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ABSTRACT

Oil saturation is the measure of the amount of oil inside the porosity of a reservoir
rock. Its calculation, usually from core analysis, is an important quantity that helps to
characterize the reservoir. In this work, we are not predicting the actual oil saturation
due to the lack of information for the wells gathered, but the fraction of mass of oil in
the core. Most of this report is focused on the data preparation prior to modeling, as our
variables and targets came from two different measurement sources (well logs and core
analysis), and in how to create a valid workflow to make features and targets compatible
to each other. In the end, we show how to select an appropriate machine learning model
to predict the target, which need to be one with non-linear properties, and how to interpret
the feature importance. To predict the fraction of mass of oil, the induction log ILD is the
one that brings most of the information, but it needs to be combined with other logs for the
prediction to make sense. The metric used to evaluate the models was the R2, and the best
model had a score of 0.82.

INTRODUCTION

Knowledge of oil and water saturation distribution in a oilfield is of great significance
for the latter development (Yue et al. 2018), and the estimation can be done by direct
petrophysical models (with fair knowledge of the relations between logs and saturation) or,
more recently, with the use of machine learning models (Zhang et al. 2019). Here we will
focus on the machine learning side of it.

Machine learning algorithms usage on geoscience, engineering, and petrophysics data
is in ascension this last decade. Maybe the most common application is for facies clas-
sification, by the use of ensemble classifiers (Bestagini, Lipari, and Tubaro 2017; Zhang
and Zhan 2017; Caté et al. 2017), neural networks (Silva et al. 2014), and support-vector
machines (Caté et al. 2017; Alexsandro, P. Carlos, and Geraldo 2017; Wrona et al. 2018).
Guarido (2019) showed that deeply analyzing the data before modeling can provide in-
sights for data engineering, and he applied polar coordinates transformation of the features
by realizing circular relationship with the target. Machine learning has broad applications
in geophysics, such as in FWI, by using convolutional neural networks for salt identifica-
tion (Lewis and Vigh 2017; Guarido, Li, and Cova 2018), and FLEXWIN for time-window
selection (Chen et al. 2017). It is possible to find works on trace interpolation using
support-vector regression (Jia and Ma 2017), or by Monte-Carlo approximations (Jia, Yu,
and Ma 2018). Deep neural networks are used by Araya-Polo et al. (2017) for fault de-
tection and by Araya-Polo et al. (2018) for tomography. Nearest neighbors (k-NN) can
be implemented to help on CMP velocity analysis (Smith 2017). Russell, Ross, and Lines
(2002) combine NN with AVO. In petrophysics, Ahmadi and Chen (2019) shows that hy-
brid methods provides higher accuracy than single models, but the latter are more robust.
Many others machine learning algorithms applications can be found in the literature.
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Oil and water saturation also have a fairly long list of machine learning applications to
help in interpretation, but we will narrow the list a few. Zhang et al. (2019) uses RNN (re-
current neural networks), most specifically the LSTM (long-short term memory) approach
to estimate water saturation with good performance. Khan, Tariq, and Abdulraheem (2018)
also goes on the deep learning side by training a neural networks model to predict water
saturation in complex lithologies with high accuracy. Kapoor (2017) shows that ensem-
ble tree methods, such as random forest and gradient boosting, can predict oil and water
saturation in the oil sands more accurately than empirical estimations.

In this paper, we were not able to work on the estimation of oil saturation in the oil
field, as this information is missing on public data (even with the header pointing that
it exists). But we were able to retrieve the fraction of mass of oil presented in the core
analysis for several wells, and the goal became to estimate it from the well logs. This
paper is not focused on the machine learning algorithms used for the predictions, but on
how a data science project proceeds. Usually statisticians and data scientists expend from
80% to 90% of the time preparing the data for the modeling, and here we want to explore
this need. In general, a data science project follows a work flow that starts with the data
description, where each feature and target must be deeply understood, followed by the
data preparation, when the data is cleaned, filtered, processed, and prepared for analysis
and modeling. Later, the data analysis step is very import to understand, from a series of
different plottings, any relationship between features and target. The modeling comes as
one of the final parts, were predictions and model selection are evaluated. Finally, we need
to go for the interpretation of the model and predictions, trying to understand the physics
behind the outputs and using our field knowledge to determine if the model makes sense.

DATA DESCRIPTION

A data science project consists on a series of steps that usually follow the same or-
der. For the project to be successful, it is important for the data scientist to have deep
understanding of the data before preparation and modeling. Knowledge is gathered from
literature and papers, as well as, in the case of this paper, from acquisition reports. Without
this kind of understanding, the data scientist may not be able to identify issues in the data.

Table 1: Features and target descriptions.
Name Description
WELL Well name
DEPTH Measured depth (m)
RHOB Bulk density
DPHI Density porosity
NPHI Neutron porosity
SP Spontaneous potential
GR Gamma ray
DT Sonic interval transit time
ILD Deep induction resistivity
PE Photoelectric effect
MASS OIL Fraction of mass of oil in the core
POROSITY Core analysis porosity

The data used for this report is from the Athabasca oil field (Figure 1) and, initially,
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well logs and core analysis from 548 wells were provided (table 1).

Figure 1: Map of the Athabasca oil field. Source: Wikipedia

Well logs and core analysis for the 548 wells were acquired using the GeoScout soft-
ware, and all the information used is from public data (meaning this work is reproducible).
The well logs, for each well, have a .las file containing all the information required. How-
ever, most of the wells do not have all the wireline measurements requested, even if they
exist in the .las file header. Less than 10% of the files actually contain the wireline logs in
an desirable quantity (missing is < 25%). Working with public data can be challenging, as
companies still keep some of the data private, as intellectual property, and also the public
data can be incomplete and/or have several issues. This is a very common challenge for
data scientists.

Initially, the main objective of this paper was to estimate the oil saturation of the well,
by matching the measured ones during core analysis. However, the downloaded data comes
with this information empty for all the wells. The only information about oil content in the
core is the fraction of mass of oil, and the objective of this work is now to predict it.

DATA PREPARATION

After gaining all the necessary knowledge about the input dataset the data scientist
needs to proceed to the data preparation, analysis, and modeling.

Working with data for the same well from two different sources (wireline logs and core
analysis) brings challenges in the data preparation. The first one is the sample interval of

CREWES Research Report — Volume 31 (2019) 3

https://en.wikipedia.org/wiki/Athabasca_oil_sands


Marcelo Guarido and Daniel Trad

the measurements. The well logs have a depth sample interval of around 15.25cm (with
small variations for different wells), as the core analysis is done in a very irregular sample
interval, varying from 0.1m to 3.9m in the dataset. This requires the data (logs and cores) to
be resampled to the same sample interval. For convenience, all the data was resampled to
15cm. But we had to keep in mind that the core analysis was not done for the same length
as the well logs. Mostly of the MASS OIL column has empty entries (that could mean zero
or just not measured, and not sure to be zero). So, for the well logs, the resampling was
done with a linear interpolation, as for the fraction of mass of oil, the interpolation was
done to fill the length of the core sample with the same value, and making it zero when the
entry is blank. That is not a big issue, as we will only use depth where the mass of oil is
measured to do the modeling.

The second challenge is to address the problem that the cores samples and well logs
were not acquired in the same “depth domain”, i.e., that the depth references are different.
A way to get around this issue is to select a compatible measurement from both datastes
and compute the difference in shift between them. We made this comparison by using DPHI
(density porosity) from the well logs, and the porosity measured in the core. Remember
that we are assuming that both measurements are compatible (which is an acceptable as-
sumption). This kind of analysis also helps us to QC the data acquired. Sometimes a WELL
NAME contains well logs and core analysis from different wells, probably caused by human
error when uploading the data to the database. When it happens, DPHI and core porosity
have no visual match, and were removed from our dataset.

Figure 2: Comparing the density porosity (DPHI, in blue) with the original porosity from
cores (top, in red) and with the shifted core porosity (bottom, in red). The shift applied was
of 0.6m.
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Figure 2 shows, on the top, the curves of the density porosity (DPHI, in blue) overlapped
by the core porosity (in red) measured for the well. The 0’s in the core porosity curve mean
no data. At least in the region where both curves were measured, it is possible to note they
follow a similar trend, mostly on lower frequency events (noticeable around the depth of
110m) but slightly shifted from each other. This means that the curves have different depth
reference, and the measures of the fraction of mass of oil will be shifted relative to the
logs, and the predictions can be strongly damaged by it.We estimate the distance between
the curves and apply a phase shift based on a running window over the curves, computing
the distance of the segments for each window (by minimizing the squared difference), and
selecting the median of all calculated distances (in number of points) to be the used for the
phase shift of the whole well. In the bottom plot of the Figure 2 is the result of the shifted
core porosity applied. The calculated distance was of 0.6m. The same phase shift is applied
on the measures of mass of oil. This way, both data are on the same depth reference.

With all the filtering applied as listed above, the number of useful wells was reduced
from 548 to only 50 at this point. This shows how hard is to find reliable data from public
databases (a common problem in any study field). Wireline logs are of high cost, as drilling
or well production must be stopped during the measurements for several days.

DATA ANALYSIS

Now that the data preparation is complete, the data analysis is the next step in a data
science project. It is the moment to plot the data and look for any insights you may have
before modeling. Most of the times, you can recognize important expected patterns and
identify if predictions make sense.

Figure 3 has one of the wells curves and mass of oil (fraction) presented in a single
plot. This well is a good example to start some visual analysis. The mass of oil for this
well varies from values close to 0 to 0.15, and it is possible to observe that those variations
follow some trends of several well logs. The photoelectric effect (PE) tends to assume
higher values when the mass of oil is smaller, and the trend is followed to a higher fre-
quency content (thinner spikes). The gamma-ray (GR) shows to follow a lower frequency
similarity to the mass of oil, and higher gamma-ray measurements represents low mass of
oil. Similar analysis is possible from the spontaneous potential (SP), but not as accurate as
GR, and the trend tends to invert as the well goes deeper. Neutron porosity (NPHI) is ap-
parently pointing locations with high variance of the mass of oil. Density porosity (DPHI)
shows to be following the mass of oil behavior quite closely, but not as accurate on higher
frequencies. It is important to notice that the bulk density (RHOB) and the density porosity
(DPHI) are basically a mirror of each other, which makes sense, as the density porosity
is extracted from the bulk density values (Tittman and Wahl 1965). As those two logs are
redundant information, only DPHI will be used for modeling. With so many logs following
different trends of the mass of oil, we expect that a regression model will do a fairly good
job to predict the mass of oil.

The distribution of values of the fractions of mass of oil is shown in Figure 4, where
the x-axis is the binned mass of oil, and the y-axis is the counting for each bin. It
looks to be a bimodal distribution, as it contains two modes (two peaks). The first peak is
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Figure 3: Example of wireline logs and mass of oil (fraction) from one of the provided
wells.

Figure 4: Distribution of mass of oil (fraction of core total mass) over all the wells.

around 0.03, which represents a fairly low amount of oil, and may be measurements on the
limits of the reservoir , and the second peak is around 0.15, which might be the zone of the
reservoir. The bimodal behavior does not look connected to the porosity of the reservoir,
as its distribution (from DPHI, in Figure 5) has a single mode around 0.3. This means that
in locations where the mass of oil is lower, the mass of gas and/or water may be higher.
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Porosity alone will not be a perfect indication of mass of oil, but we expect it to be one of
the most important features in the predictions.

Figure 5: Distribution of density porosity (DPHI) over all the wells.

A simple way to evaluate any correlation between features (well logs) and target (frac-
tion of mass of oil) is by visualizing them within the pairs plot panel. This panel consists
in three types of plots: the lower left part are the scatter plots between all the variables and
target provided; the upper right portion has the density plots of the scatter plots from the
lower part; and the on diagonal sits the distribution of each feature and target. However, as
pointed by the distribution of mass of oil (Figure 4), there are two modes (two distributions)
combined. A single correlation for two distributions will not look simple to evaluate, so
we split the pairs plot for places where the mass of oil (frac) is smaller than 0.08 (Figure 6)
and for places where the target is greater or equal 0.08 (Figure 7). Let’s interpret the pairs
plot from Figures 6 and 7. The lower part of the pairs plot are simply the scatter plot (in
blue) of the pairs of features and targets, the diagonal is the distribution of each feature and
the target, as the upper part is the density plot from the scatter plots.

Even with the split plots relative to the fraction of mass of oil, the pairs plots have
very similar trends. DPHI, GR, DT, ILD, and PE look to have, at least, some minor linear
correlation with the mass of oil. Also, DPHI values tend to be higher when the mass of
oil is larger. Those are very positive observations, and now we need to check if a machine
learning model can translate it to precise predictions.

MODELING

Now that we have a good understanding of our dataset, and that we fixed and aligned
the data the best we could, the next step in our data science project is the modeling.

Any supervised learning model is trained on a subset of the dataset (usually 80% of the
data) and the model is evaluated on the rest of the data (the remaining 20%). As we have
50 wells, we will split 40 for the training set, and 10 for the testing set. We will not use any
criteria to select the wells (random split).
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Figure 6: Pairs plot of all features and target, considering only the fraction of mass of oil
smaller than 0.08.

It was observed before that some of the well logs present some level of linear correlation
with the mass of oil. This brings us an important question: can a simple linear regression
with multiple features be a good predictor of mass of oil?

Figure 8 shows the predictions using a linear regression model. On the left is shown
the correlation between true data and predictions, with a R2 of 0.52. On the right are
two examples of true mass of oil (in blue) and predictions (in red) in specific wells. A
perfect R2 correlation value is supposed to be 1, as 0 means no correlations between target
and predictions, and negative values means that the model predictions are worse than a
constant line. For this model, the R2 is arguably acceptable (depending on your goals).
For this work, we consider it as acceptable if your goal is to predict major trends of mass
of oil in your data. In the two example wells, the predictions fairly achieve this goal, but
they would not be acceptable as a valid interpretation of the well. In other words, the linear
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Figure 7: Pairs plot of all features and target, considering only the fraction of mass of oil
greater or equal than 0.08.

regression is not suitable for precise predictions of fractions of mass of oil (our goal here).

At this point, with the partial failure of the linear regression to make predictions, we can
assume that the correlation between features and target is non-linear. With this information
in mind, we have two options to help us to improve the predictions: 1) apply a polynomial
feature engineering on the features or 2) select a model that has non-linear properties. In
this work, we will be going through the second option.

The gradient boosting regressor (Guarido 2018) is a model with non-linear properties,
and sounds to be a better option in this case, and Figure 9 shows its predictions. Looking
at the two example wells, the predictions did a great job, when compared to the linear
regression in Figure 8, and the predicted mass of oil (red) matches the true values (blue)
closer. The correlation between predictions and target also have a better trend, dispersing
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Figure 8: Predictions using a linear regression model. On the left is shown the crossplot
between true data and predictions, with a R2 of 0.52. On the right are two examples of true
mass of oil (in blue) and predictions (in red) in specific wells.

Figure 9: Predictions using a gradient boosting regressor. On the left is shown the crossplot
between true data and predictions, with a R2 of 0.82. On the right are two examples of true
mass of oil (in blue) and predictions (in red) in specific wells.

around the “perfect line” (gray), and now the R2 is 0.82. It is a huge improvement of the
predictions, and that is thanks to the non-linear properties of the selected model.

There are other models with non-linear properties that could be used for the predictions.
The most famous one is the neural networks, where activation functions in the neurons cre-
ate non-linear criteria. However, a neural networks model contains weights that are hard (if
not impossible) to interpret, meaning it is not straight forward to understand the importance
that each feature had for the predictions. As we want to use interpretable models, we will
keep with the gradient boosting for the predictions.
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INTERPRETATION

The final step for our data science project is to interpret the trained model. Remember
that we did a pre-evaluation of the wells logs and how important would they be to predict
the fraction of mass of oil, by analyzing the pairs plots from Figures 6 and 7 and checking
linear correlations with the target, even if minor linear ones.

Figure 10: Feature importance from the gradient boosting model.

Now we can evaluate the features importance from the gradient boosting model in Fig-
ure 10. Our predictions before sound to be reasonably correct, as we pointed DPHI, GR,
DT, ILD, and PE as features with at least minor linear correlation with the mass of oil, and
they are the top 5 important features. Some surprises still raised: we were expecting that
DPHI (porosity measure) would be the top position in importance, but it was surpassed
by ILD (induction log). ILD measures the formation resistivity, and its combination with
DPHI and GR as major players, and DT and PE as fine tunes in the model, we could train
a model with high confidence predictions. SP and NPHI shows to include almost no infor-
mation to the model, and training a model without these two logs gave us the predictions
as before.

CONCLUSIONS

Oil saturation is an important parameter in the reservoir characterization, and in this
paper we showed how it can be calculated with high precision. Well, actually, we showed
how to calculate the fraction of mass of oil in the core, not the oil saturation, and the reason
for that is the lack of information on public core analysis data.

We presented the work in a way to mirror a data science research project, that starts
from the data understanding, to the final machine learning modeling and interpretation. We
showed that the public data can be mostly unusable depending of the goal of a project.
Here, we started with a data set containing 548 wells and after data cleaning and quality
control, the number of wells was reduced to 50. One important procedure pre-modeling was
to match in depth information that comes from different sources, in this cases the well logs
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with the core analysis. We used variables from both data sets that have compatible measure
goals (DPHI and core porosity) to estimate and fix the depth shift between the curves. After
the data was clean and processed, data analysis came in place as a quality control measure,
insights of features importance and redundancy (the reason we removed RHOB from the
modeling), and in a way to understand the data so deeply that we could “predict” our
predictions. It was possible to evaluate if the correlation of the well logs with the mass of
oil is linear by testing model without and with non-linear properties, and the latter proved
to be more appropriate. We use a gradient boosting model for the predictions, and the
model showed to be robust and highly accurate with the estimations, with a measured R2 =
0.82. We wrapped up the project by interpreting the model and its features importance.
The induction log (IDL) showed that the measurement of the formation resistivity is the
most valuable to estimate the mass of oil, followed by the measure of porosity (DPHI)
and gamma-ray (GR). Seismic time measurements (DT) and photoelectric effect (PE) were
used by the model as refinement parameters.

In the end, we showed that a data science research project procedure is very broad and
can be applied to the Oil & Gas industry as a support tool for interpretation.
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