the Marmousi model
is employed to perform the inversion process using the proposed RNN framework.

THE FORWARD PROBLEM IN DEEP LEARNING FRAMEWORK

The forward problem

The forward problem, namely, seismic wavefield modeling, usually is being denoted
as the partial differential wave equation (Carcione et al., 2002). Several approaches have
been proposed and widely applied to discretize the wave equation and model the full seis-
mic wavefields in different types of media, both in time and frequency domains, such as
the finite-difference (Smith, 1985; Virieux, 1986) , finite-element (Marfurt, 1984), finite-
volume (Eymard et al., 2000; Glinsky-Olivier et al., 2006), pseudo-spectral methods (Fac-
cioli et al., 1997; Etgen and Brandsberg-Dahl, 2009; Li et al., 2018). Assume an acoustic
media in 2D with a constant density, the wave equation in time domain is written as,

∇2u(r, t) =
1

v2(r)

∂2u(r, t)

∂t2
+ s(r, t)δ(r− rs) (1)

where ∇2 denotes the (spatial) Laplacian operator, and the spatial coordinates is described
by r. u usually represents the pressure or displacement for acoustic medium wave propa-
gation, with the time coordinate t. The source term is denoted by s.

Before casting the forward modeling of wave propagation into a self-designed deep
learning framework, first, the wave equation needs to be discretized. To simplify the prob-
lem and make it intelligible for readers, the second-order finite difference method, both
in time and spatial coordinates, is applied to solve the wave propagation. Therefore, the
wavefield at current time step (i.e., ut+∆t) is only coherent to the wavefields at two previous
time steps (i.e., ut and ut−∆t). The mathematical formulation is written as,

u(r, t+∆t) = v2(r)∆t2
[
∇2u(r, t)− s(r, t)δ(r− rs)

]
+ 2u(r, t)− u(r, t−∆t) (2)

Equation 2 shows that the forward modeling of wave propagation can be considered as
an iterative process which takes the source term s(rs, t) and the two previous time steps
wavefields as inputs. It inspires us that it is possible to solve the forward modeling prob-
lem with a recurrent neural network where each neural network layer does the wavefield
modeling at one single time step.
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The recurrent neural network

The recurrent neural network (RNN), a class of artificial neural network, builds a di-
rected graph sequence for layers connection. Based on its architecture graph, RNNs are
classified into two broad classes of networks: finite impulse using a directed acyclic graph
and infinite impulse with a directed cyclic graph, where both of them are capable of ex-
hibiting temporal dynamic behavior for a time sequence (Thulasiraman and Swamy, 2011;
Miljanovic, 2012). Unlike feed-forward neural networks, RNNs can use their internal state
(memory) to process sequences of inputs. This makes them applicable to time-dependency
signal processing tasks such as unsegmented, connected handwriting recognition or speech
recognition (Robinson et al., 2002; Graves et al., 2013a; Sak et al., 2014; Li and Wu, 2015).

Because of the unidirectionality of time flowage in the wave propagation, i.e., the wave-
field at current time step is not and will not be infected by the one at next and future time
steps, a directed acyclic graph for finite impulse RNN can be considered as a suitable
framework for the forward modeling problem. Unlike the conventional RNN architecture,
a single cell of our designed RNN for the forward modeling problem represents the finite-
difference operator, which takes the sequence at one single time step as the input, outputs
the modeled shot record at current time step, and save the memory and the modeled wave-
field of this block for the next time step modeling. The directed acyclic graph of RNN
architecture is shown in Figure 1. As illustrated, the directed acyclic architecture of RNN
can be unrolled, shown in Figure 2. The collection of outputs at every time step sorting into
time coordinate, is the local measurements of wavefield, called shot gather in geophysical
exploration.

FD Operator

FIG. 1. The directed acyclic graph of RNN for the forward modeling problem.

Based on equation 2, the wavefield at current time step can be obtained by implement-
ing the finite-difference operator on wavefileds at two previous time step and the source
term at previous time step, which builds a directed acyclic graph of one single cell of RNN
for the forward modeling problem. Note that, similar to the conventional RNNs architec-
ture such as long short-term memory (LSTM) network, a gate factor can be added into the
graph to perform the time resampling of the output prediction, i.e., the time step of the
RNNs corresponds to the number of iterations in seismic wave forward modeling, where
the time resampling is controlled by the gate factor.

The architecture of forward modeling RNN is illustrated in Figure 3. The input ut−∆t

and ut represents wavefields at two previous time steps, and the source term at the previous
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FIG. 2. The unrolled directed acyclic graph of RNNs for the forward problem.
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FIG. 3. The single cell’s architectures of RNNs for the forward problem.

time step is delineated by st. The output dt+∆t and ut+∆t are the shot record related to
receiver locations and the wavefield at current time step, respectively. In Figure 3, the
spatial Laplacian operating on the previous wavefield is delineated as a ‘convolutional’
implementation in neural networks’ forward propagation, where the filter (i.e., the spatial
Laplacian operator ∇2, an untrainable filter) is shifting over the entire image (i.e., the
previous wavefield ut). Given the true velocity model, the architecture of RNNs shown
in Figure 3 is capable of performing the seismic wave propagation in a perspective of the
forward propagation with a RNN framework.
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To accommodate the inversion process into a training process of neural networks, the
only trainable parameter in the directed acyclic graph of the self-designed RNN is the ve-
locity parameter, which is delineated as the purple unit in Figure 3. The acquired seismic
shot records are considered as the labeled data of the training set. To sum up, with the
discretized wave equation configured in the self-designed architecture of RNN, the for-
ward modeling problem of seismic wave propagation is casted into the implementation of
the forward propagation of RNN. Considering the proper subsurface parameters into the
trainable parameters of RNN, the seismic inversion processing turns into the training im-
plementation of RNN, which allows us to measure the underground model parameters in a
deep learning perspective.

THE INVERSE PROBLEM IN DEEP LEARNING FRAMEWORK

The inverse problem in geophysical exploration is to obtain the subsurface model pa-
rameters based on the approximation of medium type, which is usually being treated as a
least-squares local optimization problem by minimizing the square of the misfit between
the recorded seismic records and the modeled seismic data, i.e., ∆d = dobs − dpred. In
time domain, the implicitly of summation is performed over the number of source-channel
pairs (where the channel is related to the component of sensor), the number of receivers
for one shot, and the number of time samples in recorded seismograms. To further ana-
lyze the gradient calculation for model parameters updates in a deep learning framework,
instead of the vector operations, we need to expand the recorded and modeled data into a
time-related sequence vector. The mathematical formulation of the least-square norm of
the misfit function or the objective function is written as,

J(v) =
1

2ns

∑
rs

∑
rg

∑
t

(dt − d̃t)
2 (3)

where, rs represent the source location, rg is the receiver location related, t delineates
the propagating time step, and ns denotes the number of sources. dt is a vector of source-
related recorded seismic record at a fixed time step, d̃t is a vector of source-related modeled
seismic record. Both of them are coherent to receiver locations, which can also be written as
the multiplication of a delta function of receiver-location and the corresponding wavefield
at the same time step, i.e., d̃t = δrgũt.

In modern geophysical exploration and application, the general way to solve the least-
squares optimization problem illustrated in equation 3 is the gradient-based method. Sup-
pose that at the n-th iteration, the model at next iteration vn+1(r) is updated with the current
model vn(r) through a perturbation model δvn(r)

vn+1(r) = vn(r) + αδvn(r) (4)

where α represents step-size at the current iteration, which is usually being called as learn-
ing rate in deep learning perspective. In the following contents, to be consistent, the learn-
ing rate is used.
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The first-order optimization

The calculation of the perturbation model δvn(r) varies depending on the approximate
order of the optimization algorithms. Using the first-order approximate optimization algo-
rithms, the model update is usually achieved by the negative gradient, known as steepest
descent or gradient descent (GD) algorithm. The mathematical formulation of model per-
turbation using gradient descent method is written as

δvn(r) = −gn(r) (5)

FD Operator FD Operator FD OperatorFD Operator ⋯ ⋯

FIG. 4. The unrolled directed acyclic graph of RNNs for the inverse problem.

In perspective of RNN’s framework, the gradient calculation of the objective function
over the trainable parameter is achieved by the chain rule performing in sense of rever-
sal time, shown in Figure 4. The mathematical formulation of the gradient is written as
(detailed derivation can be found in Appendix A),

g =
∂J

∂v

= BP (− 1

nsv2∆t2

∑
rs

∑
rg

δdt)
∂ũt

∂v

≈ BP (− 1

ns

∑
rs

∑
rg

δdt)
2

v3

∂2ũt

∂t2

(6)

where, BP (s) indicates the back-propagation of source s in reversal time (T → 0). δdt

represents the residuals between observed and predicted data. The initial states for the
back-propagation are,

[
∂J

∂ũt

]
t=T

= − 1

ns

∑
rs

∑
rg

(dT − δrgũT) (7a)[
∂J

∂ũt

]
t=T−1

= − 1

ns

∑
rs

∑
rg

[(v2∆t2∇2 + 2)δdT + δdT−1] (7b)
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Equation (6) indicates that the perturbation model obtained by the gradient is performed
by the crosscorrelation between the second-order partial derivative of the forward wavefield
over time and the back-propagation wavefield using the residual as the source, which is
equivalent to the gradient of time-domain full-waveform inversion shown in paper by Yang
et al. (2015). In other words, FWI is also a specified machine learning process with a self-
designed RNN framework, where the unknown subsurface parameters are treated as the
trainable weights of neural network.

The first-order gradient-based optimization algorithm has been proved as an efficient
and effective method that was of core practical importance in fields of machine learning
science and engineering. However, gradient decent may lead to slower-learning, or even
divergence optimization results when the noisy stochastic objectives is considered which
frequently happened in practical datasets. To solve that, the efficient stochastic optimiza-
tion techniques are required. Gradient with momentum (Momentum) was first proposed
by Qian (1999) to optimize the direction of convergence and accelerate the speed of gra-
dient descent method. Duchi et al. (2011) proposed an adaptive sub-gradient (Adagrad)
method by scaling gradient with its squared norm, which works well for sparse gradients of
stochastic optimization. Zeiler (2012) presented an adaptive robust learning rate (Adadelta)
method based on gradient decent, which does not require the manual tunning and section of
hyperparameters. Around the same time, Hinton et al. (2012b) also proposed a similar way
to scale the gradient by running the magnitude of recent gradients normalization, which is
called the root-mean-square gradient (RMSprop) algorithm. Inspired by Momentum and
RMSprop algorithms, Kingma and Ba (2014) combined these two methods as the adaptive
moment (Adam) estimation, where the magnitude of parameter updates are invariant to
rescaling the gradient, it does not require a stationary objective and works well with sparse
gradients, and it naturally performs a form of step-size annealing. To help reader further
understand these algorithms, the pseudo-codes of Momentum , Adagrad , RMSprop and
Adam algorithms are detailed reviewed in Appendix B.

The second-order optimization

As delineated in introduction, to accelerate the convergence of minimization of objec-
tive function, FWI is usually implemented with the adjoint-state method, which are second-
order approximation based. The updates for model parameters equal to the multiplication
of negative Hessian matrix and gradient, which is written as,

δvn(r) = −
∑
r′

H−1
n (r, r′)gn(r

′) (8)

where gn(r) and H−1
n (r, r′) are the gradient and the Hessian matrix at the n-th iteration,

respectively. Their observation is performed as the first- and second-order derivatives of
the objective function J(vn) with respect to the model vn, respectively,
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gn(r) =
∂J(vn)

∂v(r)

H−1
n (r, r′) =

∂2J(vn)

∂v(r)∂v(r′)

(9)

The second-order optimization algorithms in equation 8 become to be the most power-
ful and popular way to solve the specialized optimization in the field of convex problems for
which the Hessian matrix is positive semidefinite everywhere. The objective functions of
such optimization problems are well-behaved, lacking of saddle points, and all their local
minima are necessarily global minima (Goodfellow et al., 2016). However, most prob-
lems in deep learning are difficult to express in terms of convex optimization, as well as
FWI. Some challenges arise even when optimizing convex deep learning problems which
the most prominent is ill-conditioning of the Hessian matrix. For example, the the Taylor
series expansion of function f(x) around the current point x0,

f(x) = f(x0) + (x− x0)∗g +
1

2
(x− x0)∗H(x− x0) +O(x) (10)

where g and H are the gradient and Hessian matrix at x0, ∗ represents conjugate transpose.
With the gradient descent method and a learning rate α, the prediction for x position is
given by x0 − αg. Neglect the high order approximation, equation 10 can be rewritten as

f(x0 − αg) ≈ f(x0)− αg∗g +
1

2
α2g∗Hg (11)

Equation 11 indicates that, with the second-order optimization algorithm, the cost func-
tion correction at position x0 is evaluated by 1

2
α2g∗Hg−αg∗g. In many cases, the gradient

norm g∗g does not decrease significantly through learning, but the g∗Hg term grows by
more than an order of magnitude (Goodfellow et al., 2016). This leads to a very slow
learning process even in presence of a large gradient because a much smaller learning rate
must be taken to compensate for even stronger curvature. Therefore, for a non-convex
optimization problem or with noisy labeled data or a bad initial model, the second-order
approximation based optimization algorithms can not guarantee a faster and smoother con-
vergence than the first-order gradient-based algorithms. For these reasons, the most widely
utilized optimization algorithm in deep learning problems is first-order derivative based
method, and the searching of perturbation model is in the negative direction of gradient.

However, it has been proved that the adjoint state method is able to accelerate the con-
vergence process when it starts with a well-behaved initial model in FWI problem. There-
fore, in the following section of this paper, we try to compare the performance of the first-
order (includes GD, Adagrad, RMSprop, and Adam) and second-order (includes non-linear
CG, L-BFGS, and TNC) based algorithms on this geophysical optimization problem. The
numerical analysis of the learning rate effects, the speed of convergence using varied opti-
mization algorithms are also discussed using a one-dimension (1D) depth-varying model.
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NUMERICAL ANALYSIS OF HYPERPARAMETER SELECTION

A key problem in deep learning training process is the hyperparameter tuning, which
is still one of the toughest obstacles. In general deep learning cases, the learning rate is
usually determined by empirical analysis or some trials, which is in range of (0, 1]. As
we introduced, the proposed RNN in this paper is not a typical architecture presented in
published literatures. Does the [0, 1) scope of learning rates for different algorithms works
for the geophysical RNN framework presented in previous section? To investigate the
effect of the hyperparameter in deep learning framework for geophysical inversion and
how to select a suitable learning rate for difference optimization algorithms, in this section,
some trials experiments are shoot based on a depth-varying velocity profile. The influences
of different learning rates on variant optimization algorithms, and the comparison between
first-order and second-order optimization algorithm are discussed.

The depth-varying model

In Figure 5a, a 4-layer velocity profile, from top to bottom: [2000, 3000, 4000, 5000]m/s
is illustrated as back line. Using the second-order finite difference method, the seismic
record is generated for later inversion, shown in Figure 5b. All inversion using different
optimization algorithm starting with the same initial velocity model plotted in red in Fig-
ure 5a.
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FIG. 5. A depth-varying model. (a) Back: the 1D true velocity model. Red: the initial velocity model
for inversion. (b) Synthetic seismic records generated using second-order finite difference method
based on the depth-varying model which is delineated as black in left panel.

Inversion with gradient-based algorithms

To investigate the efficiency of several most popular gradient-based optimization algo-
rithms in deep learning problems, we implement the training of proposed RNN using GD,
Momentum, Adagrad, RMSprop, and Adam. First, some trial experiments are shoot for
hyperparameter tunning (i.e., learning rate) to find the best performance for each gradient-
based algorithm. The appropriate ranges of learning rate for each gradient-based algo-
rithms on this geophysical velocity inversion are also studied and theoretically analyzed.
After that, the comparisons of the best performances using GD, Momentum, Adagrad, RM-
Sprop, and Adam on RNN inversion are detailed discussed.
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Gradient descent
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FIG. 6. The inversion with gradient descent algorithm. (a) The predicted results of gradient descent
with different learning rates, where the true model is indicated as black and the initial model is in
red. (b) The values of objective function with respect to iteration numbers, using the corresponded
learning rates in panel (a).

In Figure 6, the inversion results using GD with variant learning rates are delineated,
where the final inverted model and the corresponding loss values with respect to varying it-
eration numbers are plotted in panel (a) and (b), respectively. The inversion is implemented
using GD with four trial learning rates [0.2, 0.4, 0.6, 0.8] and the maximum iteration num-
ber is 1000. Figure 6b indicates that the oscillation occurred in the inversion process using
GD with learning rate equaling to 0.8 and 0.6. Instead of the slow learning process with
0.2, a value of 0.4 for learning rate gives the slight faster and smoother convergence of the
objective function using GD. However, as shown in Figure 6a, only the first interface is
visible after 1000 iterations with these four proposed learning rates. It means, for casted
geophysical inversion problem in RNN framework, GD requires large amounts of iterations
to converge the objective function and also demands some trial experiments to determine
the best learning rate. Remember that, the appropriate scope of learning rate for GD is
(0, 1].

Gradient with momentum
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FIG. 7. The inversion with momentum algorithm. (a) The predicted results of momentum using
different learning rates, where the true model is indicated as black and the initial model is in red. (b)
The values of objective function with respect to iteration numbers, using the corresponded learning
rates in panel (a).
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The momentum is also a gradient-based method which is developed to accelerate the
stochastic gradient descent in the relevant direction and dampens oscillations. Unlike the
gradient descent where the model is updated with the negative gradient directly, momentum
strengthen the effects of preciously obtained gradients by accumulating a scaled version of
them which is controlled by the hyperparameter β. As the algorithm shown in Appendix B,
the momentum term increases for dimensions whose gradients point in the same directions
and reduces updates for dimensions whose gradients change directions. The adapted learn-
ing rate is similar to the gradient descent, which is in range of (0, 1]. As a result, we gain
faster convergence and reduced oscillation.

In Figure 7, we implemented the RNN inversion using Momentum algorithm with a list
of learning rates: [0.1, 0.6, 0.8, 1]. Comparing to results using GD shown in Figure 6, the
inversion with Momentum converges much faster and provides much better results agreeing
with the true velocity profile. Besides that, the oscillations are also reduced for the same
learning rates applied on GD. Figure 7b shows that small oscillations occurred with Mo-
mentum algorithm at the first few iterations, however, it has no significant influence on the
convergence. It’s worth to note that Momentum with learning rate equaling to [0.4, 0.6, 0.8]
are converged to a similar value with approximately same speed, except learning rate equal-
ing to 1.0. This indicates that the speed of convergence and the final predicted results are
not determined by the value of the learning rate, which is due to the accumulated gradients
in Momentum.

Adaptive gradient
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FIG. 8. The inversion with Adagrad algorithm. (a) The predicted results of Adagrad using different
learning rates, where the true model is indicated as black and the initial model is in red. (b) The
values of objective function with respect to iteration numbers, using the corresponded learning rates
in panel (a).

One of the most popular methods in deep learning cases is the adaptive gradient method
which provides an adjustive version of gradient descent using previously accumulated
squared gradients (see algorithm 2 in Appendix B). Here, according to the analysis by
Duchi et al. (2011), the value of hyperparameter β is determined to be a fixed value 0.9 for
all following experiments. A collection of learning rate [0.4, 4, 40, 100] are selected for trial
experiments using Adagrad method. All inversion results and related values of objective
function are plotted in Figure 8a and 8b, respectively.
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Figure 8 indicates that, with a small learning rate (0.4), the Adagrad algorithm is able
to smoothly decrease the objective function. However, the speed of learning seems to
be relatively slow and it would requires much more than 1000 iterations to converge the
inversion process. This is verified in Figure 8a where the final predicted profile using
learning rate 0.4 after 1000 iterations is nearly the initial velocity model. By increasing the
learning rate (0.4 → 40), the speed of inversion process using Adagrad method is much
faster while the loss value keeps smoothly decrease. With learning rate equaling to 100,
the Adagrad is still able to converge quickly at around same value of objective function,
but with oscillations occurred at the fist few iterations. One question is, why does Adagrad
allow a learning rate much larger than 1, which is unusual in general deep learning cases.

In most of deep learning cases, the activation function is always applied in forward
propagation of predicts and in calculation of residuals between labeled and predicted data.
The operation of activation function will cause the training parameters are usually in range
of [0, 1]. With the normalized random initialization, the perturbations obtained from gradi-
ent is in range of [−1, 1]. This means, in general deep learning cases, there is no magnitude
difference of the residuals and the accumulated squared-norm of gradients. However, this
does not stands for RNN geophysical inversion problems. The magnitude difference be-
tween initial velocity and the true model may be 0− to− 100 in velocity inversion consid-
ering the required maximum iteration for convergence less than 100. For example, at the
k iterations, the model parameters update is α · δvk/

√
Gk + ϵ, where Gk is the accumu-

lated squared norm of gradients. Because the gradient δvk is in the same magnitude order
of
√
Gk + ϵ, the absolute norm of model update being in range of [0, α ∗ const] where

const ∈ [0, 10). Therefore, by limiting the model update at each iteration, a small learning
rate for Adagrad may suffers from slowing learning rate.

To accelerate the speed of convergence and still take advantages of the searching di-
rection provided by Adagrad, we need a learning rate which can balance the magnitude
of
√
Gk + ϵ. An appropriate learning rate using Adagrad satisfies 0 < α/

√
Gk + ϵ ≈

α/δv1 ≤ 1. This leads to the best appropriate range of learning rate for Adagrad is
α ∈ (0, 100]. It is worth to note that, the model updates at the first iteration is a constant
of learning rate because of the initial state for diagonal matrix G0 = 0, which explains
a very large learning rate may cause oscillation at the first few iterations. The interesting
point is the model update automatically shrinks because of the accumulated squared scale
of gradients. It means a very large learning rate does not affect the convergence of the
objective function, and may also accelerate the speed of the convergence even with small
oscillations happened in first few iterations. This conclusion is proven in Figure 8. With
the learning rate 100, the loss values oscillated after the first few iterations and converged
very quickly (Figure 8b), while the inversed result is well-behaved and agrees with the true
velocity profile, shown in Figure 8a. To successfully applying the Adagrad method on geo-
physical inversion, we recommend the range of [10, 100] for the learning rate, which could
accelerate the convergence and achieve the well-matched inversion results. To emphasize,
within the proposed range for learning rate, a small value provides slower but smoother
convergence process, while a relative large learning rate offers much faster convergence
but oscillations occurred at first few iterations. Both of these learning rate is able to con-
verge the objective function because of the automatically tuning of the step-length of model
updates which is brought by the accumulated squared-norm of gradients.
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RMSprop & Adadelta

Both RMSprop and Adaptive delta (i.e., Adadelta, an extension of Adagrad) were de-
veloped independently to resolve the radically diminishing learning rates caused by Ada-
grad method. These two methods are very similar and identical to each other under some
circumstances. To avoid excessive repetitions, the trial experiments are only implemented
using RMSprop. Similar to Adagrad algorithm, RMSprop is also in a way to scale the
gradient. Instead of directly using accumulated squared-norm of gradients along itera-
tions, a hyper-factor is considered to weaken the influence of the accumulated squared
gradients. Hinton et al. (2012b) indicated that the hyperparameter is usually being a
fixed value β = 0.9. Therefore, at k − th iteration, the model updates using RMSprop
is α · δvk/(

√
r̃k + ϵ). The appropriate scope for the learning rate using RMSprop is

0 < α/(
√
r̃k + ϵ) ≈ α/(

√
1− βδv1) ≤ 1, which leads to the best approximately range

for learning rate: α ∈ (0, 10]. Again, the RMSprop inherits benefits from Adagrad, i.e.,
the step-length of model updates is auto-adjustive. Therefore, to speed up of the conver-
gence of the objective function for RNN velocity inversion, we may conclude that the best
learning rate range using RMSprop is [1, 10].
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FIG. 9. The inversion with RMSprop algorithm. (a) The predicted results of RMSprop using different
learning rates, where the true model is indicated as black and the initial model is in red. (b) The
values of objective function with respect to iteration numbers, using the corresponded learning rates
in panel (a).

In Figure 9, we plotted the inversion results and the loss values with respect to varying
iteration numbers, using the learning rate [0.4, 0.8, 4, 40] in panel (a) and (b), respectively.
As expected, in Figure 9b, a very larger learning rate (lr > 10, i.e., 40) causes oscillations
and divergence problems using RMSprop algorithm, and a very small learning rate (lr < 1,
i.e., 0.4 and 0.8) requires amounts of iterations to converge the objective function. With a
learning rate in range of [1, 10], RMSprop is capable of providing a much stable and faster
convergence processing and a well-agreed inversion result, shown in Figure 9a.

Adaptive moment

To take advantages of Momentum and RMSprop algorithms, Adam is proposed that
computes adaptive scaling for each model parameter. As illustrated in algorithm 4 of Ap-
pendix B, the model updates without learning rate is m̃k/(

√
r̃k + ϵ), which ensures that

the update is always normalized. This works well in general deep learning problems, be-
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cause the activation function limits the gradient and the model update in the same range
of [0, 1]. However, as pointed out, the model updates for geophysical inversion is much
larger and usually in magnitude of [1, 100]. In other words, with the learning rate (0, 1],
Adam requires amounts of iterations to converge the objective function. We found that this
issue can be easily solved by tuning a relative larger learning rate. And the maximum value
for model updates is restricted by the learning rate α, for example, the limit of the model
updates at one single iteration using Adam is −α < modelUpdates < α. An appropriate
learning rate should satisfy: 0 < α ·(1−β1)/(

√
1− β2 ·δv1) ≤ 1, i.e., α ∈ (0, 100]. Again,

to maximum accelerate the convergence process, we recommend the appropriate range of
learning rate using Adam: [10, 100]. Inheriting from RMSprop, Adam algorithm also has
the ability to shrink the ‘step-length’ of model updates during the iteration process, which
means a relatively large learning rate can also be tolerated with oscillation occurred at first
few iterations.
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FIG. 10. The inversion with Adam algorithm. (a) The predicted results of Adam using different
learning rates, where the true model is indicated as black and the initial model is in red. (b) The
values of objective function with respect to iteration numbers, using the corresponded learning rates
in panel (a).

To examine our inferences of Adam, in Figure 10, the inversion results and the loss
values using a list of learning rates [0.8, 4, 40, 100] are plotted in panel (a) and (b), respec-
tively. Figure 10a shows all inversion results with listed learning rates are well matched
to the true velocity profile within 1000 iterations. In Figure 10b, the value of objective
function with respect to iteration numbers convince that the learning rate only affects the
convergence speed of the objective function. Same to RMSprop method, a very large learn-
ing rate causes oscillations at first few iterations, but Adam is able to quickly and smoothly
converge after that because of its capacity of automatically shrinking the ‘step-length’ of
model updates.

Comparisons of GD, Momentum, Adagrad, RMSprop, and Adam

To intuitively observe differences of gradient-based algorithms discussed, their best
performances with appropriate learning rates are plotted in Figure 11. Recall that, the
appropriate range of learning rate for each algorithm is (0, 1] for GD and Momentum,
[1, 10] for RMSprop, and [10, 100] for Adagrad and Adam. For this 1D inversion case,
based on trial experiments we have, the most appropriate learning rate for each algorithm
is 0.4 (GD), 0.8 (Momentum), 40 (Adagrad), 4 (RMSprop), 40 (Adam).
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FIG. 11. Comparison of best performance using variant gradient-based algorithms. (a) The best
inversion results using variant gradient-based algorithms with their appropriate learning rate, such
as GD: 0.4, Momentum: 0.8, Adagrad: 40, RMSprop: 4, Adam:40. (b) The values of objective
function with respect to iteration numbers using illustrated gradient-based methods.

In Figure 11a, the results show that all gradient-based algorithms are capable of achiev-
ing acceptable inversion results with less than 1000 iterations except for GD. Figure 11b
shows that GD has the slowest convergence speed comparing to the rest of gradient-based
algorithms. With appropriate learning rate, Momentum, Adagrad, and RMSprop are able
to converge within 200 iterations. Adam shows the fastest speed of convergence, which
is less than 50 iterations. Note that, the value of the learning rate in proposed appropriate
range using Adam only mainly affect the convergence speed.

Inversion with non-linear optimization algorithms

To investigate the performance using the second-order optimization algorithms, we also
implement the 1D RNN inversion using non-linear CG, L-BFGS, and TNC methods. The
inversion result and the value of objective function using non-linear CG are plotted in
Figure 12a and Figure 12b, respectively. It is clear that, in Figure 12a, CG provides a
very well-agreed inversion results comparing to the true velocity profile. In Figure 12b, the
iteration number delineates the number of decreasing the objective function, which does not
equal to the external iteration of non-linear CG. However, the computational cost time of
one-single iteration (not external iteration of CG) we presented is approximately equivalent
to the computational cost time of each iteration using gradient based algorithms. This fact
also stands for L-BFGS algorithm. Figure 12b shows that, comparing to GD, non-linear
CG is very efficient and much faster at objective function convergence on the 1D RNN
inversion case.

Figure13 shows the final prediction and value of objective function using L-BFGS
method. In Figure 13a, the completed inversion using L-BFGS algorithm is very competi-
tive to the one with non-linear CG. Beyond that, L-BFGS takes approximately half of time
which non-linear CG takes to converge the objective function, shown in Figure 13b. One
can say that both of these two method are efficient to converge the objective function and
generate well-matched inversion results. However, the inversion process using TNC shows
strong oscillations plotted in Figure 14b. And the final predicted result has significant bias
at interfaces.
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FIG. 12. The inversion with non-linear CG algorithm. (a) The predicted results of non-linear CG
algorithm indicated as blue, the true model is indicated as black and the initial model is in red. (b)
The values of objective function with respect to iteration numbers.
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FIG. 13. The inversion with L-BFGS algorithm. (a) The predicted results of L-BFGS algorithm
indicated as blue, the true model is indicated as black and the initial model is in red. (b) The values
of objective function with respect to iteration numbers.
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FIG. 14. The inversion with TNC algorithm. (a) The predicted results of TNC algorithm indicated as
blue, the true model is indicated as black and the initial model is in red. (b) The values of objective
function with respect to iteration numbers.

To investigate and further analyze the differential performance provided by gradient-
based and second-order approximation algorithm, we select the best performance of GD
and Adam with their appropriate learning rate. The comparisons between GD, Adam,
CG, and L-BFGS are plotted in Figure 15. As denoted in Figure 15a, Adam is able to
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FIG. 15. Comparisons of GD, Adam, CG, and L-BFGS algorithms. (a) The best inversion results
using GD, Adam, CG, and L-BFGS. (b) The values of objective function with respect to iteration
numbers.

obtain well-agreed inversion results as non-linear algorithms do, while GD requires more
iterations to obtain a better prediction. Moreover, on this 1D RNN case, the convergence
speed of objective function using Adam is similar to L-BFGS method and faster than non-
linear CG algorithm.

THE SYNTHETIC EXAMPLE OF MARMOUSI

To fully examine the capacity of casted RNN framework for geophysical inversion,
in this section, the 2D synthetic Marmousi model is employed to create synthetic short
records as observed data, and a smoothed model is considered as the initialization for all
training parameters in model coordinates. The true velocity of Marmousi model is shown
in Figure 16a. Note the labels of depth and lateral positions are not consistent with the
original size of Marmousi because we shrink the grid interval due to the consideration of
computational memory limitation on the laptop.

As discussed, the forward modeling can also be achieved with this self-designed RNN
framework by initializing the trainable parameters with the true velocity model. Using the
true Marmousi model shown in Figure 16a, we generate 12 shot gathers while the source
location moves from left to right with the interval 25m at depth of 40m. The first 10 of 12
shot records are displayed in Figure 17. For comparison, both Adam, CG, and L-BFGS are
employed to implement the RNN inversion of Marmousi model. The same initial velocity
profile is utilized for all algorithms and plotted in Figure 16b.

Based on the numerical analysis in previous section, for Adam algorithm implementa-
tion, the learning rate has no significant effects on final inversion results and only matters
the speed of convergence. And considering oscillations during first few iterations, the ap-
propriate range of the learning rate for Adam is [10, 100]. Here, we choose 40 for learning
rate with Adam on inversion of 2D Marmousi model. The inversion results using Adam
algorithm at [25, 50, 100]th iterations are delineated in Figure 18. It’s fair to say that visible
structures and robust layer information of Marmousi model are predicted using Adam after
25 iterations. With 50 iterations, Adam has the capacity of achieving most information of
structures and layers at shallow zones. After 100 iterations, the information of layers and
structures at deep zones are well predicted and consistent with the true Marmousi model
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FIG. 16. The synthetic example of 2D Marmousi. (a) True velocity of Marmousi. (b) The initial
velocity model of Marmousi for inversion.
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FIG. 17. The synthetic shot gathers generated using the true velocity of Marmousi shown in Fig-
ure 16a. The first 10 of 12 shots are plotted.

shown in Figure 16a.

The RNN inversion of 2D Marmousi model using non-linear CG method is also imple-
mented and the predicted results at [400, 800, 1420]th iterations are plotted In Figure 19. It
is clear that, non-linear CG is not able to predict the details of Marmousi model with itera-
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FIG. 18. The inversion result of Marmousi using Adam algorithm. (a) True Marmousi model. (b)
Inversion at 25th iteration. (c) Inversion at 50th iteration. (d) Inversion at 100th iteration.
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FIG. 19. The inversion result of Marmousi using CG algorithm. (a) True Marmousi model. (b)
Inversion at 400th iteration. (c) Inversion at 800th iteration. (d) Inversion at 1420th iteration.

tion less than 400. Even after 800 iterations of decreasing the objective function, CG only
provides limited information in the predicted model. Robust structures at shallow zones is
visible after 1420 iterations, however, the predicted velocity values are still not even close
to the true velocity model. Based on the analysis of the performance using non-linear CG
on 1D depth-varying and 2D Marmousi model, it is to conclude that non-linear CG has the
ability to smoothly converge the objective function, but requires a tremendous amounts of
iterations and prohibitive computational cost time on a single PC.

The numerical analysis in previous section shows that, L-BFGS algorithm are able
to do a great work on 1D inversion as Adam does, but with a slightly slower conver-
gence speed. The RNN inversion using L-BFGS algorithm on the 2D Marmousi model
at [200, 600, 1000]th iterations are subplotted in Figure 20, respectively. Comparing to the
inversion using non-linear CG, the predicted results with L-BFGS shows much faster con-
vergence speed and detailed information of structures and layers at shallow zones can be
detected after 600 iterations of reducing objective function. With 1000 iterations, partial
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FIG. 20. The inversion result of Marmousi using L-BFGS algorithm. (a) True Marmousi model. (b)
Inversion at 200th iteration. (c) Inversion at 600th iteration. (d) Inversion at 1000th iteration.
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FIG. 21. The comparison of the loss values with Adam, CG, L-BFGS algorithms.

information of structures and layers at deep zones are also visible to determined. However,
the computational cost of 1000 iterations using L-BFGS is very time-consuming and dis-
tances still exist between the predicted profile at 1000th iteration and the true Marmousi
model.

To get a better view of the computational cost of each algorithm, we plot values of the
objective function with respect to varying iteration number, shown in Figure 21. Remem-
ber, the calculating time of one-single iteration using these three algorithms is approxi-
mately identical to each other. Comparing to CG and L-BFGS, Adam has much faster and
more stable convergence of the objective function. The comparison of best predicted ve-
locity profiles using Adam (at 100th iteration), non-linear CG (at 1420th iteration), and L-
BFGS (at 1000th iteration) algorithms at locations x = [200, 1500, 2500]m are also plotted
in Figure 22. After 1420 iterations, non-linear CG is able to predict velocities in shallow
zone and the correct trend of velocity changes in deep zones, however, it still requires a
mass of iterations to recover the well-behaved prediction in deep zones. Figure 22b shows
that L-BFGS algorithm achieves consistent prediction as Adam does at multi-fold areas
(e.g, x = 1500m). However, for edge-areas of the model which are not covered by all shot
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records, L-BFGS generates competitive results at shallow and intermediate-depth zones,
but has significant lags at deep zones comparing to Adam method.
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FIG. 22. Comparisons of velocity profile using Adam at 100th iteration, non-linear CG at 1420th
iteration, and L-BFGS at 1000th iteration. (a) Velocity profiles at location x = 200m. (b) Velocity
profiles at location x = 1500m. (c) Velocity profiles at location x = 2500m.

CONCLUSION

Deep learning has been tremendously improved and widely applied in different fields.
To benefits from the well-developed deep learning community and open-source libraries,
we proposed a self-designed recurrent neural networks which allows us to cast the forward
modeling of seismic wave propagation into the forward propagation of RNN framework.
As a consequence, the geophysical inversion problem is also turned into a training process
of the presented RNN framework, where full wavefield information are involved. The
derivation of the gradient formulation of the objective function with respect to the model
parameters is illustrated in a deep learning perspective, and it further shows that the training
process of the RNN is equivalent to a FWI problem. In other words, it is proven that FWI
is also a specific machine learning case.

By delineating the geophysical inversion problem in sense of neural network train-
ing, the numerical analysis of hyperparameter tuning, mainly learning rate, is discussed
using a depth-varying only velocity profile. The best appropriate range of learning rate
for gradient-based algorithms on a geophysical velocity inversion problems are theoreti-
cally analyzed and experimentally investigated. Further, the comparison between different
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gradient-based algorithms are also studied based on their best performance with appropri-
ate learning rates. Beyond that, the comparison is expanded to the non-linear optimization
algorithms, such as non-linear CG, L-BFGS, and TNC methods. The analysis shows that
Adam is capable of converging the objective function as L-BFGS algorithm, which is much
faster than non-linear CG, TNC, and the rest of gradient-based algorithms.

To fully examine their capacity, the RNN inversion is applied to 2D Marmousi model
using Adam, CG, and L-BFGS methods. The results show that non-linear CG requires
tremendous iterations and computational cost to predict the full information of structures
and layers at both shallow and deep zones in Marmousi model, while L-BFGS has a better
convergence speed of the objective function. However, to completely recover detailed in-
formation, L-BFGS also demands a relatively heavy computational cost. Comparing to CG
and L-BFGS, the gradient-based Adam algorithm is able to converge the objective func-
tion much faster and predicted fully detailed velocity information at both shallow and deep
zones well-matched to the true Marmousi model, by scaling the gradient with accumulating
itself and its squared-norm tuned by hyperparameters.
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APPENDIX A: DERIVATION OF THE GRADIENT IN THE RNN

The mathematical formulation of the objective function for geophysical inversion prob-
lems is written as,

J(v) =
1

2ns

∑
rs

∑
rg

∑
t

(dt − d̃t)
2 =

1

2ns

∑
rs

∑
rg

∑
t

(dt − δrgũt)
2 (A-1)

where dt and d̃t represent the label (i.e., observed) and predicted data, respectively. rs and
rg delineate the source and receiver coordinates. t represents the time vector. Receiver
locations are denoted by δrg .

Using the chain rule, the partial derivative of the objective function over the trainable
parameter, i.e., velocity, can be written as,

∂J

∂v
=

T∑
t

[
∂J

∂ũt

]
∂ũt

∂v
(A-2)

At the last time step (t = T ), the partial derivative [∂J/∂ũt]t=T is calculated as
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[
∂J

∂ũt
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When at the last second time step t = T −1, because of the dependency between ũT−1

and ũT, the partial derivative [∂J/∂ũt]t=T−1 is calculated by two separated terms based on
the chain rule, shown as,

[
∂J

∂ũt

]
t=T−1

=

[
∂J

∂ũt

]
t=T

∂ũT

∂ũT−1

+
∂J

∂ũT−1

(A-4)

For the time step where 0 < t < T−2, the partial derivative [∂J/∂ũt] are determined by
three dependency terms when the second-order finite-difference is considered for forward
modeling, which is written as,

[
∂J

∂ũt

]
=

[
∂J

∂ũt+2

]
∂ũt+2

∂ũt

+

[
∂J

∂ũt+1

]
∂ũt+1

∂ũt

+
∂J

∂ũt

(A-5)

By considering the 2nd-order finite-difference forward modeling,

ũt+2 = v2∆t2(∇2ũt+1 − st+1) + 2ũt+1 − ũt (A-6)

The partial derivatives of ut+2 over ut+1, ut and v can be expressed as,

∂ũt+2

∂ũt+1

= v2∆t2∇2 + 2 (A-7a)

∂ũt+2

∂ũt

= −1 (A-7b)

∂ũt+2

∂v
= 2v∆t2(∇2ũt+1 − st+1) (A-7c)

Substitute equations (A-3) and (A-7a) into equation (A-4), we have,

[
∂J

∂ũt

]
t=T−1

= − 1

ns

∑
rs

∑
rg

[(v2∆t2∇2 + 2)δdT + δdT−1] (A-8)

where δdt represents the residual between observed and predicted data at a single time step
t, which is calculated as δdt = dt − δrgũt.

Reorganizing equation (A-5) by substituting equations (A-7a) and (A-7b),
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[
∂J

∂ũt

]
= v2∆t2

∇2

[
∂J

∂ũt+1

]
− 1

nsv2∆t2

∑
rs

∑
rg

δdt

+ 2

[
∂J

∂ũt+1

]
−

[
∂J

∂ũt+2

]
(A-9)

Equation A-9 shows that the partial derivative of the objective function over predicted
wavefield [∂J/∂ũt] is performed by propagating the scaled data residual in reversal time,
which initial states of back propagation are indicated by equations A-3 and A-8.

With the wave equation, equation (A-7c) can be rewritten as,

∂ũt

∂v
=

2∆t2

v
v2(∇2ũt+1 − st+1) ≈

2∆t2

v

∂2ũt

∂t2
(A-10)

Therefore, the gradient for updated model is obtained as,

g =
∂J

∂v

= BP (− 1

nsv2∆t2

∑
rs

∑
rg

δdt)
∂ũt

∂v

= BP (− 1

nsv2∆t2

∑
rs

∑
rg

δdt)
2∆t2

v

∂2ũt

∂t2

≈ BP (− 1

ns

∑
rs

∑
rg

δdt)
2

v3

∂2ũt

∂t2

(A-11)

where BP indicates the back propagation of residuals.

As denoted by equation (A-11), the gradient in RNN’s framework is calculated by the
cross-correlation between second-order partial derivative of forward wavefield over time
and the time-reversal wavefield using the residuals as the source, which is equivalent to the
gradient achieved in the full waveform inversion (FWI). In other words, the FWI is also the
deep learning process performed in one special type of RNN framework.

APPENDIX B: PSEUDO-CODES FOR MOMENTUM, ADAGRAD, RMSPROP,
AND ADAM ALGORITHMS

To make this paper readable, in this section, the pseudo-codes of gradient-based al-
gorithms, such as Momentum, Adagrad, RMSprop, and Adam, are provided. And to be
consistent and to be clear about relationship of these methods, the variables and parameters
are re-organized comparing to the published literatures.
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Algorithm 1 Momentum (Qian, 1999): Gradient with momentum algorithm. Recom-
mended setting for hyper-parameters: β = 0.9. All operations on vectors are element-wise.
With βk denote β to the power of k.
Require: α: Learning rate or step size.
Require: β ∈ [0, 1): Exponential decay rates for the moment estimates.
Require: K: Maximum training step.
Require: δvk: Perturbation models achieved from gradient descent method.

1: Initial states for the moment parameter vector: m0 = 0.
2: Initializing training step k = 0.
3: while vk not converged and k ≤ K do
4: k ← k + 1
5: mk ← β ·mk−1 + (1− β) · δvk (Update biased momentum)
6: m̃k ←mk/(1− βk) (Bias correction for the momentum)
7: vk ← vk−1 − α · m̃k (Parameters updates)
8: end while

return vk

Algorithm 2 Adagrad (Duchi et al., 2011): Adaptive gradient algorithm. Recommended
setting for ϵ = 10−8. All operations on vectors are element-wise.
Require: α: Learning rate or step size.
Require: β ∈ [0, 1): Exponential decay rates for the moment estimates.
Require: K: Maximum training step.
Require: δvk: Perturbation models achieved from gradient descent method.

1: Initial states for diagonal matrix: G0 = 0, .
2: Initializing training step k = 0.
3: while vk not converged and k ≤ K do
4: k ← k + 1
5: Gk,ii ← Gk−1,ii + δv2

k,i (Update biased momentum)
6: vk,i ← vk−1 − α√

Gk,ii+ϵ
· δvk,i (Parameters updates)

7: end while
return vk
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Algorithm 3 RMSprop (Hinton et al., 2012b): Root-Mean-Squared gradients algorithm.
Recommended setting for hyper-parameters: β = 0.9, and ϵ = 10−8. All operations on
vectors are element-wise. With βk denote β to the power of k.
Require: α: Learning rate or step size.
Require: β ∈ [0, 1): Exponential decay rates for the moment estimates.
Require: K: Maximum training step.
Require: δvk: Perturbation models achieved from gradient descent method.

1: Initial states for the moment parameter vector: r0 = 0.
2: Initializing training step k = 0.
3: while vk not converged and k ≤ K do
4: k ← k + 1
5: rk ← β · rk−1 + (1− β) · δv2

k (Update biased momentum)
6: r̃k ← rk/(1− βk) (Bias correction for the momentum)
7: vk ← vk−1 − α · δvk/(

√
r̃k + ϵ) (Parameters updates)

8: end while
return vk

Algorithm 4 Adam (Kingma and Ba, 2014): Adaptive momentum algorithm. Recom-
mended setting for hyper-parameters: β1 = 0.9, β2 = 0.999, and ϵ = 10−8. All operations
on vectors are element-wise. With βk

1 and βk
2 denote β1 and β2 to the power of k.

Require: α: Learning rate or step size.
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates.
Require: K: Maximum training step.
Require: δvk: Perturbation models achieved from gradient descent method.

1: Initial states for the moment parameter vectors: m0 = 0, r0 = 0.
2: Initializing training step k = 0.
3: while vk not converged and k ≤ K do
4: k ← k + 1
5: mk ← β1 ·mk−1 + (1− β1) · δvk (Update biased 1st momentum)
6: rk ← β2 · rk−1 + (1− β2) · δv2

k (Update biased 2nd momentum)
7: m̃k ←mk/(1− βk

1 ) (Bias correction for 1st momentum)
8: r̃k ← rk/(1− βk

2 ) (Bias correction for 2nd momentum)
9: vk ← vk−1 − α · m̃k/(

√
r̃k + ϵ) (Parameters updates)

10: end while
return vk
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