
Time and frequency domain LSRTM

Comparison between time domain and frequency domain
least-squares reverse time migration

Lei Yang and Daniel O. Trad

ABSTRACT

In this report, we compare the algorithms of least-squares reverse time migration (LSRTM)
in both time and frequency domain and propose a full waveform inversion (FWI) based
LSRTM method in the frequency domain. First we show the mathematical equivalence
between the gradient of the FWI objective function and the reverse time migration (RTM)
imaging condition. Then, we use the FWI formulation with the truncated Newton’s method,
to solve the linear equation which relates Hessian, model perturbation and the gradient by
linear conjugate gradient method. We use simple layer models to compare the two for-
mulations, LSRTM in time and frequency domain. Because of convergence problems that
we have not solved yet, we get lower resolution images with the frequency domain FWI-
LSRTM method. On the other hand, when the model is inaccurate, the reflector depth
seems less affected in the frequency domain. The FWI-based LSRTM method seems to
be more robust to velocity errors even if we don’t correct the background model as usu-
ally done in FWI. Low frequencies seem to be less affected by the inaccurate velocities,
and by model smoothness than the high frequencies, suggesting using methods from low
frequencies to constraint the high frequencies can help to develop a more robust LSRTM.

INTRODUCTION

The recorded seismic data can be treated as the result of forward modeling problem
and this is associated with solving the wave equation. For seismic inversion, the migration
operator is adjoint to the forward modeling operator. RTM, as a two-way migration method,
migrates the data residual using a zero-lag cross-correlation on the forward and backward
propagated wavefields. For conventional LSRTM methods in acoustic medium, the velocity
model can be split into two parts: a long-wavelength component, which corresponds to the
low frequency feature, and a short wavelength component, which corresponds to the high-
frequency feature in the model (Geng and Innanen, 2016). Based on this, the wavefield also
consists of two parts: the incident wavefield using wavelets as the source and the scattered
wavefield using data residual as the source. By the iterative algorithm of Born modeling
and RTM, the reflectivity model is solved by the conjugate gradient method. However, this
method depends largely on the initial model, such that if the initial model is inaccurate then
the result is also wrong.

Similar to LSRTM, FWI also involves minimizing the misfit function between observed
data and synthetic data (Virieux and Operto, 2009). Usually, FWI problems can be solved
by a two-loop algorithm: the inner loop is to iteratively solve for the model perturbation and
the outer loop is to update the current model and compute the synthetic data to get the new
residual. The inner loop can be treated as the LSRTM problem (Chen and Sacchi, 2018). In
fact, the gradient of the objective function can be proved to be equal to the image condition
of RTM. Therefore, the optimization of the gradient is a way to implement LSRTM. By the
Gauss-Newton approximation, using truncated Newton’s method is a good way to solve
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this problem (Pan et al., 2017). The Hessian-vector product is calculated in each iteration
in a matrix-free form. This method seems to be more robust to the inaccuracies in the
velocity model although the convergence problems are not solved yet.

THEORY

Frequency domain least-squares reverse time migration

In LSRTM, a reflectivity model is iteratively solved by a forward Born modeling oper-
ator and an adjoint (migration) operator. In the frequency domain, the Helmholtz equation
is used to solve the forward modeling problem. For 2D acoustic case, the wave equation
with constant density can be expressed as:(

ω2

v2(x)
+∇2

)
u(x, ω) = f(x, ω), (1)

where ω is the angular frequency, ∇2 is the Laplacian operator, v(x) is the velocity and
f(x, ω) represents the source. When the source is the Dirac delta function δ(x, ω), the
equation 1 changes to:

(
ω2

v2(x)
+∇2)G(x, ω) = δ(x, ω), (2)

where G(x, ω) is the Green’s function. To solve equation (1), we use frequency domain
finite-difference modeling to discretize the Helmholtz equation. The derivation is based on
a 5-point 2D square mesh with constant grid spacing on both x and z direction and we use
i and j to represent the horizontal and vertical respectively. By discretizing equation (1),
we have

ω2

v2
ui,j +

(
ui−1,j − 2ui,j + ui+1,j

∆x2
+

ui,j−1 − 2ui,j + ui,j+1

∆z2

)
= fi,j (3)

where ∆x and ∆z are the grid spacing respectively. FIG. 1 shows the element locations for
the 5-point 2D finite-difference stencil.

FIG. 1. Symbolic abbreviations for element locations on a 5-point 2D FD stencil (Ajo-Franklin, 2005)
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We can write coefficients of the 5-point FD method as:

Mi,j =
ω2

v2i,j
− 2

(
1

∆x2
+

1

∆z2

)
Ei,j =

1

∆x2

Wi,j =
1

∆x2

Ni,j =
1

∆z2

Si,j =
1

∆z2

(4)

To avoid boundary reflections, we use absorbing boundary condition (ABC) first proposed
by Engquist and Majda (1977)

∂u

∂n
− i

ω

v
u = 0 (5)

Take the top boundary(j = 1) for example, the discrete form of ABC is

ui,2 − ui,1

∆z
+ i

ω

vi,1

ui,1 = 0 (6)

FIG. 2 shows the impedance matrix for a 5×5 discrete model and the imaginary entries are
just located in the main diagonal of the impedance matrix, which are introduced by ABC.

FIG. 2. The impedance matrix for a 5×5 discrete model (Ajo-Franklin, 2005)

In Born modeling, we assume the velocity of the earth model can be split into a smooth
part v0 and a singular part δv:

v(x) = v0(x) + δv(x). (7)
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v0(x) represents the long-wavelength components of the velocity model and δv(x) is
the short-wavelength velocity model, which contains the singular features. This short-
wavelength component will produce reflections and contains high resolution features, which
is the main object of the LSRTM. Similarly, the wavefield u(x, ω) in the medium δv(x)
can be also split into two parts:

u(x, ω) = u0(x, ω) + δu(x, ω), (8)

where u0(x, ω) is the background wavefield and δu(x, ω) is the perturbed wavefield. Using
the Taylor’s expansion, we have

1

v2(x)
=

1

(v0(x) + δv(x))2
=

1

v2
0(x)

− 2δv(x)

v3
0(x)

+O(δv2). (9)

If we neglect the higher order termO(δv2), and substitute equation (8) into equation (1),we
have (

ω2

(
1

v2
0(x)

− 2δv(x)

v3
0(x)

)
+∇2

)
(u0(x, ω) + δu(x, ω)) = f(x, ω). (10)

Rearranging equation (10) and consider δu(x, ω) is weak, we have the incident wavefield(
ω2

v2
0(x)

+∇2

)
u0(x, ω) = f(x, ω), (11)

and scattered wavefield(
ω2

v2
0(x)

+∇2

)
δu(x, ω) ≈ ω22δv(x)

v3
0(x)

u0(x, ω), (12)

where
2δv(x)

v3
0(x)

represents the reflectivity model. The Born approximation is applied in

equation (12), where the scattered wavefield δu(x, ω) is considered very weak and ne-
glected in the right side of equation (12). These two wavefields can be calculated by two
finite-difference schemes respectively. For the incident wavefield u0(x, ω), the wavefield is
generated by the source f(x, ω) in the background model v2

0(x) while the source changes

to ω22δv(x)

v3
0(x)

u0(x, ω) for the scattered wavefield in the same background model where

ω2 is the second time derivative in the time domain. Applying the ajoint state method on
equation (11) and equation (12), we have the RTM imaging condition:

mmig(x) =
∑
ns

∑
nω

1

ω2
Re(δu(x, ω)G†0(xs|x)G†0(x|x′)f †(x, ω)). (13)

mmig(x) is the migration result
2δv(x)

v3
0(x)

, which is usually called reflectivity in LSRTM.

G†0(xs|x) and G†0(x|x′) represent the conjugate transpose of the Green’s functions, which
illustrates the cross-correlation of two wavefields as the imaging condition of LSRTM. So
far, I have illustrated the forward modeling and migration process in frequency domain
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LSRTM. I will use matrix form to show the linearized inversion process in the following
section.

The linear modeling step can be expressed as

d = Lm, (14)

and the migration step is
m = LTd, (15)

where d is scattered wavefield data, L is the modeling operator G0(xs|x)G0(x|x′)f(x, ω)
and LT is the conjugate transpose of L. By using the linear conjugate gradient method, the
reflectivity model m can be iteratively solved by the scheme (Dai et al., 2012):

g(k) = LT[L(m(k))− d], (16)

α =
(g(k))Tg(k)

(Lg(k))TLg(k)
, (17)

m(k+1) = m(k) − αg(k), (18)

where α is the step length. This step length is not accurate enough when the forward
modeling and migration operator are not exactly adjoint. To improve the convergence rate,
a line search method in quasi-linear approach can be applied in this circumstance.

FWI-based LSRTM in frequency domain

In this section, we propose a FWI-based LSRTM algorithm in the 2D acoustic constant
density case. This problem is formulated from the objective function of FWI:

J(m) =
1

2

∑
nω

∑
ns

‖dobs(xs, ω)− dsyn(m,xs, ω)‖2 =
1

2

∑
nω

∑
ns

‖δd‖2, (19)

where dobs is the observed data, dsyn = Ru is the synthetic data in which R is the extrac-
tion operator.

The gradient

Starting from equation (19), we will prove that the gradient of FWI objective function
is equal to the RTM operator. The squared data residual in equation (19) can be expanded
as

‖δd‖2 = (dobs − dsyn)T (dobs − dsyn)∗

= dT
obsd

∗
obs − dT

obsd
∗
syn − dT

synd∗obs + dT
synd∗syn,

(20)

where ∗ means conjugate and T means transpose. Inserting equation (35) into equation
(19) and taking derivative of equation (19) with respect to m, we have
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g =
∂J(m)

∂m

= −1

2
(−dT

obs

∂d∗syn
∂m

− d∗obs
∂dT

syn

∂m
+ d∗syn

∂dT
syn

∂m
+ dT

syn

∂d∗syn
∂m

)

= −1

2

(
(dsyn − dobs)

T
∂d∗syn
∂m

+ (dsyn − dobs)
∗∂dsyn

∂m

)
,

(21)

Because
Z + Z∗ = ReZ + iImZ + ReZ − iImZ = 2ReZ, (22)

we can rewrite the gradient as:

g = −
∑
nω

Re

(
∂dT

syn

∂m
δd∗

)

= −
∑
nω

Re

(
∂d†syn
∂m

δd

) (23)

The term
∂dT

syn

∂m
represents the Fréchet derivative and δd∗ is the conjugate of the data

residual. To derive the complete form of the Fréchet derivative, we write the acoustic wave
equation in the matrix form:

A(m, ω)u(m,xs, ω) = f(xs, ω) (24)

A(m, ω) =
(
ω2m(x) +∇2

)
(25)

where A(m, ω) is the impedance matrix.

Take derivative on each side of the equation (24) with respect to model parameter m
and put one term in the other side of the equation, we have

A(m, ω)
∂u(m,xs, ω)

∂m
= −∂A(m, ω)

∂m
u(m,xs, ω). (26)

This equation shows that the Fréchet derivative can be obtained by solving the equation
(26) with a virtual source term

f = −∂A(m, ω)

∂m
u(m,xs, ω) (27)

Therefore, the Fréchet derivative can be written as

∂u(m,xs, ω)

∂m
= −A−1(m, ω)

∂A(m, ω)

∂m
u(m,xs, ω)

= −G(x|x′)ω2G(xs|x)f(xs, ω),
(28)
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Because dsyn = Ru and R is a real-valued operator which is independent of model m, the
gradient of FWI objective function is

g = −
∑
nω

∑
ns

Re

(
∂d†syn
∂m

δd

)

= −
∑
nω

∑
ns

Re

(
RT∂u†(m,xs, ω)

∂m
δd

)
=
∑
nω

∑
ns

ω2Re
(
RTG†(x|x′)G†(xs|x)f †(xs, ω)Rδu

)
= RTR

∑
nω

∑
ns

ω2Re
(
G†(x|x′)G†(xs|x)f †(xs, ω)δu

)
.

(29)

Comparing the imaging equation (13) and the gradient equation (29), we conclude that the
imaging condition of RTM is equal to the gradient of the FWI objective function, except

for the small coefficient changes where the coefficient
∑

nω

1

ω2
changes to RTR

∑
nω
ω2.

In fact, the term RTR is the number of the receivers on the surface.

If we take derivative of the transpose of wavefield u(m,xs, ω) with respect to m and
substitute the result into equation (23), the matrix form of equation (29) can be formed as:

g = −Re

(∑
nω

∑
ns

RT

(
−A−1(m, ω)

∂A(m, ω)

∂m
u(m,xs, ω)

)T

δd∗

)

= Re

(∑
nω

∑
ns

(
u(m,xs, ω)T

(
∂A(m, ω)

∂m

)T

(A−1(m, ω))TRTδd∗

))
.

(30)

The conjugate of the data residual in the frequency domain is equal to the data time reversed
in time domain and the data residual is back projected to the whole space using the operator
RT, before it is propagated back to the subsurface by the term (A−1(m, ω))T (Geng et al.,
2017). Since only the real part is considered in the gradient computation, by using the
adjoint impedance matrix, we have

g = Re

(∑
nω

∑
ns

(
u(m,xs, ω)†

(
∂A(m, ω)

∂m

)†
(A−1(m, ω))†R†δd

))
, (31)

where we keep
(
∂A(m, ω)

∂m

)†
for different parameterization. Therefore, we have the ma-

trix form of gradient computation. Now with the gradient equation, we are able to use steep-
est decent method to update the initial model in a FWI problem. However, the gradient-
based method only accounts for the first-order scattered data, which will cause severe faults
when the data contains second-order scattered data. In this situation, the second-ordered
derivative of the objective function (Hessian) can alleviate this problem. This requires the
Newton-based method to be applied in the model perturbation computation.
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The Hessian

We expand the objective function of FWI in Taylor series

J(m + δm) = J(m) + δmTg +
1

2
δmTHδm + .... (32)

When the minimum of the misfit function is reached, and neglecting the higher order terms,

J(m + δm)− J(m) ≈ δmTg +
1

2
δmTHδm = 0. (33)

Therefore, we have the linear equation which connects the gradient, Hessian and model
perturbation. Starting from this equation, we formulate the linear relationship:

Hδm = −g. (34)

Based on this, the objective function of FWI-based LSRTM in image domain is

Φ(δm) =
1

2
‖ − g −Hδm‖2. (35)

Because Hessian is an extremely large and dense matrix for large scale inverse problem
and has large computation cost of its inverse, there are many ways to compute approximate
Hessian. If the model dimension isM×N , Hessian will be aMN×MN symmetric square
matrix (MN means M × N ). In the following section, I will derive the full Hessian by
taking the second derivative of the FWI’s objective function. Recall the objective function
of FWI

J(m) =
1

2

∑
nω

∑
ns

‖dobs(xs, ω)− dsyn(m,xs, ω)‖2

=
1

2

∑
nω

∑
ns

(dobs −Ru)(dobs −Ru)†,
(36)

Take first order partial derivative with m for objective function is

∂J(m)

∂m
=

1

2

∑
nω

∑
ns

(
−R

∂u

∂m
(dobs −Ru)† + (dobs −Ru)(−R†

∂u†

∂m
)

)
(37)

and the second order derivative is

∂J2(m)

∂m2
=

1

2

∑
nω

∑
ns

−R
∂2u

∂m2
(dobs −Ru)† +

∂u

∂m
RR†

∂u†

∂m

+
∂u

∂m
RR†

∂u†

∂m
−R†

∂2u†

∂m2
(dobs −Ru)

(38)

Take the real part of equation (38), the full Hessian is

H(m) = Re

(
∂J2(m)

∂m2

)
= B(m) + C(m) (39)
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where

B(m) = Re

(∑
nω

∑
ns

∂u

∂m
RR†

∂u†

∂m

)
, (40)

C(m) = Re

(∑
nω

∑
ns

R†(Ru− dobs)
∂2u

∂m2

)
(41)

The matrix B(m) is known as the Gauss-Newton approximation of the Hessian operator
when the expression C(m) is neglected (Métivier et al., 2013). Substituting equation (28)
into (40), the Hessian vector product using Gauss-Newton approximation is

Hδm = u
∂A(m, ω)

∂m
A−1(m, ω)RR†(A−1(m, ω))†

(
∂A(m, ω)

∂m

)†
u†δm (42)

To solve the linear equation Hδm = −g, we use linear conjugate gradient method to get
δm iteratively.

Time domain least-squares reverse time migration

The 2D acoustic wave equation with constant density in time domain is

1

v2(x)

∂2p(x, t; xs)

∂t2
−∇2p(x, t; xs) = fs(x, t; xs), (43)

where fs(x, t; xs) = f(t′)δ(x− xs)δ(t− t′) represents the source. Similarly, the wavefield
can be split into 2 parts:

(
1

v2
0(x)

∂2

∂t2
+∇2

)
u0(x, t) = f(x, t), (44)

(
1

v2
0(x)

∂2

∂t2
+∇2

)
δu(x, t) =

2δv(x)

v3
0(x)

∂2u0(x, t)

∂t2
, (45)

Equation (44) and (45) represent the incident wavefield and scattered wavefield respec-
tively. Different from frequency domain, we cannot write the wave equation as the matrix
multiplication form. Therefore, the wavefield is calculated by each time slice, which can
be describe as:

pn+1 = 2pn − pn−1 + ∆t2v2∇2pn + ∆t2fn (46)

pn is the pressure at time step n and fn is the source term. The imaging condition used in
time domain LSRTM algorithm is

mmig(x) =
∑
ns

∑
nt

φs(x, t)φr(x,T− t), (47)

which represents the process of the source wavefield φs(x, t) and the receiver wavefield
φr(x,T− t) cross-correlation. This imaging condition is the same as the imaging condi-
tion in the frequency domain. In the following section, we will present some examples to
compare time domain LSRTM and FWI-based LSRTM in frequency domain.

CREWES Research Report — Volume 30 (2018) 9



Yang and Trad

NUMERICAL EXAMPLES

In this section, we will show several tests to compare the time domain and the FWI-
based frequency domain LSRTM for cases when the velocity model is very wrong. The
goal is to observe if either approach is more robust than the other. The model dimensions
for all the tests are 126 points for the vertical axis and 384 points for the horizontal axis and
the grid spacing is 8m. FIG. 3. shows a 2-layer model with velocities of 3000m/s for the
upper layer and 4000m/s for the lower layer. The interface is at depth 560m and the wrong
velocity model is set to a constant value of 3300m/s. The migration results are shown in
FIG. 4. Because the velocity of the first layer is wrong (3300m/s instead of 3000m/s), the
reflector depth is wrongly mapped for the time domain RTM, to around 600m instead of
560m, deeper as expected for velocity too fast. On the other hand, the FWI-based frequency
domain LSRTM seems to provide the correct location, although the resolution is poor. One
of the goals of this ongoing research is to find out why the frequency domain migration has
this lower resolution but more robustenss.

(a) The true model (b) The initial model

FIG. 3. The true model and the initial model

(a) RTM in frequency domain (b) RTM in time domain

FIG. 4. RTM of a 2-layer model in frequency and time domain

In the second test, we use a model with similar velocities as before, 3000m/s for the
first layer and 4000m/s for the second layer, but this time we insert a small block in the
second layer with the velocity of the first layer (3000m/s). We use a wrong velocity of
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3000m/s, which is incorrect for the second layer. Therefore we expect that the reflector
depth will be correct for both methods, but the block should appear smeared in both cases.
Also, we expect that the LSRTM will not be able to improve focusing since residuals will
not help convergence towards the true model (gradient will be wrong). FIG. 6. and FIG.
7. illustrate the results of RTM and LSRTM for this case. As expected, there is no obvious
improvement from RTM when using LSRTM. The side boundaries are poorly imaged,
which indicates poor focusing due to the wrong velocity. As before, the depth of the block
seems more accurate in the FWI-based LSRTM. Because the reflector should have been
correctly mapped for both cases, the fact that the frequency domain version shows low
resolution indicates that this method suffers from convergence problems when the velocity
is wrong, which does not affect the time domain version at the location of the first reflector.
The nature of the frequency domain solution, direct instead of sequential as in the time
domain, maybe the reason behind this observation.

(a) The true model (b) The initial model

FIG. 5. The true model and the initial model for a blocky model

(a) RTM in frequency domain (b) RTM in time domain

FIG. 6. RTM of the blocky model in frequency and time domain

In the final test, we use the Marmousi model, again with wrong velocities. To create
the wrong velocities we apply a very heavy smoothing, much more than usually done to
honour Born modeling approximation. FIG. 8. shows the true model and the smoothed
model. Comparing the results in different domains (FIG. 9 and FIG. 10), the FWI-based
LSRTM can locate the reflectors at approximately correct locations but suffers from the
noise and convergence problems. The FWI-based LSRTM seems to have more details than
the time domain version, in particular deeper in the section.
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(a) LSRTM in frequency domain (b) LSRTM in time domain

FIG. 7. LSRTM of the blocky model in frequency and time domain

(a) The true model (b) The initial model

FIG. 8. The true model and the initial model of the resampled Marmousi model

(a) RTM in frequency domain (b) RTM in time domain

FIG. 9. RTM of the Marmousi model in frequency and time domain

CONCLUSIONS

In this paper, we first compare the LSRTM in frequency and time domains and then pro-
pose a FWI-based LSRTM in the frequency domain. This method is based on the objective
function of FWI and uses truncated Newton’s method to solve for the model perturba-
tion. We used three examples to compare these algorithms and understand the strength and
weakness of each method. The conventional time domain LSRTM has a good convergence
and sharper image when the velocity model is correct, but when the model is wrong, the
reflectors are not correctly located. For the FWI-based LSRTM in the frequency domain
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(a) LSRTM in frequency domain (b) LSRTM in time domain

FIG. 10. LSRTM of the Marmousi model in frequency and time domain

with wrong velocities, although it suffers from convergence problems, it seems to locate
the reflectors at the correct locations. We speculate that low frequencies seem to be less
affected by the wrong velocities. If this is true, we expect to be able to develop a RTM in
the frequency domain that uses information from the low frequencies to constrain the high
frequencies. Also, we plan to investigate further how the convergence is affected in each
case when the velocities are wrong.
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