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ABSTRACT

Quantitative estimation of rock physics properties is of significant interest in reser-
voir characterization, and most current workflows with this subject are based on amplitude
variation with offset (AVO) analysis. With the expectation of more accurate results, we
propose to directly estimate rock physics properties using elastic full-waveform inversion
(FWI). We implement this by incorporating the rock physics model, which builds a link be-
tween elastic and rock physics properties, into the FWI workflow to reformulate the model
parameterization using rock physics parameter classes. We consider three rock physics
models: the Han empirical model, the Voigt-Reuss-Hill (VRH) boundary model, and the
Kuster and Toksöz (KT) inclusion model. Each is used to formulate a model parameter-
ization of porosity, clay content, and water saturation (P-C-S). We employ the truncated-
Newton optimization method to update the model by iteratively minimizing the differences
between synthetic and observed data. With numerical examples, our method shows consid-
erable promise for recovering rock physics properties. It also possesses advantages over a
sequential approach, which first invert for elastic attributes, then recover rock physics prop-
erties from them. We note that the Han model gives the most accurate results, whereas the
KT model generally recovers the models with the largest errors. These large errors likely
originate from the higher degree of nonlinearity of the KT model. The analytical radiation
patterns of the P-C-S parameterization illustrate that the perturbation of water saturation
has a minor effect on seismic data, this explains why water saturation is more challenging
to recover compared with the porosity and clay content in our examples.

INTRODUCTION

Current seismic techniques usually go beyond inverting for elastic attributes (e.g., ve-
locity, density, and modulus) and try to infer rock physics (or petrophysical) properties of
interest, such as lithology, porosity, and fluid information (Bosch et al., 2010). The estima-
tion of rock physics properties can be achieved either in a sequential (two-step) workflow,
where seismic inversion for elastic attributes is followed by the rock physics inversion that
transforms those elastic attributes to rock physics properties (Saltzer et al., 2005; Bachrach,
2006; Grana and Della Rossa, 2010; Johansen et al., 2013; Grana, 2016), or in a joint
workflow, where seismic data are directly inverted for rock physics properties, often in a
Bayesian formulation, with the likelihood including both rock physics and seismic forward
modelings (Bosch et al., 2007; Spikes et al., 2007; Buland et al., 2008). Whether deter-
ministic or stochastic, seismic inversions in the two workflows are commonly performed
using the convolution model. The linearized amplitude variation with offset (AVO) inver-
sion proposed by Buland and Omre (2003) represents a computationally fast and popular
approach. However, AVO inversion suffers from inherent problems, in particular, it oper-
ates only with the amplitudes of reflection waves, and the migrated gathers are sensitive to
errors in the velocity model (Kamath et al., 2017a). Full-waveform inversion (FWI), which
employs waveforms and avoids migration-related amplitude errors, offers the likelihood of
enhanced accuracy for estimating elastic and rock physics parameters.
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Despite the potential of FWI as a more powerful tool for reservoir characterization,
there is a paucity of literature on using it in a direct manner to estimate rock physics prop-
erties. Instead, most efforts are being directed at improving the inversion results of the
elastic attributes, allowing inferences to be made on lithology or fluid information. Shi
et al. (2006) design an adaptive controller to calculate suitable step length for the model
iteration. This method significantly accelerates the inversion convergence, and the inverted
Lamé constants yield a clear image of gas sands. Pan et al. (2018b) recommend that trade-
offs between different parameter classes be evaluated using interparameter contamination
kernels. These kernels explain the superiority of the velocity-density parameterization for
characterizing a producing heavy oil reservoir (low Poisson’s ratio) with walk-away verti-
cal seismic profile (W-VSP) data. Prieux et al. (2013a) promote a hierarchical approach,
using visco-acoustic FWI to reconstruct P-wave velocity (VP), density, and attenuation.
Several geological features, such as gas traps and soft quaternary sediments, can be inter-
preted with inverted density and attenuation. In their later study of visco-elastic FWI with
the same field data (Prieux et al., 2013b), these geological features are more pronounced
with the elastic quantities that carry a joint knowledge of VP and VS. In particular, the
VP/VS ratio allows areas saturated with gas to be discriminated, and the VP × VS quantity
is representative of the lithology variations.

FWI with rock physics constraints has been viewed as a way to narrow the gap between
seismic imaging and reservoir characterization (Naeini et al., 2016). Normally, the con-
straints are derived from facies classification using well-logs, are expressed in the form of
linear relationships between elastic parameters, and are added through the regularization
term to the object function (Asnaashari et al., 2013; Kamath et al., 2017a; Rocha and Sava,
2018). The key to incorporating such constraints is to estimate the spatial distribution of
the facies, with repect to which the recent studies have shown promise by employing a
Bayesian framework (Singh et al., 2018; Zhang et al., 2018). The facies with the maxi-
mum posterior probability at a specific grid point will determine the corresponding value
in the model constraint. Despite the advantages of the facies-constrained approach for re-
ducing the null space in multiparameter inversion, and for ensuring convergence towards
a high-resolution and geologically plausible model (Kamath et al., 2017b; Zhang et al.,
2017), one should weight the constraints carefully to avoid suppressing the impact of the
data (Naeini et al., 2016). Besides, adding constraints is in essence a strategy for better
recovering elastic attributes, from which an additional workflow is required to extract rock
physics information, such as the analysis with rock physics templates calibrated with well
data (Carcione and Avseth, 2015; Picotti et al., 2018) and the rock physics inversion using
FWI results as input data (Dupuy et al., 2016a,b).

In this paper, we propose to directly estimate rock physics properties using isotropic-
elastic FWI. The study is in part inspired by the work of Russell et al. (2011), which com-
bines linearized AVO approximation (Aki and Richards, 2002) with poroelasticity theory
(Biot, 1941; Gassmann, 1951) to generate a new model parameterization of the fluid term,
shear modulus, and density, allowing us to predict fluid properties using standard AVO
least-squares techniques. Likewise, we incorporate the rock physics model into FWI to
formulate a model parameterization of rock physics properties, in such a way we achieve a
direct update of these properties using the descent-based optimization methods (e.g., steep-
est descent, nonlinear conjugate gradient, and Newton-type). In real data applications, the
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rock physics model adopted in the inversion generally depends on the geologic environment
and has to be calibrated by well data or core measurements. For our synthetic experiments,
the relations between elastic and rock physics parameters are decided by the rock physics
model we choose. We consider three rock physics models: the Han empirical model, the
Voigt-Reuss-Hill boundary model, and the Kuster and Toksöz (KT) inclusion model. Each
is used separately to formulate a model parameterization of porosity, clay content, and wa-
ter saturation. Three synthetic experiments are presented to illustrate the effectiveness of
the direct approach.

THEORY AND METHODOLOGY

Isotropic-elastic full-waveform inversion

In the frequency domain, the two-dimensional elastic wave equations can be written as
(Pratt, 1990)
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where ω is the angular frequency, ρ = ρ(x, z) is the density, u = u(x, z, w) and v =
v(x, z, w) are, respectively, the horizontal and vertical displacements, f = f(x, z, w) and
g = g(x, z, w) are the corresponding source terms, and λ and µ are the Lamé constants.

Equation 1 is discretized and solved using the finite difference equations described in
Pratt (1990), which takes the form

Au = f , (2)

where the coefficients of the impedance matrix A depend on the modeled frequency and
the medium properties. u = (u, v) is the displacement vector, and f = (f, g) is the source
vector. The perfectly matched layers (PML) method (Berenger, 1994) is used to absorb
reflections from model boundaries.

FWI seeks to estimate the subsurface properties by iteratively minimizing the differ-
ences between seismic observations dobs and the synthetic data dsyn simulated from an
estimated model m (Pan et al., 2018a). Consider the single source/single frequency case,
the associated objective function can be defined by

E(m) =
1

2
∆dt∆d∗, (3)

where ∆d = dobs − dsyn is the data residual, the superscripts t and ∗ denote the transpose
and the complex conjugate, respectively.

The gradient of the ith model parameter mi is calculated by taking the partial derivative
of equation 3 with respect to mi :

∇mi
E = −<

{[
∂u

∂mi

]t
∆d∗

}
, (4)
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where < indicates the real part operator, u and ∆d are augmented from the receiver lo-
cations to all node points (Pratt et al., 1998). Differentiating equation 2 with repect to mi

yields the relation:

A
∂u

∂mi

= − ∂A
∂mi

u. (5)

This shows that the partial derivative wavefield ∂u/∂mi can be computed by solving the
wave equation with a virtual source f = −(∂A/∂mi)u. Substituting equation 5 into equa-
tion 4 gives

∇mi
E = <

{
ut

[
∂A

∂mi

]t
A−1∆d∗

}
. (6)

Using residuals as a composite source to generate the adjoint wavefield A−1∆d∗, equa-
tion 6 allows us to efficiently calculate the gradient for all nodes, instead of solving as many
forward problems (equation 5) as the number of model parameters for the virtual source.
∂A/∂mi, referred to as the radiation pattern of the diffraction by mi (Brossier et al., 2009),
is often used to study parameter crosstalk and raises the issue of a suitable parameterization
for multiparameter FWI.

The Newton method of optimization calculates a model update by minimizing a quadratic
approximation of the objective function as seen in equation 3 (Pratt et al., 1998). The solu-
tion is characterized by

Hδm = −∇mE, (7)

where δm is the search direction being calculated, H is the Hessian operator, that is, the
second derivative of the objective function with respect to model parameters. The Hessian
can help in assigning the correct units to model perturbations and in mitigating parameter
crosstalk, and this is the reason for its crucial importance in multiparameter FWI (Operto
et al., 2013; Innanen, 2014). However, the full Newton method is normally avoided in large
inverse problems due to the excessive memory and computational requirements associated
with storing and inverting the Hessian (Pratt et al., 1998). Alternately, the optimization
strategy employed in the paper is the truncated Gauss Newton (TGN) method (Métivier
et al., 2017), which approximates the Gauss-Newton step by solving equation 7 with an
iterative numerical optimization method. Instead of explicitly manipulating the Hessian,
the iterative approach only requires the Hessian-vector products, which can be efficiently
calculated using the adjoint state method (Plessix, 2006). Also, as a faster solver, the
L-BFGS method (Nocedal, 1980) is utilized here to replace the conventional conjugate-
gradient (CG) algorithm for the “inner loop” optimization problem (equation 7). The model
at the kth iteration is then updated by the TGN-derived search direction δmk:

mk+1 = mk + αkδmk, (8)

where αk is the step length.

Rock physics parameterizations

We denote by mp
i the discretized parameter of class p at the spatial position indexed

by i. In multiparameter FWI, the partial derivative of the impedance matrix with respect
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to a new parameterization q (e.g., q1 − q2 − q3), can be calculated from the reference
parameterization p (e.g., p1 − p2 − p3) using the chain rule:
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(9)

Equation 9 facilitates us considering a new parameterization, given that the partial
derivatives of the new parameter classes with respect to the reference ones are derivable.
Various elastic parameterizations (e.g., velocity-density VP−VS−ρ, Lamé-density λ−µ−ρ,
and modulus-density K − G − ρ) should be easy to deduce from one another because of
the simple relationships among the elastic properties of isotropic media.

Here we consider q as a rock physics parameterization, namely, the model space is
built with the physical properties of the rock, such as porosity, composition, and fluid
saturations. To calculate the partial derivatives of the impedance matrix with respect to
q (with p still being an elastic parameterization), we need to introduce a rock physics
model that provides empirical or theoretical relationships between elastic and rock physics
properties, to calculate ∂mpj

i /∂m
qk
i (j, k = 1, 2, 3).

Three classic rock physics models are studied in the paper: the Han empirical model
(Han, 1987), the Voigt-Reuss-Hill (VRH) boundary model (Hill, 1952), and the Kuster
and Toksöz (KT) inclusion model (Kuster and Toksöz, 1974). We consider three rock
physics properties that are widely used for reservoir characterization: porosity (φ), defined
as the ratio of pore volume to the total volume of the rock; clay content (C), the ratio of
clay volume to the total volume of the rock matrix; and water saturation (Sw), the ratio
of water volume to pore volume. We use them to formulate a model parameterization of
porosity, clay content, and water saturation (P-C-S), and the elastic parameterization we
employ for the derivation is P- and S-wave velocities and density (D-V). Although the rock
physics models are based on different theories, or even empiricism, each can express VP,
VS, and ρ as explicit functions of φ, C, and Sw. The relations can be used to calculate the
partial derivatives between the two parameterizations and ultimately, to obtain the partial
derivative of the impedance matrix with respect to φ, C, and Sw.

Han empirical model

Based on the measurement of 80 well-consolidated Gulf Coast sandstones, Han (1987)
found empirical regressions relating ultrasonic P -wave and S-wave velocities in km/swith
porosity and clay content. A general relation can be expressed as

VP = a1 − a2φ− a3C,
VS = b1 − b2φ− b3C,

(10)

CREWES Research Report — Volume 31 (2019) 5



Hu et. al

where a1, a2, a3, b1, b2, and b3 are positive constants. Assuming a solid mixture of clay and
quartz, and a fluid mixture of brine and hydrocarbon (same assumptions for VRH and KT),
density is computed as a weighted average of the densities of mineral and fluid components:

ρ = (1− φ)ρm + φρf ,

ρm = ρcC + ρq(1− C),

ρf = ρwSw + ρh(1− Sw),

(11)

where the subscripts m, f , c, q, w, and h indicate solid matrix, fluid phase, clay, quartz,
water, and hydrocarbon (oil or gas), respectively. The partial derivatives of P -wave veloc-
ity, S-wave velocity, and density with respect to porosity, clay content, and water saturation
are

∂VP
∂φ

= −a2 ,
∂VP
∂C

= −a3 ,
∂VP
∂Sw

= 0 ,

∂VS
∂φ

= −b2 ,
∂VS
∂C

= −b3 ,
∂VS
∂Sw

= 0 ,

∂ρ

∂φ
= ρf − ρm ,

∂ρ

∂C
= (1− φ)(ρc − ρq) ,

∂ρ

∂Sw

= φ(ρw − ρh) . (12)

Voigt-Reuss-Hill (VRH) boundary model

To precisely estimate the effective elastic moduli of a mixture of grains and pores, we
need to specify: 1) the individual elastic moduli of the constituents, 2) the volume fractions
of the constituents, and 3) the geometric details of how the various constituents are arranged
(Mavko et al., 2009). Without the details of geometry, the best we can do is to estimate the
upper and lower bounds of the effective moduli.

The Voigt upper bound of the effective elastic modulus MV of N constituents is

MV =
N∑
i=1

fiMi, (13)

where fi and Mi are the volume fraction and the elastic modulus of the ith constituent. M
can represent any modulus, such as the bulk modulus K and the shear modulus G.

The Reuss lower bound MR is

1

MR

=
N∑
i=1

fi
Mi

. (14)

The Voigt-Reuss-Hill average is simply the arithmetic average of the Voigt and Reuss
bounds:

MVRH =
MV +MR

2
, (15)
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Let MVRH represent the effective modulus of a saturated rock, Ksat or Gsat. Density is
given by equation 11. We compute the velocities as a function of the elastic moduli and
density:

VP =

√
Ksat + 4

3
Gsat

ρ
,

VS =

√
Gsat

ρ
.

(16)

The partial derivatives in terms of the VRH model are shown in Appendix A.

Kuster and Toksöz (KT) inclusion model

By using a long-wavelength first-order scattering theory, Kuster and Toksöz (1974)
demonstrated the effects of fluid inclusions of various shapes on the seismic velocities of
the rock. Assuming a single inclusion shape (or pore geometry), the following formulation
can be used to compute the elastic moduli of the saturated rock (Grana, 2016):

(Ksat −Km)
Km + 4

3
Gm

Ksat + 4
3
Gm

= φ(Kf −Km)P,

(Gsat −Gm)
Gm + ξ

Gsat + ξ
= −φGmQ,

(17)

where the subscripts sat, m, and f indicate saturated rock, solid matrix, and fluid phase,
respectively. The elastic moduli of the solid matrix, Km and Gm, is calculated using the
Voigt-Reuss-Hill average (equation 15):

Km =
1

2

[
(CKc + (1− C)Kq) +

(
1

C/Kc + (1− C)/Kq

)]
,

Gm =
1

2

[
(CGc + (1− C)Gq) +

(
1

C/Gc + (1− C)/Gq

)]
.

(18)

Assuming a patchy saturation system, the fluid bulk modulus is given by

Kf = SwKw + (1− Sw)Kh, (19)

ξ is given by

ξ =
Gm

6

9Km + 8Gm

Km + 2Gm

, (20)

P and G are geometric factors. For spherical inclusions, P and G are given by

P =
Km + 4

3
Gm

Kf + 4
3
Gm

,

Q =
Gm + ξ

ξ
.

(21)
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Substituting equations 20 and 21 into equation 17 yields the explicit expressions for the
elastic moduli of the saturated rock:

Ksat =
4KmGm + 3KmKf + 4GmKfφ− 4KmGmφ

4Gm + 3Kf − 3Kfφ+ 3Kmφ
,

Gsat =
Gm(9Km + 8Gm)(1− φ)

9Km + 8Gm + 6(Km + 2Gm)φ
.

(22)

We then compute density and velocities according to equation 11 and 16. The partial
derivatives in terms of the KT model are shown in Appendix B.

NUMERICAL EXPERIMENTS

Here we carry out synthetic inversion experiments using the three rock physics models.
Each model helps formulate the P-C-S parameterization, upon which we can directly and
simultaneously invert for porosity, clay content, and water saturation. On the other hand,
when the Han’s linear relations are assumed, the rock physics properties can easily be
derived from the inverted P- and S-wave velocities and density that are estimated with the
D-V parameterization. In this case, we compare our method with the indirect approach
with respect to their performance of estimating rock physics properties.

For all experiments, we assume a rock type of gas-bearing shaley sand, where the solid
phase is composed of quartz and clay, and the fluid phase composed of water and gas. The
elastic properties of each constituent are listed in Table 1.

Table 1. Elastic properties of minerals and fluids.

Bulk modulus Shear modulus Density
(GPa) (GPa) (g/cm3)

Quartz 37 44 2.65
Clay 21 10 2.55
Water 2.25 0 1.0
Gas 0.04 0 0.1

Inversion experiments with the Han model

We start from a toy model with an identical background porosity, clay content, and
water saturation of 0.2. The model is discretized into 50 and 50 uniform mesh nodes in
horizontal and vertical directions with 0.5 km in width and 0.5 km in depth. A round
porosity anomaly of 0.3, a round clay content anomaly of 0.5, and a round water saturation
anomaly of 0.8 are located diagonally across the model space. The initial models are ho-
mogeneous. A total of 40 sources and 100 receivers are arranged along all boundaries of
the model with a regular source spacing of 50 m and a regular receiver spacing of 20 m.
10 frequency bands with 3 frequencies ranging from 2 Hz to 30 Hz per band are used. A
maximum of 20 iterations for each frequency band and a maximum of 30 inner iterations
are allowed in the truncated Newton approach. The Han model is used to formulate the
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P-C-S parameterization and convert velocity and density to the rock physics properties in
the D-V parameterization. The coefficients a1, a2, a3, b1, b2, and b3 in equation 10 are set
to be 6, 7, 2, 4, 6, and 1.5, respectively.
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FIG. 1. (a-c) True models of φ, C, and Sw. The corresponding inverted models with (d-f) the D-V
parameterization, and (g-i) the P-C-S parameterization.

We compare the P-C-S parameterization with the D-V parameterization in reconstruct-
ing porosity, clay content and water saturation, as shown in Figure 1, the inversion results
generated by the P-C-S parameterization are highly compatible with the true models, but
the results obtained with the D-V parameterization are exposed to obvious interparameter
contaminations. We use the relative model error, E = ‖m −mt‖/‖m0 −mt‖, where m,
m0, and mt represent the inverted, initial and true models, respectively, to quantify the ac-
curacy of the inverted model. In Figure 2 we observe that the D-V parameterization actually
gives a reliable estimation of velocity and density, both of whose errors are reduced rapidly
and continuously as the iteration proceeds. However, the more accurate velocity and den-
sity do not necessarily result in a better estimation of rock physics properties, whose errors
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can increase larger than the errors in their initial models. On the other hand, as a direct
approach, the P-C-S parameterization assures a stable and efficient reduction of the model
errors in the rock physics properties.
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FIG. 2. (a-c) Model error reductions of VP, VS, and ρ in the D-V parameterization. (d-f) Comparison
of the model error reductions of φ, C, and Sw in the D-V and P-C-S parameterizations.

We then compare the two parameterizations on a three-layer model, where a constant
porosity, clay content, and water saturation are assigned to each layer (Figure 3). The initial
model are generated by smoothing the true model. The model size, distribution of sources
and receivers, and frequency-selection strategy are the same with those in the toy model.
In Figure 4 we observe that the rock physics properties are recovered properly in the P-C-S
parameterization. Even though the inverted water saturation has a slight deviation from its
true amplitude, it accurately recovers the structure. Whereas in the D-V parameterization,
the inverted porosity and clay content match the true models less closely, and the inverted
water saturation is strongly distorted.

Still, we plot the history of model error reduction for both parameterizations, as shown
in Figure 5. Despite a continuous reduction in velocity and density errors, the dramatic
uphill steps can be found in the corresponding rock physics properties, especially at the be-
ginning of the iterative process. On the other hand, the P-C-S parameterization guarantees
a stable reduction of model errors and leads to more accurate inversion results.
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FIG. 3. True rock physics properties of the three-layer model.
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FIG. 4. (a-c) True models and (d-f) initial models of φ, C, and Sw. The corresponding inverted
models with (g-i) the D-V parameterization and (j-l) the P-C-S parameterization.
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FIG. 5. (a-c) Model error reductions of VP, VS, and ρ in the D-V parameterization. (d-f) Comparison
of the model error reductions of φ, C, and Sw in the D-V and P-C-S parameterizations.

The derivation of porosity, clay content, and water saturation from the velocity and den-
sity are straightforward using the Han model. Nevertheless, the transformed rock physics
properties are prone to large errors since they are sensitive to the errors in velocity and
density. Most of the rock physics models, such as VRH and KT, are nonlinear and require
complex iterative optimization algorithms to complete the transformation. This brings ad-
ditional errors to the estimated rock physics properties in the indirect approach.

It is necessary to test our approach with a more plausible model that includes hydrocar-
bon units. We select a small part of the Marmousi2 model and adjust the model values in
order to assign reasonable rock physics properties to the entire model. Figure 6a-6c shows
the modified true models of P-wave velocity, S-wave velocity, and density. The model is 2
km wide and 2 km deep. Figure 6d-6f shows the transformed true models of porosity, clay
content, and water saturation using the Han model. The gas sand trap, centered at a depth
of 0.76 km and a distance of 0.8 km, is distinguished by a higher porosity of 0.31, a lower
clay content of 0.13, and a lower water saturation of 0.34.
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FIG. 6. (a-c) True models of VP, VS, and ρ. (d-f) True models, (g-i) initial models, and (j-l) the
corresponding inversion results of φ, C, and Sw.
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FIG. 7. Vertical profiles of the true, initial, and inverted models of a) φ, b) C, and c) Sw at a distance
of 0.8 km
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The initial models of the rock physics properties in Figure 6g-6i are smoothed versions
of the true models in Figure 6d-6f. The inverted porosity, clay content, and water saturation
using the P-C-S parameterization are shown in Figure 6j-6l. We observe that the inverted
models almost accurately recover all layers including the gas sand trap, except that the deep
structure of water saturation is not resolved sufficiently. Figure 7 shows the vertical profiles
of the true, initial, and inverted models at a distance of 0.8 km, and this convinces us that
the porosity and clay content are perfectly refined, whereas the inverted water saturation,
although generally capturing the trend, has visible deviations from the true values in the
gas trap and deep part of the model.

Inversion experiments with VRH and KT

We test the P-C-S parameterizations, formulated with the VRH model and the KT
model, by applying them to the above experiments. The true and initial models of porosity,
clay content, and water saturation are the same as those used for the Han model, that is to
say, the three rock physics models are dealing with different true models of velocity and
density in each experiment. In this section we do not intend to choose the optimal rock
physics model for the P-C-S parameterization, because the selection of the rock physics
model, in reality, should depend on the geologic environment and the model’s ability to
link the regional elastic and petrophysical variables. Instead, our purpose is to explore the
adaptability of our approach under different rock physics relations.

Figures 8, 9, and 10 show the inversion results with respect to the toy model, the layered
model and the modified Marmousi model, respectively, when adopting VRH and KT. We
observe that in the three experiments the porosity and clay content are recovered suitably.
The performance of the two rock physics models approximates each other, except for the
toy model, where the results of KT apparently suffer from more crosstalk (Figure 8). The
inverted water saturations, however, reconstruct to some extent the main structures but their
amplitudes are weak and less comparable to the true values.
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We compare the model error reductions of the three rock physics models when they
are applied to the modified Marmousi model, as shown in Figure 11. We observe that
the Han model out-competes VRH and KT in reducing model errors, and this explains the
lower-resolution images in Figure 10 compared to those in Figure 6. When all synthetic
examples are taken into consideration, the Han model gives the most accurate estimation
of porosity, clay content and water saturation, and the KT model generally recovers them
with the largest errors. This likely originates from their degree of nonlinearity, as the Han
model is linear, and KT is supposed to be more nonlinear than VRH, after including the
latter for the computation of solid matrix.
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FIG. 11. Comparison of Han, VRH, and KT for reducing the model errors of a) φ, b) C, and c) Sw.
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We see from different experiments that water saturation is the most difficult property to
recover, this can be explained by the sensitivity analysis. Assuming a background porosity,
clay content, and water saturation of 0.2, 0.5, and 0.5, we calculate the analytical scattering
patterns of the P-C-S parameterization formulated with different rock physics models, as
illustrated in Figure 12. Instead of analyzing the coupling effects between different pa-
rameter classes, we emphasize on the weak energy scattered by the perturbation of water
saturation. When simultaneously updating the rock physics properties, as seismic data are
much more sensitive to porosity and clay content, water saturation is prone to insufficient
updating.
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FIG. 12. Scattering patterns of φ, C, and Sw in the P-C-S parameterization formulated with different
rock physics models.

DISCUSSION

For the experiments mentioned above, we assume an ideal situation that has recorded
seismic data available in all directions. This will introduce transmission data that helps
mitigate the coupling effects between different parameter classes. However, this theoretical
configuration is not available in reality. We have also tested some realistic configurations
(not discussed). For the most common acquisition geometry of surface-only sources and
receivers, the model parameters would be less distinguished. A more powerful design could
potentially be achieved by fixing vertical lines of receivers to the model. This is done to
mimic a combined surface + VSP (Vertical Seismic Profile) acquisition, from which the
inversion results could be largely improved compared to the pure surface acquisition, and
could get close to the results from the ideal geometry.
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Water saturation is very challenging to recover due to its minor contribution to seis-
mic data. One possible solution is to use a sequential strategy, in which we need two
or more inversion stages and start truly updating the water saturation at a certain stage,
by using the inverted porosity and clay content from previous stages as initial models.
Another approach, which is more recommended, is to replace the water saturation with
a new parameter that can not only discriminate hydrocarbons, but also to which seismic
data are more sensitive. The density and bulk modulus of the fluid mixture, ρf and Kf ,
as shown respectively in the Han model (equation 11) and the KT model (equation 17),
can serve as the candidates. Accounting for the effects of attenuation and dispersion using
visco-acoustic/elastic FWI, should provide useful information by which fluids can be dis-
criminated (Dupuy et al., 2016a; Keating and Innanen, 2019). Various fluid factors used in
the AVO inversion, like the one proposed by Russell et al. (2011), are also worth to draw
lessons from.

We used three rock physics models, Han, VRH, and KT, to formulate a parameteri-
zation of porosity, clay content, and water saturation. Theoretically, once we obtain the
partial derivative of an elastic attribute with respect to a rock physics property, we are able
to formulate a parameterization with the rock physics property. Therefore, our approach
might be promising as well when considering many other rock physics models, empirical
or theoretical, based on either the effective media or the contact theory. Other rock physics
properties, such as the elastic moduli of the solid matrix, dry rock, and pore fluids, or even
the widely-used "aspect ratio" that describes pore geometry, can be selected as well for a
direct update in FWI. We can also expand the methodology to anisotropic media, where an
anisotropic rock physics model is needed to express the stiffness coefficients as a function
of rock physics properties.

CONCLUSIONS

We supplement FWI with the rock physics model to achieve a direct estimation of rock
physics properties based on seismic data. Three rock physics models, the Han empirical
model, the VRH boundary model, and the KT inclusion model are adopted to formulate
a common parameterization of porosity, clay content, and water saturation (P-C-S). The
truncated-Newton optimization method, which helps mitigate parameter crosstalk without
explicitly dealing with the Hessian, is used to update the rock physics properties. We carry
out three synthetic experiments to examine the performance of the P-C-S parameterizations
formulated with different rock physics models. In each case, the inverted porosity and clay
content are highly compatible with the true models, whereas water saturation is prone to
insufficient updating. This can be explained by the radiation patterns, which reveal that
seismic data are not sensitive to the changes in water saturation. When we employ the Han
model, our method is shown to be superior to an indirect approach, where rock physics
properties are transformed from the inverted P- and S-wave velocities and density. We
notice that, with respect to the three rock physics models, the Han model most accurately
recovers the rock physics properties, whereas the KT model generally leads to the largest
prediction errors. This may be attributed to their degree of nonlinearity.
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APPENDIX A. THE VRH MODEL PARTIAL DERIVATIVES

According to equation 15, the effective bulk and shear moduli of the saturated rock are
given by

Ksat =
KV +KR

2
,

Gsat =
GV +GR

2
,

(A.1)

where
KV = (1− φ)[KcC +Kq(1− C)] + φ[KwSw +Kh(1− Sw)], (A.2)

KR = 1

/[
(1− φ)C

Kc

+
(1− φ)(1− C)

Kq

+
φSw

Kw

+
φ(1− Sw)

Kh

]
, (A.3)

GV = (1− φ)[GcC +Gq(1− C)], (A.4)

and the Reuss bound of the shear modulus GR = 0.

LetX denote one of three rock physics properties, φ, C, and Sw. Substituting equations
A.1, A.2, A.3, and A.4 into equation 16, we calculate the partial derivatives of P- and S-
wave velocities with respect to X:

∂VP
∂X

=
1

4ρ2VP

[(
K ′V +K ′R +

4

3
G′V

)
ρ−

(
KV +KR +

4

3
GV

)
ρ′
]
, (A.5)

∂VS
∂X

=
1

4ρ2VS
(G′Vρ−GVρ

′), (A.6)

where the superscript ′ stands for the derivative operator.

When X is porosity,

K ′V = −KcC −Kq(1− C) +KwSw +Kh(1− Sw),

K ′R = K2
R

(
C

Kc

+
1− C
Kq

− Sw

Kw

− 1− Sw

Kh

)
,

G′V = −GcC −Gq(1− C),

ρ′ = ρf − ρm.

(A.7)

When X is clay content,

K ′V = (1− φ)(Kc −Kq),

K ′R = (1− φ)K2
R

(
1

Kq

− 1

Kc

)
,

G′V = (1− φ)(Gc −Gq),

ρ′ = (1− φ)(ρc − ρq).

(A.8)
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When X is water saturation,

K ′V = φ(Kw −Kh),

K ′R = φK2
R

(
1

Kh

− 1

Kw

)
,

G′V = 0,

ρ′ = φ(ρw − ρh).

(A.9)

The partial derivatives of density with respect to φ, C, and Sw are the same as in equa-
tion 12.

APPENDIX B. THE KT MODEL PARTIAL DERIVATIVES

The partial derivatives of P- and S-wave velocities with respect to any rock physics
property X can be written as

∂VP
∂X

=
1

2ρ2VP

[(
K ′sat +

4

3
G′sat

)
ρ−

(
Ksat +

4

3
Gsat

)
ρ′
]
, (B.1)

∂VS
∂X

=
1

2ρ2VS
(G′satρ−Gsatρ

′). (B.2)

According to equation 22, let

Ksat =
P

Q
, Gsat =

S

T
, (B.3)

so
K ′sat =

P ′Q− PQ′

Q2
, G′sat =

S ′T − ST ′

T 2
, (B.4)

where

P = 4KmGm + 3KmKf + 4GmKfφ− 4KmGmφ,

Q = 4Gm + 3Kf − 3Kfφ+ 3Kmφ,

S = Gm(9Km + 8Gm)(1− φ),

T = 9Km + 8Gm + 6(Km + 2Gm)φ.

(B.5)

When X is porosity,

P ′ = 4GmKf − 4KmGm,

Q′ = −3Kf + 3Km,

S ′ = −Gm(9Km + 8Gm),

T ′ = 6(Km + 2Gm),

ρ′ = ρf − ρm.

(B.6)
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When X is clay content,

P ′ = 4(1− φ)(K ′mGm +KmG
′
m) + 3KfK

′
m + 4KfφG

′
m,

Q′ = 4G′m + 3φK ′m,

S ′ = (1− φ)[G′m(9Km + 8Gm) +Gm(9K ′m + 8G′m)],

T ′ = 9K ′m + 8G′m + 6φ(K ′m + 2G′m),

ρ′ = (1− φ)(ρc − ρq),

(B.7)

where

K ′m =
1

2

[
Kc −Kq −

(
1

Kc

− 1

Kq

)/(
C

Kc

+
1− C
Kq

)2
]
,

G′m =
1

2

[
Gc −Gq −

(
1

Gc

− 1

Gq

)/(
C

Gc

+
1− C
Gq

)2
]
.

(B.8)

When X is water saturation,

P ′ = (3Km + 4Gmφ)(Kw −Kh),

Q′ = 3(1− φ)(Kw −Kh),

S ′ = 0,

T ′ = 0,

ρ′ = φ(ρw − ρh).

(B.9)

The partial derivatives of density with respect to φ, C, and Sw are the same as in equa-
tion 12.
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