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ABSTRACT

We first express stiffness parameters in terms of two sets of fracture weaknesses for the
case of fractured rock consisting of two orthogonal sets of vertical fractures. Using per-
turbations in these stiffness parameters for the case of an interface separating an isotropic
layer and a fractured layer, we derive a linearized P-to-P reflection coefficient as a function
of two sets of fracture weakness, and we present differences in azimuthal reflection coef-
ficients in terms of the tangential fracture weaknesses and the normal fracture weakness
intercepts. Using the differences in azimuthal reflection coefficients, we establish an ap-
proach of estimating the tangential fracture weaknesses and the normal fracture weakness
intercepts following a Bayesian framework. Synthetic tests confirm that the unknown pa-
rameter vector involving the tangential fracture weaknesses and the normal fracture weak-
ness intercepts is estimated stably and reliably in the case of signal-to-noise ratio of 2.

INTRODUCTION

Natural fractures in subsurface layers are complex. Determination of fracture networks
using observed seismic data sets are important for reservoir characterization. Bakulin et al.
(2000a) propose how to compute stiffness parameters in rocks that contain only a single
set of vertical fractures, which is equivalent to a horizontal transversely isotropic medium
(HTI); and Bakulin et al. (2000b) extend the research to more complicated and realistic
models that contain two sets of vertical fractures orthogonal to each other, which is a or-
thorhombic medium.

Following Bakulin et al. (2000b), we first proposed simplified and approximate stiff-
ness parameters of the orthorhombic medium in terms of two sets of fracture weaknesses.
In the case of an interface separating an isotropic layer and a fractured layer we express per-
turbations in stiffness parameters. Using the scattering proposed by Shaw and Sen (2004),
which is a function of perturbation in stiffness matrix, we derive a linearized reflection
coefficient again in terms of two sets of fracture weakness. We express difference in az-
imuthal reflection coefficients in terms of fracture weaknesses, and using the relationship
between fracture weaknesses and fracture density, we re-express the reflection coefficient
difference as a function of fracture density.

Based on the derived expression of difference in azimuthal reflection coefficients, we
establish an inversion approach of employing azimuthal seismic amplitude differences to
estimate fracture densities. Synthetic seismic data, which are added with Gaussian random
noise, are utilized to testify the proposed inversion approach.
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THEORY AND METHOD

In the present study, we focus on the case of fractured rock that is composed of two
orthogonal sets of vertical fractures embedded in an isotropic background, as plotted in
Figure 1.

FIG. 1. A model of fractured rock consisting of two orthogonal sets of vertical fractures.

In this section we explain how to obtain simplified and approximate stiffness matrix
of the fractured rock. Using the simplified stiffness matrix we will derive a linearized P-
to-P reflection coefficient as a function of fracture weaknesses. Based on the linearized
reflection coefficient, we will establish an approach and workflow of employing observed
seismic data to estimate fracture weaknesses.

Simplified stiffness matrix of fractured rocks

Under the assumption of fractures being rotationally invariant and the background being
isotropic, Bakulin et al. (2000b) proposed the effective stiffness matrix of the rock that
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contains two orthogonal sets of vertical fractures

C =


C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66



=



Ml1m3

d
λl1m1

d
λl1m2

d
0 0 0

λl1m1

d
Ml3m1

d
λl2m1

d
0 0 0

λl1m2

d
λl2m1

d
M(l3m3−l4)

d
0 0 0

0 0 0 µ (1− δT2) 0 0
0 0 0 0 µ (1− δT1) 0

0 0 0 0 0 µ (1−δT1)(1−δT2)
1−δT1δT2

 ,
(1)

where λ and µ are Lamé parameters of the isotropic background, M = λ+ 2µ, and

l1 = 1− δN1, l2 = 1− (1− 2g) δN1, l3 = 1− (1− 2g)2 δN1,

l4 = 4 (1− 2g)2 g2δN1δN2, m1 = 1− δN2, m2 = 1− (1− 2g) δN2,

m3 = 1− (1− 2g)2 δN2, d = 1− (1− 2g)2 δN1δN2,

(2)

in which

g =
µ

M
, (3)

and δN1, δN2, δT1 and δT2 are the normal and tangential fracture weaknesses related to the
orthogonal sets of vertical fractures (Bakulin et al., 2000b).

Under the assumptions that the normal and tangential fracture weaknesses are relatively
small (i.e. 0 ≤ δN1, δN2, δT1, δT2 < 1), we neglect the term proportional to δN1δN2 and
δT1δT2; hence, the stiffness parameters are simplified as

C11≈M
[
1− δN1 − (1− 2g)2 δN2

]
,

C12≈λ (1− δN1 − δN2) ,

C13≈λ [1− δN1 − (1− 2g) δN2] ,

C22≈M
[
1− (1− 2g)2 δN1 − δN2

]
,

C23≈λ [1− (1− 2g) δN1 − δN2] ,

C33≈M
[
1− (1− 2g)2 δN1 − (1− 2g)2 δN2

]
,

C44=µ (1− δT2) ,

C55=µ (1− δT1) ,

C66≈µ (1− δT1 − δT2) .

(4)

We next use a model of the middle Woodford shale (Far et al., 2013) to testify the
accuracy of the simplified stiffness parameters. Table 1 shows elastic parameters (P- and
S-wave velocities VP and VS, P- and S-wave moduliM and µ, and density ρ) of the isotropic
background rock.
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Table 1. Elastic parameters of the isotropic background rock (Far et al., 2013)

VP (km/s) VS (km/s) ρ (g/cm3) M (GPa) µ (GPa)

4.161 2.687 2.46 42.592 17.761

Given different values of δN1, δN2, δT1 and δT2, we respectively calculate exact and
approximate stiffness parameters using equations 1-4, and in Figure 2 we plot the relative
difference between the exact and approximate results. We observe that in the case of frac-
ture weaknesses being smaller than 0.3, the relative differences of stiffness parameters C11,
C13, C22, C23, C33 and C66, which are computed using the exact and approximate results,
are less than 3%. Although the maximum relative difference of C12 approaches to 20% in
the case of δN1 and δN2 being 0.3, most of its relative difference are less than 10%. We may
conclude that the simplified stiffness parameters are acceptable in the case that two sets of
fracture weaknesses are small.

FIG. 2. Relative differences between exact and approximate results of stiffness parameters. The

relative difference is computed as R(Cij) =
∣∣∣Capprox

ij −Cexact
ij

Cexact
ij

∣∣∣, where Capprox
ij and Cexact

ij respectively
represent approximate and exact results of stiffness parameter.
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Derivation of P-to-P linearized reflection coefficient

Using the simplified stiffness parameters, we proceed to the derivation of a linearized
reflection coefficient for an interface that separates an isotropic layer and a fractured layer.
We first express perturbations in stiffness parameters across the interface as

∆C11≈∆M −MδN1 −M (1− 2g)2 δN2,

∆C12≈∆λ− λδN1 − λδN2,

∆C13≈∆λ− λδN1 − λ (1− 2g) δN2,

∆C22≈∆M −M (1− 2g)2 δN1 −MδN2,

∆C23≈∆λ− λ (1− 2g) δN1 − λδN2,

∆C33≈∆M −M (1− 2g)2 δN1 −M (1− 2g)2 δN2,

∆C44=∆µ− µδT2,

∆C55=∆µ− µδT1,

∆C66≈∆µ− µδT1 − µδT2,

(5)

where ∆M and ∆µ are changes in P- and S-wave moduli across the interface, and we
stress that in the perturbations we neglect the term that is proportional to ∆MδN1, ∆MδN2,
∆λδN1, ∆λδN2, ∆µδT1 and ∆µδT2 again under the assumptions that changes in both elastic
parameters (M , µ, and λ) across the interface and two sets of fracture weaknesses are small.

Following Pšenčík and Gajewski (1998), Pšenčík and Vavryčuk (1998) and Vavryčuk
and Pšenčík (1998), we derive the linearized P-to-P displacement reflection coefficient
RPP (θ, φ) as the sum of isotropic part Riso

PP (θ) related to background media elastic param-
eters and anisotropic part Rani

PP (θ, φ) related to two sets of fracture weaknesses (Appendix
A)

RPP (θ, φ) = Riso
PP (θ) +Rani

PP (θ, φ) ,

Riso
PP (θ) = aρ (θ)

∆ρ

ρ
+ aM (θ)

∆M

M
+ aµ (θ)

∆µ

µ
,

Rani
PP (θ, φ) = aN1 (θ, φ)δN1 + aN2 (θ, φ)δN2 + aT1 (θ, φ)δT1 + aT2 (θ, φ)δT2,

(6)

CREWES Research Report — Volume 31 (2019) 5



Chen, Li and Innanen.

where

aρ (θ) =
1

4

cos 2θ

cos2 θ
, aM (θ) =

1

4
sec2 θ, aµ (θ) = −2gsin2 θ,

aN1 (θ, φ) =− 1

4

[
(1− 2g) cos θ + cos2 φsin θtan θ

]2
− (1− 2g)

2

[
sec2 θ − 1

2
sin2 φtan2 θ

−g
(
2 + sin2 φ tan2 θ

)] sin2 θsin2 φ,

aN2 (θ, φ) =− 1

4

[
(1− 2g) cos θ + sin2 φ sin θ tan θ

]2
− (1− 2g)

2

[
sec2 θ − 1

2
cos2 φtan2 θ

−g (2 + cos2 φ tan2 θ)

]
sin2 θcos2 φ,

aT1 (θ, φ) =gcos2 φsin2 θ
(
1− sin2 φtan2 θ

)
,

aT2 (θ, φ) =gsin2 φsin2 θ
(
1− cos2 φtan2 θ

)
,

(7)

in which θ is the incidence angle of P-wave, and φ is the azimuth, which is equal to zero in
the (x, z) plane.

Inversion of azimuthal seismic amplitude differences for two sets of fracture
weaknesses

Assuming we have seismic data sets of azimuthal angles φ1 = 0 and φj in hand, the
difference between the reflection coefficients of φi and φj , ΓPP, is expressed as

ΓPP (θ, φ1, φj) =bN1 (θ, φ1, φj)δN1 + bN2 (θ, φ1, φj)δN2

+ bT1 (θ, φ1, φj)δT1 + bT2 (θ, φ1, φj)δT2,
(8)

where

bN1 (θ, φ1, φj) = aN1 (θ, φj)− aN1 (θ, φ1),

bN2 (θ, φ1, φj) = aN2 (θ, φj)− aN2 (θ, φ1),

bT1 (θ, φ1, φj) = aT1 (θ, φj)− aT1 (θ, φ1),

bT2 (θ, φ1, φj) = aT2 (θ, φj)− aT2 (θ, φ1).

(9)

In the difference between azimuthal reflection coefficients the effects of reflectivities
of P- and S-wave moduli and density disappear, and the difference is mainly influenced by
the fracture weaknesses. Based on the difference between azimuthal reflection coefficients,
we proceed to the establishment of inversion approach of employing azimuthal seismic
amplitude differences to estimate two sets of fracture weaknesses.

Following Bakulin et al. (2000a), we express the normal and tangential fracture weak-
nesses for fluid saturated fractures under the assumption that there are no interaction be-
tween two sets of fractures, which indicates that we may utilize fracture density e for each
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set of fractures to compute the corresponding normal and tangential fracture weaknesses

δNi =
4ei

3g (1− g)
[
1 + 1

πg(1−g)
Kf
µαi

] ,
δT i =

16ei
3 (3− 2g)

,

(10)

where ei (i = 1, 2) represents the fracture density of two sets of fractures, and αi (i = 1, 2)
represents fracture aspect ratio. We emphasize that we assume the fluid is evenly filled in
two sets of fractures. Given different values of fracture density, we plot how the normal
fracture weakness δN varies with fracture aspect ratio α for the case of gas-bearing fractures
in Figure 3 .
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FIG. 3. Variations of normal fracture weakness with aspect ratio in the case of different values of
fracture density (water saturation sw = 50%).

In Figure 3 we observe that given a certain fracture density and water saturation for
gas-bearing fractures the normal fracture weakness is approximately constant in the case of
fracture aspect ratio being in 0.001− 0.01, which means αi in equation 10 can be approx-
imately written as α; and the normal fracture weakness changes significantly with fracture
density. It may guide us to further express two sets of fracture weaknesses in terms of
fracture density:

δN1 = kN e1,

δN2 = kN e2,

δT1 = kT e1,

δT2 = kT e2,

(11)

where kN = 4

3g(1−g)
[
1+ 1

πg(1−g)
Kf
µα

] , and kT = 16
3(3−2g)

.

Substituting equation 11 into equation 8, we re-express the reflection coefficient differ-
ence as

ΓPP (θ, φ1, φj) =dNT1 (θ, φ1, φj)e1 + dNT2 (θ, φ1, φj)e2, (12)
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where

dNT1 (θ, φ1, φj) =bN1 (θ, φ1, φj) kN + bT1 (θ, φ1, φj) kT ,

dNT2 (θ, φ1, φj) =bN2 (θ, φ1, φj) kN + bT2 (θ, φ1, φj) kT .
(13)

The reflection coefficient difference is re-expressed as a function of fracture density,
which may reduce the correlation between the normal and tangential fracture weaknesses
due to fracture density. Using the re-expressed reflection coefficient difference, we next
establish the approach and workflow of employing azimuthal seismic amplitude differences
to estimate unknown parameters involving two fracture densities e1 and e2.

Assuming we have seismic angle gathers along azimuths φ1, φ2 and φ3, the azimuthal
seismic amplitude differences are expressed succinctly as

s = Gx, (14)

where

s =

[
sPP (θ, φ1, φ2)
sPP (θ, φ1, φ3)

]
,

G =W
[
dNT1 (θ, φ1, φ2) dNT2 (θ, φ1, φ2)
dNT1 (θ, φ1, φ3) dNT2 (θ, φ1, φ3)

]
,

x =

[
e1

e2

]
, (15)

in which W represents the vector of wavelet extracted from observed seismic data, and sPP

represents seismic amplitude difference.

Using a Bayesian framework, we propose the objective function J in the case of as-
suming both the likelihood and priori probability distribution to be Gaussian distribution,
which is expressed as

J =
(s−Gx)T (s−Gx)

2σ2
noise

+
(x− xprior)

T (x− xprior)

2Cx

, (16)

where the superscript T denotes the transpose of vector, xprior is the mean value of un-
known parameter vector x, σ2

noise is the variance of Gaussian random noise, and Cx is the
covariance matrix of unknown parameters, which is given by

Cx≈

 σ2
e1

σe1e2

σe1e2 σ2
e2

 . (17)

The solution of unknown parameter vector is given by

x =xprior + CxGt
(
GCxGt + σ2

noiseI
)−1

(s−G xprior) , (18)

where I is the unit vector.
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NUMERICAL EXAMPLES

We first utilize a layer-model to testify the stability and robustness of the proposed
inversion approach. Figure 4 plots curves of fracture density and water saturation of the
layer-model, and Figure 5 plots profiles of differences in azimuthal seismic data, which
are generated using equations 12 and 14; and Ricker wavelet of dominant frequency 20 Hz
is employed. Gaussian random noise is added into the synthetic seismic data difference
(signal-to-noise ratio, SNR, is 2).
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FIG. 4. Fracture density and water saturation of layer-model. The fluid is the mixture of water and
gas.
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FIG. 5. Profiles of differences in azimuthal seismic data generated based on the derived reflection
coefficient. φ1 = 0, φ2 = 45◦, and φ3 = 90◦

Using the proposed inversion approach, we implement the inversion of differences in
azimuthal seismic data for two fracture densities, and in Figure 6 we plot comparisons
between true values and inversion results of fracture density. We observe that there is a
good match between the inversion result and true value of fracture density.
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FIG. 6. Comparisons between inversion results and true values of fracture density. Green curve
represents initial model of fracture density, which is a smoothed version of true value.

CONCLUSIONS

Beginning with simplifying stiffness parameters of orthorhombic media, we derive a
linearized reflection coefficient in terms of two sets of fracture weaknesses, and we also
express the difference in azimuthal reflection coefficients in terms of fracture weaknesses
and fracture densities respectively. Using the derived expression of difference in azimuthal
reflection coefficients, we establish an approach of employing differences in azimuthal
seismic amplitude data to estimate fracture densities. Applying the approach to synthetic
seismic data of signal-to-noise ratio (SNR) of 2, we may obtain stable inversion results of
fracture densities, which is helpful for prediction of fracture networks and connectivity.
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APPENDIX A. DERIVATION OF LINEARIZED REFLECTION COEFFICIENT

Vavryčuk and Pšenčík (1998) proposed an expression of PP-wave reflection coefficient
in the case that an interface separates two weakly arbitrary anisotropic media. Extending
their PP-wave reflection coefficient to the case that an interface separating isotropic and
fractured media, we rewrite the reflection coefficient as

RPP (θ, φ)≈∆ (C33/ρ)

4VP
2 (1 + sin2 θ) +

(
1

2
− 2gsin2 θ

)
∆ρ

ρ

+


∆(C13/ρ+2C55/ρ−C33/ρ)

2VP
2 cos2 φ

+∆(C23/ρ+2C44/ρ−C33/ρ)

2VP
2 sin2 φ

−2∆(C55/ρ)

VP
2 cos2 φ− 2∆(C44/ρ)

VP
2 sin2 φ

 sin2 θ

+


∆(C33/ρ)

4VP
2 + ∆(C11/ρ−C33/ρ)

4VP
2 cos4 φ

+∆(C22/ρ−C33/ρ)

4VP
2 sin4 φ

+∆(C12/ρ+2C66/ρ−C33/ρ)

2VP
2 sin2 φcos2 φ

 sin2 θtan2 θ

≈∆C33

4M
(1 + sin2 θ) +

(
1

2
− 2gsin2 θ − C33

4M
− C33

4M
sin2 θ

)
∆ρ

ρ

+



∆(C13+2C55−C33)
2M

cos2 φ

− (C13+2C55−C33)
2M

cos2 φ∆ρ
ρ

+∆(C23+2C44−C33)
2M

sin2 φ

− (C23+2C44−C33)
2M

sin2 φ∆ρ
ρ

−2∆C55

M
cos2 φ+ 2C55

M
cos2 φ∆ρ

ρ

−2∆C44

M
sin2 φ+ 2C44

M
sin2 φ∆ρ

ρ



sin2 θ

+



∆C33

4M
− C33

4M
∆ρ
ρ

+∆(C11−C33)
4M

cos4 φ− (C11−C33)
4M

cos4 φ∆ρ
ρ

+∆(C22−C33)
4M

sin4 φ− (C22−C33)
4M

sin4 φ∆ρ
ρ

+∆(C12+2C66−C33)
2M

sin2 φcos2 φ

− (C12+2C66−C33)
2M

sin2 φcos2 φ∆ρ
ρ


sin2 θtan2 θ.

(A.1)
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Substituting equations 4 and 5 into equation A.1, we obtain the final expression of
PP-wave reflection coefficient after some algebra

RPP (θ, φ)≈1

4

cos 2θ

cos2 θ

∆ρ

ρ
+

1

4
sec2 θ

∆M

M
− 2gsin2 θ

∆µ

µ

−


1
4

[(1− 2g) cos θ + cos2 φsin θtan θ]
2

+ (1−2g)
2

[
sec2 θ − 1

2
sin2 φtan2 θ

−g
(
2 + sin2 φ tan2 θ

)] sin2 θsin2 φ

 δN1

−


1
4

[
(1− 2g) cos θ + sin2 φ sin θ tan θ

]2
+ (1−2g)

2

[
sec2 θ − 1

2
cos2 φtan2 θ

−g (2 + cos2 φ tan2 θ)

]
sin2 θcos2 φ

 δN2

+ gcos2 φsin2 θ
(
1− sin2 φtan2 θ

)
δT1

+ gsin2 φsin2 θ
(
1− cos2 φtan2 θ

)
δT2.

(A.2)
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