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ABSTRACT

Multiples can provide additional information for subsurface structures compared with
primary reflections. In this paper, we consider two different uses of multiples for imaging.
First, we will look at the use of the first-order surface multiples for reverse time migra-
tion (RTM). Observed primaries are extracted from shot records and injected as virtual
sources and surface multiples are used as data and back-propagated in time. Then the
cross-correlation between primary wave and the first-order surface multiple is used as im-
age condition. RTM of surface multiples gives a more extensive illumination than RTM of
primaries. In addition, least-squares reverse time migration (LSRTM) of surface multiples
presents improved vertical resolution compared with RTM. Also, LSRTM of the first-order
surface multiple can recover the information from upper-side dipping events as well as
some small flanks. The main requirement of these benefits is, however, quite challenging:
to achieve multiple separation before migration.

The second use of multiples we examine here is full-wavefield migration (FWM). This
method uses an inversion-based approach to update the subsurface image. Reflection co-
efficient updates are obtained from scattering effects, including reflections and differential
transmissions. A horizontal-layered model is used for proving the benefits of using FWM.
Forward modeling by phase shift plus interpolation derives stable downgoing and upgoing
wavefields separately, which can predict primary, surface multiples and internal multiples
in a full-wavefield response. FWM of total wavefields can provide more details in the im-
age compared with FWM of primary only. Adding energy from multiples into migration is
not a replacement for migrating primary reflections, but it can be a useful complement to
improve the image resolution and illumination for an accurate geological interpretation.

INTRODUCTION

In seismic exploration, traditionally, multiple reflections are considered as noise and
removed as much as possible before imaging. However, multiples can provide valuable
information about the subsurface structure. Multiple reflections are distinguished from
primary waves in that seismic events have more than one reflection between source and
receiver (Sengbush, 1983). Since multiples travel long distances, they can illuminate a
broader subsurface region where the primary reflection might not illuminate well due to
limited aperture. Also, multiples have smaller reflection angles than primaries (Snieder,
2002) and are sensitive to small time-lapse changes for the medium. Thus, multiples infor-
mation is an asset for imaging methods.

Migration is a process that re-locates the seismic events to the true space or time loca-
tion. Migration of multiples becomes a helpful implement to mitigate the wrong interpreta-
tion of dipping structures or lateral velocity variation. In the past, surface-related multiples
have been used for shot-record migration (Berkhout and Verschuur, 1994; Verschuur and
Berkhout, 2011; Guitton, 2002) to improve the subsurface reflectors image quality. These
methods consider the subsurface structure is illuminated from primary reflections and sec-
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ondary source energy (multiple reflections). The methods mentioned above use "WRW"
model (Berkhout and Verschuur, 1994) to perform primary and multiple wave extrapola-
tion. Verschuur and Berkhout (2015) came up with a closed-loop approach to migrate both
internal and surface multiples. Full-wavefield migration (Berkhout and Verschuur, 2016;
Davydenko and Verschuur, 2017) including all orders of multiples has been proposed as a
means to enhance image illumination and resolution.

Besides full wavefield migration, reverse time migration can migrate surface multiples
as well. Reverse time migration (RTM) (Baysal et al., 1983) is given by a forward and re-
verse time propagation of source and receiver wavefields respectively, followed by an imag-
ing condition. It can handle steep dip angles and adapts to any velocity variations. Liu et al.
(2011) applied reverse time migration to migrate all-order multiples. Zhang and Schus-
ter (2013), and Liu et al. (2016), used least-squares reverse time migration (LSRTM) for
controlled-order multiples, since higher-order multiples amplitude is quite smaller than the
first- and second-order multiple. Least-squares full-wavefield migration (Lu et al., 2018)
based on separated-wavefield imaging can jointly image both primary and high-order re-
flected energy.

RTM and LSRTM can handle surface multiples well but has more difficulties to use in-
ternal multiples because of the crosstalk between them. FWM not only can predict surface
multiples, but also will generate and use internal multiples better compared with RTM,
because FWM provides some internal control mechanism on which internal multiples to
use. In this paper, we will try the application of RTM and LSRTM for surface multiples
and FWM for migrating total wavefields including primary, surface and internal multiples.
This paper is divided into four sections. The introduction gives an overview of different
migration approaches with multiples. The theory section demonstrates reverse time migra-
tion (RTM), least-squares reverse time migration (LSRTM) and full-wavefield migration
(FWM) in detail, followed by the results for applying the three methods above. The final
section presents future work and conclusion.

THEORY

Reverse time migration (RTM) with surface multiples

In this experiment, we try RTM of surface multiples to test the illumination improve-
ments for a migrated image. In the workflow in Figure 1 and Figure 2, we show how we
use primaries (blue lines in Figure 2) as virtual sources instead of a source wavelet. As
a benefit, there is no need to estimate the source wavelet required in the usual migration
process. Shots on the surface generate simultaneous primary wavefields that propagate
downward into the subsurface. The second step in the workflow is to backward extrapolate
the first-order surface multiple (red lines in Figure 2). These can be separated from data
by filtering with Radon transform, wavefield separation, or other standard methods. The
surface multiples are back-propagated as the reversed-time receiver wavefields. The third
step is to implement cross-correlation imaging condition shown in equation (1) (Liu et al.,
2011),

Image(x, z) =
tmax∑
t=1

PF (x, z, t) ∗MB(x, z, t) (1)
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where PF is forward primary or forward zero-th order multiple, MB is back-propagated
first-order surface multiple. RTM of surface multiples only gives an artifact-free image
when the forward-propagated (N − 1)th-order multiple cross-correlated with the back-
propagated N th-order multiple. Otherwise, crosstalk invoked from cross-correlation with
different orders of multiples will appear on the image.

Least-squares reverse time migration (LSRTM) with surface multiples

To improve image resolution and suppress artifacts, we use least-squares reverse time
migration which updates the reflectivity coefficients iteratively to the point where they can
predict the observed data up to reasonable error. We apply L2 norm objective function for
LSRTM with surface multiples (Zhang and Schuster, 2013)

f(m) =
1

2
||Lm−M||2 (2)

where L denotes the forward modeling operator for generating multiples, m presents the
reflectivity model, and M means observed surface multiples. The gradient of this objective
function is

g = LT [Lm−M] = LT∆d (3)

where ∆d is the difference between predicted and observed multiple data. Compared with
Zhang and Schuster (2013), we use a conjugate gradient method to update the reflectivity
coefficient in an efficient convergence rate,

αk =
gT
k gk

(Lgk)T (Lgk)
(4)

mk+1 = mk + αkgk (5)

gk+1 = gk − αkLgk (6)

βk =
gT
k+1gk+1

gT
k gk

(7)

gk+1 = gk+1 + βkgk (8)

where k is the iteration number. The step size α is given by the energy of migration residual
divided by the energy of prediction residual. The other step size β is the dot product of
updated gradient divided by the dot product of previous gradient. If the data residual is
smaller than a threshold or the number of iterations meet with the maximum limit, the
updating procedure will stop.

Full-wavefield migration (FWM) with surface and internal multiples

1. Phase shift plus interpolation

Zero-offset pressure data based wavefield extrapolation (Gazdag and Sguazzero, 1984),
in the (x, t) domain, satisfies the 2-D scalar wave equation

∂2p(x, z, t)

∂z2
=

1

v2
∂2p(x, z, t)

∂t2
− ∂2p(x, z, t)

∂x2
, (9)
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FIG. 1: Workflow for RTM with multiples

FIG. 2: Forward and backward wave propagation in RTM with surface multiple

where x represents the midpoint, z means depth, t is the two-way traveltime, and v denotes
the half velocity. Wavefield extrapolation can be expressed by the sum of a double Fourier
series in the frequency and wavenumber domain

p(x, z, t) =
∑
kx

∑
ω

P (kx, z, ω)exp[i(kxx+ ωt)], (10)

where kx is the midpoint wavenumber and ω is the temporal frequency. Substitute equation
10 into equation 9, the wave equation will be

∂2P

∂z2
= −(

ω2

v2
− kx2)P = −kz2P, (11)

where kz = ±ω
v

[1− (
vkx
ω

)2]1/2. One analytic solution to equation 11 is

P (kx, z + ∆z, ω) = P (kx, z, ω)exp(ikz∆z), (12)

which is associated with Rayleigh II integral (Berkhout et al., 1999) using dipoles on the
surface to reconstruct the pressure field in the lower half-space. Equation 12 means that
the neighbouring layer wavefield is derived by current level wavefield times an exponential
operator related to the interval depth. If kz and ω have different signs, the wavefield will
propagate in the positive time direction. On the other hand, wave would propagate in the
reverse time direction if they share the same sign. Since simulating the recorded seismic
data to perform downward or upward wave propagation is an inverse process, kz and ω
should have sign agreement

kz =
ω

v
[1− (

vkx
ω

)2]1/2, (13)
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We assume positive sign of ∆z in equation 12 means downward extrapolation direc-
tion, and negative sign denotes upward direction. Substituting equation 13 into equation
12, we can determine the downward wave extrapolation equation for constant velocity in
frequency-wavenumber domain

P (kx, z + ∆z, ω) = P (kx, z, ω)exp{iω
v

[1− (
vkx
ω

)2]1/2∆z}, (14)

According to equation 14, the wavefield extrapolation operator is defined as

W = exp{iω
v

[1− (
vkx
ω

)2]1/2∆z}, (15)

The smoothed background velocity model will yield inaccurate extrapolator in fre-
quency wavenumber domain. To calculate accurate and stable wavefields under the hor-
izontal layered model assumption, we apply phase shift plus interpolation (PSPI) (Gazdag
and Sguazzero, 1984). The PSPI method originally uses two or more reference velocities
(v1 = Min[v(x, z)] and v2 = Max[v(x, z)]) to interpolate downward wavefields extrapo-
lated by phase shift: P1(x, z ±∆z, ω) and P2(x, z ±∆z, ω). In this paper, we also apply
PSPI for upward propagation wavefields. Phase-shifted wavefields P1(kx, z ±∆z, ω) and
P2(kx, z ±∆z, ω) are in frequency wavenumber domain. To apply interpolation, we should
do inverse Fourier transform for wavefields from f -kx domain to f -x domain, leading to
the two reference wavefields P1 and P2

P1(x, z ±∆z, ω) = A1exp(iθ1) (16)

P2(x, z ±∆z, ω) = A2exp(iθ2) (17)

The interpolated amplitude and phase then can be decided by linear interpolation

A =
A1(v2 − v) + A2(v − v1)

v2 − v1
(18)

θ =
θ1(v2 − v) + θ2(v − v1)

v2 − v1
(19)

So the wavefield after interpolation gives

P (x, z ±∆z, ω) = Aexp(iθ) (20)

2. Bremmer series

Before introducing the forward model in full-wavefield migration, we would like to
illustrate the Bremmer series, because recursively forward modeling in full-wavefield mi-
gration is similar to this series. Bremmer (1951) applied the complete series including all
the refractions and reflections generated from the discontinuity boundaries, as a solution to
the differential equation in a discontinuous model.

u
′′

+ k2(x)u = 0, (21)
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where k(x) in this method demonstrates a step-function, which can be interpreted as the
propagation of a plane wave through a stratified medium.

A Bremmer series decomposition was developed by Atkinson (1960) such that waves
u(x) can be represented by the sum of two terms

u(x) = v(x) + w(x), (22)

where v(x) is the total contribution of all forward propagating waves which start below the
point x, and w(x) represents the total of all back-propagated waves starting above x.

Mendel (1978) used the Bremmer series to generating a complete response for the up-
dated state equation model. In his method, one can apply superposition on the intersection
point of the ray diagram (Figure 3), to obtain the reflected and transmitted signals

uk(t+ τk) = rkd
T
k (t− τk) + (1− rk)uk+1(t) (k = 0, 1, 2, ..., K − 1), (23)

dTk+1(t) = (1 + rk)dTk (t− τk)− rkuk+1(t) (k = 0, 1, 2, ..., K − 1), (24)

where symbols uk(t) and dk(t) denote the upgoing and downgoing waves at the kth layer,
each layer is characterized by the one way travel time τk, and normal incidence reflection
coefficients rk. At the Kth interface, one assume uK+1(t) = 0, because no source exists in
the basement. Then the reflection and transmission from bottom can be derived

uK(t+ τK) = rKd
T
K(t− τK) (25)

dTK+1(t) = (1 + rK)dTK(t− τK) (26)

𝑑𝑘
𝑇(𝑡)

𝑑𝑘
𝑇(𝑡 − 𝜏𝑘) 𝑢𝐾 (𝑡 + 𝜏𝐾)

𝑢𝑘 (𝑡)

𝑑𝑘+1
𝑇 (𝑡)𝑢𝑘+1(𝑡)

Layer k

Layer k+1

𝑑𝐾
𝑇(𝑡 − 𝜏𝐾)

𝑑𝐾+1
𝑇 (𝑡)

Layer K

Basement

𝑟𝑘 𝑟𝐾

(a) (b)

𝑢𝑘 (𝑡 + 𝜏𝐾)

FIG. 3: Reflected and transmitted waves at (a) interface k and (b) interface K, adapted by
Mendel (1978).

3. Forward model in full wavefield migration

Forward model in full wavefield migration (FWM) (Berkhout, 2014) (Davydenko and
Verschuur, 2017) delineates incoming and outgoing wavefields in terms of approaching
the subsurface grid point or not. At each depth level, wavefields approaching this depth
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from above or below are defined as P and wavefields leaving this level from both sides are
Q. Traditionally, a positive sign (+) represents the downward extrapolation and a negative
sign (-) means the upward propagation. Outgoing wavefields Q−(zm) include not only
the reflection from incoming wavefields P+(zm) above the same depth layer, but also the
transmission from upgoing incoming wavefields P−(zm) below the same level. Thus, the
total outgoing wavefield from depth level zm can be determined by the sum of reflection
of incoming wavefield from the same side of layer and transmission of incoming wavefield
from the opposite side of layer

~Q+(zm) = ~P+(zm) + δT+(zm)~P+(zm) + R∩(zm)~P−(zm), (27)

~Q−(zm) = ~P−(zm) + δT−(zm)~P−(zm) + R∪(zm)~P+(zm), (28)

where for the first two terms in equation 27 and 28 are the transmitted incoming wavefield
where the transmission coefficient is T = I + δT. R∩ and R∪ are the reflection operator
from below and above one depth level. If the velocity distribution keeps the same at a
depth level, reflectivity coefficient should be zero. In other words, a reflection wavefield
only appears when the media has discontinuity variation.

For acoustic media, if there are small contrasts for shear-wave propagation velocity,
δT+ and δT− can be assumed as R∪ and R∩ respectively. In this paper, we start with
considering the angle-independent case, so the reflection operator can be represented as a
diagonal matrix consisting of frequency-independent scalar coefficients. The sketch of a
wave propagation is shown in Figure 4. Equations 27 and 28 can be written as

~Q+(zm) = ~P+(zm) + R∪(zm)~P+(zm) + R∩(zm)~P−(zm), (29)

~Q−(zm) = ~P−(zm) + R∩(zm)~P−(zm) + R∪(zm)~P+(zm), (30)

where the two last terms in the above equations are equal. The two terms are determined as
the secondary sources or scattering terms δ~S because they indicate the variation wavefields
in both directions:

δ~S(zm) = R∪(zm)~P+(zm) + R∩(zm)~P−(zm), (31)

After propagation,Q−(zm) will become incoming wavefield P−(zm−1) at the neighbouring
depth level zm−1. The outgoing wavefield Q+(zm) shares the same behaviour and becomes
P+(zm+1) after extrapolation. Thus, we can obtain the equations for wave propagation
between neighbouring layers

~P+(zm) = W(zm, zm−1) ~Q
+(zm−1), (32)

~P−(zm) = W(zm, zm+1) ~Q
−(zm+1), (33)

where W(zm, zm±1) is a one-way wavefield extrapolation propagator, from neighbouring
depth level zm±1 to the current depth zm. In this paper, W(zm, zm±1) is calculated in the
frequency wavenumber domain and only depends on the background velocity. Columns in
W(zm, zm±1) mean negative and positive wavenumber, rows denote the positive temporary
frequency domain.
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𝑃+(𝑧𝑚)𝑄−(𝑧𝑚)

𝑄+(𝑧𝑚) 𝑃−(𝑧𝑚)

𝑃−(𝑧𝑚−1)

𝑃+(𝑧𝑚+1)

W−(𝑧𝑚−1, 𝑧𝑚)
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𝑄−(𝑧𝑚+1)
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W+(𝑧𝑚, 𝑧𝑚−1)

W−(𝑧𝑚, 𝑧𝑚+1)

R∪(𝑧𝑚)

R∩(𝑧𝑚)

FIG. 4: Incoming wavefield (P) and outgoing wavefield (Q) generated at each gridpoint
of depth level zm. The outgoing wavefields will become incoming wavefields at the the
neighbouring depth level after propagation. Adapted by Davydenko and Verschuur (2017)

The next step is to calculate downgoing wavefields and upgoing wavefields recursively
for obtaining forward modeling. One downgoing and an upgoing term is defined as a
wavefield round-trip. Recursive calculation means that for the second time calculating the
downgoing propagation, this method will use previous downgoing and upgoing wavefields;
so as the upgoing extrapolation.

The downward extrapolated wavefield can be determined by the accumulation of source
on the surface and all secondary sources at subsurface:

~P+(zm) =
∑
n<m

W(zm, zn)[~S+(zn) + δ~S(zn)], (34)

Then, substitute the downgoing wavefield into equation 31 to update the scattering terms.
After that, upgoing wavefield can be calculated as

~P−(zm) =
∑
n>m

W(zm, zn)δ~S(zn), (35)

For equation 34 and 35, traditionally we only consider the surface source ~S+(z0) is non-
zero and all ~S± at subsurface are zero.

When we have obtained the upward extrapolation, substitute equation 35 into equation
31 and update the scattering terms. Thus, for the next round-trip, the downgoing wavefields
will include not only the source wavefield, but also the reflections of previous upgoing
wavefields at each depth layer. Those reflections are also generating internal multiples
between layers, which means that when the number of round-trips increases, a new order
of surface multiples and internal multiples will be added in the propagation equations.

After generating the full wavefield (Figure 5), we can obtain the predicted data, then
we can calculate the residual between predicted data and observed data. The residual is the
input of the next imaging part in the algorithm.
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Reflectivity Predicted data

Residual

Observed data

ImagingGradient 

Update the 

reflectivity

Extrapolation 

operator W

Full wavefield 

forward modeling

Velocity

FIG. 5: Workflow for full wavefield migration (adapted from Davydenko and Vershuur
(2017))

4. Imaging in full wavefield migration

Based on the workflow shown in the Figure 5, in the imaging process, full wavefield
migration is trying to use data residual to update the reflectivity coefficient for each layer
during the iterations. The objective function in FWM (Davydenko and Verschuur, 2017) is
given:

J =
∑
ω

||∆P||22 + f(R) =
∑
ω

||Pobs − Pmod||22 + f(R) (36)

where Pobs means the observed data on the surface and Pmod is our predicted data and ∆P
is the difference between the observed and modeled data. f(R) denotes the regularization
term. In this paper, we use Cauchy function criterion (Amundsen, 1991) as the regulariza-
tion in the migration

f(R(zm)) =
1

2

∑
zm

ln(1 +
diag(R(zm))Hdiag(R(zm))

λ2
) (37)

whereH means the complex conjugate, and parameter λ corresponds to the scale parameter
in the Cauchy distribution.

The gradients of the objective function with respect to the above and below reflectivity
coefficients are obtained by:

C∪(zm) = [∆P−(zm)][P+(zm)]H (38)

C∩(zm) = [∆P+(zm)][P−(zm)]H (39)

∆P−(zm) = [W(z0, zm)]H [Pobs(z0)− Pmod(z0)] (40)

∆P+(zm) =
∑
n>m

[W(zn, zm)]H [R∪(zn)]−1∆P−(zn) (41)
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∆𝑃−(𝑧0)

𝑧𝑚

𝑧𝑚+1

𝑧𝑚+2

𝑧0

∆𝑃−(𝑧𝑚)

∆𝑃−(𝑧𝑚+1)

∆𝑃−(𝑧𝑚+2)

∆𝑃+(𝑧𝑚)

[R∪(𝑧𝑚+1)]
−1∆𝑃−(𝑧𝑚+1)

[W (𝑧0, 𝑧𝑚) ]
𝐻

[W (𝑧0, 𝑧𝑚+1) ]
𝐻

[W (𝑧0, 𝑧𝑚+2) ]
𝐻

[R∪(𝑧𝑚+2)]
−1∆𝑃−(𝑧𝑚+2)

[W (𝑧𝑚+1, 𝑧𝑚) ]
𝐻

[W (𝑧𝑚+2, 𝑧𝑚) ]
𝐻

𝑃−(𝑧𝑚)

𝑃+(𝑧𝑚)

∆R∪(𝑧𝑚)

∆R∩(𝑧𝑚)

…

FIG. 6: Back-propagated residual (red solid lines) and reflected residual (blue solid lines).
Reflectivity updates of both sides can be projected by the product of forward-modelled
wavefield (green lines) and residuals.

where ∆P−(zm) represents the back-propagated residual derived from the surface data
residual (Pobs(z0)− Pmod(z0)). In Figure 6, surface data residual ∆P−(z0) (red solid line)
will propagate backward to different subsurface layers. At discontinuity boundaries, back-
propagated residual will reflect and propagate upward by upgoing extrapolation operator.
By summing over all the upward propagation of the reflected back-propagated residuals,
we can obtain ∆P+(zm) (blue solid line). At above depth level zm, the gradient is the
multiplication between ∆P−(zm) (red solid line) and P+(zm) (green solid line). Gradient
below the reflector is the multiplication of ∆P+(zm) (blue solid line) and P−(zm) (green
solid line).

For the imaging condition, one can sum over the frequency components of gradients
which is corresponding to zero time cross-correlation imaging condition:

∆R(zm) = diag(
∑
ω

C(zm)) + f ′(R(zm)) (42)

where the derivative of Cauchy criterion in terms of reflection coefficient should be

f ′(R(zm)) =
diag(R(zm))

1 + λ−2diag(R(zm))Hdiag(R(zm))
(43)

Next, we can update the reflectivity matrix as follow:

R∪i (zm) = R∪i−1(zm) + α∆R∪i−1(zm) (44)

R∩i (zm) = R∩i−1(zm) + β∆R∩i−1(zm) (45)

where i denotes the current iteration number and α and β are determined by a line search
method, Armijo rule

r(Ri+1) ≤ r(Ri) + c1αiCT
i Ci (46)
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where we regard r(Ri+1) as the updated residual and r(Ri) as the previous iteration resid-
ual. If the condition satisfies equation 46, the step size αi should decrease as αi/2. Nor-
mally, hyper-parameter c1 is defined as 10−4.

For the acoustic media, we can only estimate one-side reflectivity coefficient because
R∪ = −R∩.

NUMERICAL EXAMPLES

In this section, we show three numerical examples. We apply reverse time migration
(RTM) on a horizontal-layered model and least-squares reverse time migration (LSRTM)
on a three-reflector model, to demonstrate how migration of surface multiples extends re-
flector illumination. Then, we implement full-wavefield migration (FWM) on a simple
acoustic flat model, to understand how internal multiples can improve the reflectors’ reso-
lution for migration.

Example 1: RTM of the first-order surface multiple in horizontal-layered model

The first example is a proof of concept that a first-order surface multiple can expand
the illumination for migrating a horizontal layer. Horizontal distance for the true velocity
model Figure 7 was 4808 meters, and the depth was 2000 meters. The upper layer velocity
was 2000 m/s and the bottom layer velocity was 3000 m/s. Source and receivers were
located at 40 meters depth. The receivers’ spacing was set as 20 meters, while we only
used one shot at the central horizontal location in this example. The recorded total time was
2.88 seconds with 0.0008 seconds as a time interval. Figure 7b is the smoothed background
velocity model for migration.

We generated a primary and a first-order multiple using a convolutional model (Figure
8a and b). Then we applied RTM on the primary only (Figure 9a), resulting in migration
with a small aperture. Since primary only reflects once at the reflector along its travel path,
the reflection angle will approach the critical angle when the offset increases. For a large
reflection angle, receivers cannot record the total time histories due to limited offset, which
yields data loss and collapse in the migrated outcome. In Figure 9b, we show the result
of RTM using the primary as the source and the multiple as data. The image has wider
illumination as expected, precisely between offset 0-1000 meters and after 4000 meters.
Also, the image shown in Figure 9b highlights fewer artifacts about the shot effect and
improved vertical resolution compared with Figure 9a.

Example 2: LSRTM of the first-order surface multiple in three-reflector model

In this example, we test whether the first-order surface multiple migration can handle
both dips and curvature. The model (Figure 10a) was discretized into a 501 × 501 grid
with a spacing interval 10 meters. Velocity values varied from 1500 m/s to 3000 m/s. The
receiver spacing was 20 meters and the shot was located at the center. Since multiple will
travel longer time compared with primary, we set recorded time as 8.8 seconds with 0.0008
seconds time interval. In this case, we used finite-difference forward modeling to generate
the data and then separated the primary from the multiple using a Radon transform and
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(a) (b)

FIG. 7: (a) True horizontal-layered velocity model. (b) Smoothed horizontal-layered ve-
locity model.

(a) (b)

FIG. 8: (a) Primary from convolution modeling. (b) First-order surface multiple from
convolution modeling.

filtering (shown in Figures 11a and b).

The RTM using the primary only (Figure 12a) shows concentrated illumination for
the first horizontal layer, but poor illumination for the dipping and curve layers. On the
other hand, reverse time migration of the first-order multiple (Figure 12b) expands the
aperture illumination for all the layers although there are some new artifacts. It seems that
the multiple also helps to enhance the vertical resolution. However, the curve reflector at
the bottom in both images cannot be recovered in high quality. To improve the more in-
depth structure information, next we will apply LSRTM of primary and surface multiple
respectively.

In Figure 13a-b, we see results from LSRTM after five iterations. LSRTM of the surface
multiple in Figure 13(b) flattens the horizontal reflector edges and also enhances the am-
plitude of the upper-side dipping event. The migration outcome also broadens the gentler
flank information between 500-1000 meters and 4000-4500 meters offset at around 3000
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(a) (b)

FIG. 9: (a) Reverse time migration of primary reflection. (b) Reverse time migration of
surface multiple.

(a) (b)

FIG. 10: (a) True velocity model. (b) Smoothed velocity model.

meters depth. We expected, LSRTM would suppress these artifacts better but may need
some additional constraints, which will be the topic of a future report.

Example 3: FWM and primary wavefield migration (PWM) in horizontally layered
model

In this example, we will test the concept of using full wavefields including primary, sur-
face multiple and internal multiple through FWM. Results are very preliminary and more
work is required. We used a three horizontal-layer model Figure 14 in which velocities
were 1500 m/s, 2000 m/s and 3000 m/s. The model size was 128 × 80 gridpoints with 5
meters as an interval. Receivers were assigned on the surface with 5 meters spacing. One
source was set in the centre of the model at 20 meters in depth using a minimum phase
wavelet. We simulated with finite differences a maximum time of 1.024 seconds with a
sampling rate of 1 milliseconds.

We performed two experiments. Experiment 1 is using FWM with total primary and
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(a) (b)

FIG. 11: (a) Primary in the shot record. (b) First-order surface multiple in the shot record.

(a) (b)

FIG. 12: (a) Reverse time migration of primary reflection. (b) Reverse time migration of
surface multiple.

multiple reflections (source side: S+ + R∩P−; δS is included). The source-side includes
primary and recorded surface multiples, and scattering term δS illustrates the interbed mul-
tiples. Experiment 2 is implementing PWM without surface multiple nor internal multiple
reflections (source side: S+; δS is not included). That is, in experiment 2 we only simu-
late impulsive wavelet on the surface to create primary reflections at the subsurface. The
observation data was generated by finite-difference method with PML boundary condition
(Fathalian et al., 2019).

For forward modeling, compared with the shot record (Figure 15a and blue line in
Figure 16), our predicted data with total wavefields (Figure 15b and red line in Figure
16) can predict most of the seismic events and add reflections from the surface and inter-
bedding structure. Precisely, internal multiple between two reflectors and primary from
the second reflector generated by finite-difference method interference with each other at
0.406 seconds. However, forward modeling in FWM predicts those two events individually
at around 0.386 and 0.429 seconds, which means full-wavefield forward modeling can
provide additional reflection from the second reflector. Predicted data in experiment 2
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(a) (b)

FIG. 13: (a) Least-squares reverse time migration of primary reflection. (b) Least-squares
reverse time migration of surface multiple.

(a) (b)

FIG. 14: (a) True velocity model. (b) Smoothed velocity model.

(Figure 15c and orange line in Figure 16) generates primary only which is corresponding
to observed data, whereas there is no data amplitude after 0.500 seconds compared with
full-wavefield data where the surface and internal multiples should exist.

The updated reflection coefficient after using full-wavefield migration (black line in
Figure 17) is more accurate and close to the true reflection coefficient values compared
with applying primary only (orange line in Figure 17). Precisely, at depth 270 meters,
FWM improves reflectivity coefficient amplitude and is 16.9% larger than PWM and 48.2%
larger than initial model, which means FWM can provide more information from surface
and internal multiples for migration. However, FWM generates some unexpected crosstalks
at depth 20 and 250 meters, it might be caused by an unstable step size.

CONCLUSIONS

In this paper, we have examined two different uses of energy from multiples for migra-
tion. In the first case, we use surface multiples, in the second case, we use both surface and
internal multiples.

For RTM of surface multiples, we use primaries as the injected source. In principle,
using multiples would suggest a simplification of the data flow since we wouldn’t need to
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(a) (b)

(c) (d)

(e) (f)

FIG. 15: (a) Observed data. (b) Predicted data with total wavefields. (c) Predicted data
with primary only. (d) Difference between (a) and (b). (e) Difference between (b) and (c).
(f) Difference between (a) and (c).

estimate the wavelet and attenuate multiples. In reality, however, we still need to estimate
a primaries only data set to use as a source to avoid crosstalk between different orders
of multiples (let us call primaries order zero multiple). The main benefit though is that
migration of multiples can enhance the illumination and signal-to-noise ratio in the image
as well as improve resolution.

As a further improvement, LSRTM should mitigate the inherent crosstalk and artifacts
which would allow one to avoid multiple attenuation resulting in a simplified data flow.
At the moment, however, we still need to separate them at front and the separation quality
matters. Using surface multiples is very promising but brings some extra sensitivity on
velocities forcing one to have a better background velocity model.

Although the previous approach could, in principle, be used for migration of internal
multiples (if the velocity model is sharp), in practice the many orders of crosstalk make this
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FIG. 16: Trace comparison (Trace number = 64)

very difficult. That is why FWM was proposed as a more controlled multiple integration.
Now the multiples are created by explicitly adding operator components that generate them
during forward and inverse propagation. Full wavefield migration is an iterative inversion-
based approach that can enhance the migration accuracy by calculating corrections to exist-
ing reflector amplitudes from the primary and multiple energy. This method is a controlled
approach to considering reflection and transmission energy. The number of round-trips can
also be controlled. However, just as in RTM with multiples, if the background velocity
model is wrong then so will be the wavefield extrapolator.

FUTURE WORK

Results shown in this report are all quite preliminary and much work is required in the
future to understand these methods and make them practical. For RTM and LSRTM of sur-
face multiples, we would like to use surface-related multiple elimination (SRME) method
in more complex settings to obtain good estimates of primaries and multiples. We have
tried Radon transform in this work, which is better for attenuating than to separating mul-
tiples. Also, amplitude compensation and divergence should be considered for recovering
the amplitude from deeper reflectors. For the FWM approach, we have just scratched the
surface. We need to work on the iterative approach and in F-X operators to account for
lateral velocity variations.
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FIG. 17: Reflectivity coefficient comparison (Trace number = 64)

difference forward modeling code with PML boundary condition.
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