
Deblending using robust inversion

Deblending using robust inversion of Stolt-based Radon
operators

Amr Ibrahim and Daniel Trad

ABSTRACT

In this report, we compare the denoising and inversion-based methods for deblending
using Stolt-based Radon operators. These operators are used to construct a robust inversion
problem with a sparsity constraint. Sparsity promoting transforms, such as Radon trans-
form, can focus seismic data and produce a sparse model which can be used to separate
signals, remove noise, or interpolate missing traces. For this reason, Radon transforms are
a suitable tool for deblending. We can incorporate Radon transform into the deblending
problem in two ways, either using denoising-based or an inversion-based approach. The
denoising-based method treats blending interferences as random noise by sorting the data
into new gathers, such as common receiver gathers. In these gathers, blending interferences
exhibit random structures due to the randomization of the source firing times. On the other
hand, the inversion-based method treats blending interferences as a signal, and the transfor-
mation can model this signal in the Radon domain by incorporating the blending operator
to formulate an inversion problem. We compare both methods using sparse inversion in
the hyperbolic Radon domain. Synthetic and field data examples show that the inversion-
based approach can produce more accurate separation and better convergence. However,
the inversion-based method increases the computational cost of deblending.

INTRODUCTION

Blended seismic acquisition is becoming a more appropriate technique to increase seis-
mic illumination of the subsurface without increasing survey cost (Berkhout et al., 2008).
Moreover, blended acquisition can reduce the need for interpolating seismic sources. How-
ever, unlike interpolation, increasing the total number of sources in the survey by employ-
ing blended acquisition introduce new information about the subsurface. Consequently,
seismic images that use a denser source sampling should be more reliable than images esti-
mated using interpolated sources. Furthermore, blended acquisition can introduce an added
degree of freedom in survey design. For example, survey operators can vary the speed of
seismic streamer boats or vibroseis vehicles without endangering the overall source den-
sity (Berkhout et al., 2008). Additionally, blended sources can reduce the cost and non-
repeatability issues of time-lapse (4D seismic) survey (Ayeni et al., 2009; Krupovnickas
et al., 2012; Wason et al., 2014). Time-lapse surveys repeat the 3D seismic acquisition of
hydrocarbon reservoirs to monitor changes in the rock properties during production (Lum-
ley, 2001). However, imaging artifacts due to non-repeatable seismic acquisition condi-
tions can obscure the changes due to subsurface rock properties. Therefore, increasing the
source sampling density by using blended acquisition can reduce these non-repeatability
effects (Ayeni et al., 2009).

Separating blended sources is not a new topic for either impulsive seismic sources or
marine seismic acquisition. However, early research was concerned with avoiding or re-
moving these undesired sources. These sources were usually attributed to other seismic
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surveys shooting in nearby areas and commonly known as crew noise or cross talk. Lynn
et al. (1987) presented an extensive study of seismic crew noise by analyzing datasets from
the Gulf of Mexico and the North Sea. They concluded that these interferences could be
treated as incoherent noise as long as the interfering seismic sources are not shooting in
a synchronized fashion. In this case, the interfering signals appear as incoherent noise in
common mid-point (CMP) gather. Therefore, conventional denoising algorithms can re-
move these asynchronous interferences by processing the data along different gathers such
as common receiver gathers (CRG), common offset gathers (COG), or common mid-point
gather (CMP).

We can group the deblending methods in literature into three main categories. The first
category uses a conventional seismic processing sequence for blended data without sepa-
ration. These passive deblending methods utilize the power of stacking in the traditional
processing sequence to suppress source interferences. Standard stacking and migration al-
gorithms could attenuate the incoherent source interferences enough to produce acceptable
subsurface images. However, Stefani et al. (2007) and Spitz et al. (2008) noted that con-
ventional processing and migration algorithms could be insufficient for some complicated
datasets. Moreover, interferences can impact the accuracy of many pre-imaging steps, such
as surface-related multiple eliminations (SRME). Additionally, Dragoset et al. (2009) and
Abma et al. (2010) suggested that conventional processing cannot achieve the quality re-
quired for amplitude-dependent analysis such as AVO, time-lapse seismic, and fracture
analysis.

The second category of deblending methods, treat interferences as noise, and use a
denoising algorithm to remove them. For example, Moore et al. (2008) suggested using
Radon transforms as a stacking tool to attenuate source interferences in common receiver
gathers. Akerberg et al. (2008) also suggested that Radon transform combined with a sparse
inversion scheme to enhance the source separation quality. Spitz et al. (2008) suggested
using a prediction error filter (PEF) based subtraction to attenuate source interferences.
Kim et al. (2009) suggested modeling the coherent interferences and adaptively subtracting
them to preserve weak signals. Huo et al. (2009) suggested using a multi-dimensional
vector-median filter to suppress the interferences robustly. Maraschini et al. (2012) used
an iterative method based on rank reduction filtering to remove source interferences. Trad
et al. (2012) suggested using the apex shifted Radon transform as a geometrical filter for
sources in common shot gathers. Ibrahim and Sacchi (2014c); Ibrahim (2015) suggested
using the apex shifted Radon transform within a robust denoising algorithm to remove
source interferences and preserve weak signals in common receiver gathers. Sacchi (2014)
redesigned a sparse Radon deblending that moves source interferences from the misfit term
to the regularization term to avoid attenuating weak signals. This formulation improves the
recovery of weak by excluding the fitting outliers caused by the source interferences from
the misfit term. Ibrahim and Sacchi (2014b,a, 2015) suggested using migration/demigration
operators (Trad, 2003) to speed up source separation using robust Radon transform.

The third category of deblending methods, treat interference as a signal, and cast the de-
blending problem as an inversion problem. In Berkhout (2008) blended sources framework,
the firing times are contained in a blending operator. This operator is used to formulate an
inversion problem for deblending. Similar to many inversion problems in geophysics, the
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deblending problem is ill-posed. Therefore, the inversion cost function should include a
constraint to achieve a unique and stable solution. One of the most common and efficient
constraints used in seismic data processing is the sparse inversion constraint. The sparsity
constraint implies that the seismic data have a sparse (focused) representation in the chosen
transform domain. In other words, the coherent seismic signals are stacked to significant
amplitude coefficients, while the incoherent signals (noise) stack to near-zero coefficients
in the transform domain. Therefore, in the inversion-based deblended methods rather than
inverting directly for the deblended data, one can invert for the coefficients of the deblended
data in the sparse transform domain. If we choose a suitable transform, we can estimate
the deblended data from the sparse inverted model.

The choice of a suitable transform can be critical to the success of deblending algo-
rithms that use sparsity constraints. Moore (2010) noted this connection between the ef-
ficiency of the sparsity-based source separation and the simplicity of subsurface geology.
For example, a simple subsurface model results in seismic data that can transform into a
sparse model. Therefore, including the sparsity constraint with a suitable sparsity promot-
ing transform increases the quality of source separation. Mahdad et al. (2011) developed
an iterative inversion algorithm that uses a coherency constraint in the Fourier domain to
separate seismic sources. Van Borselen et al. (2012) developed an inversion-based deblend-
ing method that uses the constraint that nearby sources produce similar records. Wason
et al. (2011) combined the inversion-based source separation problem with the compres-
sive sensing problem to increase the survey efficiency. In this approach, the source sep-
aration and data interpolation problems are solved simultaneously. Wason et al. (2011)
used the curvelet transform domain to impose the sparsity constraint on the inversion prob-
lem. Kontakis and Verschuur (2015) suggested combining coherency-based separation and
sparse inversion-based source separation in the focal transform domain to improve the sep-
aration quality and reduce the dependency on model sparsity. Similarly, Cheng and Sacchi
(2015) used rank reduction to solve for source separation and interpolation simultaneously.

THEORY

Radon transforms

Many applications use Radon transforms such as medical imaging, remote sensing and
seismic data processing. In seismic data processing, Radon transform have been used for
interpolation (Sacchi and Ulrych, 1995a; Trad et al., 2002; Ibrahim et al., 2018), multiple
separation, denoising and microseismic signal detection (Sabbione et al., 2013). To derive
the general formulation for Radon operators, let us assume that d(t, x) denote the two
dimensional seismic data and m(τ, ξ) denote the Radon model (Sacchi and Ulrych, 1995b).
We first define the forward Radon operator, L , and its adjoint operator L † as follow

d(t, x) = L m(τ, ξ) =

∫ ∞

−∞
m(τ = ϕ (t, x, ξ), ξ) dξ, (1)

m̃(τ, ξ) = L † d(t, x) =

∫ ∞

−∞
d(t = ϕ̃ (τ, x, ξ), x) dx, (2)
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where m̃(τ, ξ) is the Radon model estimated by the adjoint operator. The parameter ξ is
the Radon parameter (or parameters) that define the Radon operator integration path by
the function ϕ(τ, x, ξ). Radon transform operators are adaptable, and they can use many
different geometrical curves as their integration path. These different geometrical curves
result in varieties of Radon transforms, which we can use in different data domains. When
we process seismic data in common receiver gathers (CRG), seismic reflection travel times
appear as apex shifted hyperbolas. Therefore, the apex shifted Radon transform (ASHRT)
is the most suitable transform to focus CRG into a sparse Radon model. The following
formulas describe the forward and adjoint ASHRT operators,

ϕ(τ, x, ξ) =

√
t2 − (x− x0)2

v2
(3)

ϕ̃ (τ, x, ξ) =

√
τ 2 +

(x− x0)2

v2
. (4)

where the Radon parameters ξ are velocity v and apex location x0. However, computing
ASHRT operators in the time domain can be computationally prohibitive. Therefore, Trad
(2003) suggested using Stolt migration operators in the ω − k domain to compute the
ASHRT transform more efficiently. Also, Ibrahim and Sacchi (2015) used the Stolt-based
Radon transform for denoising-based deblending.

Stolt-based Radon transform

The Stolt migration method is considered to be the fastest migration algorithm. This
operator performs seismic migration by mapping data in the ω − k domain to vertical
wavenumber kz for a constant subsurface velocity. Despite not being widely used anymore
in seismic imaging due to its constant velocity limitation, the low computational cost of the
Stolt operator made it a useful tool in other fields such as medical imaging and synthetic
aperture radar imaging. Using the exploding reflector principle (Claerbout, 1985) and a
constant velocity assumption, the Stolt operator, can be used to estimate the subsurface
model from zero-offset data. This estimated model m̃(τ, v, x) is related to the data recorded
at the surface d(t, x) by the following relationship (Yilmaz, 2001)

m̃(τ, v, x) =

∫ ∫
d(ω, kx) exp[−ikxx− iωτ (v)τ ] dω dkx, (5)

where x represents the horizontal axis and ωτ is the Fourier dual of the apex time τ which
is a function of the velocity through the modified dispersion relationship (Yilmaz, 2001)

ωτ =
√

ω2 − (vkx)2. (6)

Equation 5 can be rewritten by changing the integration variable from ω to ωτ

m̃(τ, v, x) =

∫ ∫
C d(ω =

√
ω2
τ + (vkx)2, kx)

× exp [−ikxx− iωτ (v)τ ] dωτ dkx, (7)

4 CREWES Research Report — Volume 31 (2019)



Deblending using robust inversion

where C = ωτ/ω is a scaling factor resulting from the change of variables. Similarly, the
forward Stolt modelling operator can be written as

d(t, x) =

∫ ∫ ∫
m(ωτ =

√
ω2 − (vkx)2, v, kx)

× exp[ikxx+ iωt] dω dkx dv. (8)

The forward and adjoint transforms in equations (7) and (8) can be written in operator form
as follows

LT = F−1
ωτ ,kx

MT
ω,v,kx Ft,x S

T , (9)

L = S F−1
ω,kx

Mωτ ,v,kx Fτ,x, (10)

where, F is the Fourier transform, Mωτ ,v,kx is the Stolt mapping operator and S is a summa-
tion operator and its adjoint is a spraying operator (Claerbout, 1985). Although we derive
the Stolt operator with a constant velocity assumption, it can be used to construct an equiv-
alent of the ASHRT model with multiple velocities. Since each image represents one plane
inside the ASHRT cube at a constant velocity, then the ASHRT model is a collection of all
these images. Therefore, the adjoint Stolt operator in equation 9 includes a spreading op-
erator ST that computes several images with different velocities from the same data while
the forward Stolt operator in equation 10 uses a summation operator to model the data.

Robust inversion

We can assume that the common receiver gather is contaminated with noise (source
interferences). Therefore, we pose the problem of estimating a noise free Radon model m
of this gather as an inversion problem. To solve this problem, we minimize the residual
between the observed data and the modelled data,

r = d− Lm, (11)

where d is the common receiver gather data contaminated with interferences, L is the
Radon modelling operator and m is the estimated Radon model. This problem is an ill-
posed inversion (Sacchi and Ulrych, 1995a). Therefore, a regularization term must be
included in the inversion cost function to estimate a unique and stable model. Therefore,
the Radon transform inversion problem can be formulated by minimizing the following
general cost function

J =∥r∥pp + µ∥m∥qq
=∥d− Lm∥pp + µ∥m∥qq, (12)

where the first term on the right hand side is the misfit term and the second term is the
regularization term. In both terms we assume that ℓp and ℓq norms are given by the gen-
eral expressions ℓp =

∑
i |ri|p and ℓq =

∑
i |mi|q. The parameters p and q represent the

exponent of the p-norm of the misfit and the q−norm of the model regularization term,
respectively. We conventionally use ℓ2 norm (p = 2) for the misfit (least-squares inver-
sion) with the implicit assumption that the fitting errors are small and follow a Gaussian
probability distribution. However, if the data contain strong noise that does not follow a
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Gaussian probability distribution, minimizing the ℓ2 misfit should produce a biased model
due to the strong fitting outliers (Ibrahim and Sacchi, 2014c; Ibrahim, 2015). Therefore,
we should use a ℓ1 norm (p = 1) misfit when there are strong fitting outliers such as source
interferences in common receiver gathers. Using the ℓ1 norm misfit is commonly known
as robust inversion since it is more robust to fitting outliers than the conventional ℓ2 norm
misfit. Moreover, to fairly compare the denoising-based and inversion-based methods, we
use robust inversion for both of them. The inversion cost function is minimized using It-
eratively Reweighted Least Squares (IRLS) algorithm. For more details regarding IRLS,
please refer to Daubechies et al. (2010); Trad et al. (2003); Ibrahim and Sacchi (2014c).

DEBLENDING METHODS

Denoising-based deblending

The denoising-based deblending employs the incoherency of source interferences due
to the spatial source separation and the dithering (random delays) of firing times. Deblend-
ing assumes that blended source data can be modeled from its single-source components.
For example, if we let D represents the data of all single sources in the time-space domain
arranged into a data cube and b represents the two-dimensional blended sources data, then

b = Γ D, (13)

where Γ represents the blending operator that contains the source coding information (firing
times and spatial locations) (Berkhout, 2008). Therefore, blended data b can be separated
by compensating for the source firing delays and subdividing of the data into single-source
segments. This operation is commonly known as pseudo-deblending. Pseudo-deblending
is equivalent to applying the adjoint of the blending operator ΓT to the blended data b such
that

D̃ = ΓTb, (14)

where D̃ represents the pseudo-deblended data cube. Pseudo-deblending does not remove
source interferences. However, source interferences exhibit an incoherent structure in com-
mon receiver gathers due to the time dithering of source firing times. Therefore, a denoising
algorithm can be used to attenuate source interferences and achieve deblending.

In the denoising-based deblending, we assume that the common receiver gather, which
is equivalent to common shot gather due to reciprocity, is contaminated with blending noise
(source interferences). Therefore, we can pose the deblending problem as the problem of
estimating a noise-free Radon model m of the common receiver gather. We can cast Radon
denoising as an inversion problem that minimizes the residual between the observed (noisy)
CRG gather and the modeled (noise-free) CRG gather,

r = D̃− Lm, (15)

where, D̃ is the pseudo deblended data cube similar to equation 14, L is the Radon model-
ing operator and m is the estimated Radon models for all common receiver gathers in the
data. A regularization term must be added to the cost function in equation 15 to estimate
a noise-free, unique, and stable model. Therefore, we reformulate the Radon denoising
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problem to a robust inversion problem with sparse regularization expressed by the follow-
ing cost function

J =∥D̃− Lm∥11 + µ∥m∥11, (16)

Inversion-based deblending

In the framework proposed by Berkhout (2008), the blending operator contains the
sources firing times and locations. This operator can be used to formulate an inversion
problem for deblending such as

J = ∥b− ΓD∥11, (17)

where again, Γ is the blending operator, and similar to the denoising-based deblending,
b is the blended data, and D is the separate shots data cube. It is clear that this inver-
sion problem is ill-posed, and minimizing the cost function do not produce the deblended
shots. Therefore, we must include an inversion constraint. To utilize the power of Radon
transform sparsity, we can rewrite the cost function as

J = ∥b− ΓLm∥11 + µ∥m∥11, (18)

where L and m are the Radon operator, and Radon model of all common receiver gathers
similar to the denisoing based approach. The deblended shots should be estimated from the
Radon model m by the forward modeling operator.

There are two main differences between the cost functions in equations 16 and 18.
First, the inversion-based deblending cost function includes the blending the operator Γ
into the inversion while the denoising-based does not use it. Second, the denoising-based
deblending cost function 16 used the pseudo-deblended D̃ as the observed data while the
inversion-based cost function uses the blended shots b as the observed data. These two
differences lead to two significant conclusions. The first is that the blending operator in
equation 18 would increase the computation cost since it needs all the blended shots as
input. The second is that the misfit term in equation 18 represents the small fitting er-
rors between the observed the modeled blended shot while the misfit term in equation 16
contains the source interferences which have large amplitudes and incoherent structure.

EXAMPLES

Synthetic Example

We test our deblending method using a numerically blended synthetic data set. The
synthetic data were modeled using finite-difference modeling of the marmousi model us-
ing a Ricker wavelet of the central frequency of 15Hz as a source. The acquisition scenario
represents two source boats firing near simultaneously. The source firing times are dithered
using random time delays to make the source interferences appear incoherent, Figure 1
shows the sources firing times for both conventional and blended acquisitions. The results
of the denoising-based and inversion-based deblending are shown in Figure 2 and 3, re-
spectively. These figures show a clear advantage for the inversion-based deblending over
the denoising-based method.
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FIG. 1. Seismic sources firing times for Marmousi data example. (a) Firing times of conventional
(blue) and simultaneous seismic sources (red). (b) Time delay between successive sources for
conventional (blue) and simultaneous sources (red).

Field Data Example

We also tested the deblending methods using numerically blended marine data from the
Mississippi Canyon area in the Gulf of Mexico. In this example, the acquisition simulates
a single source boat traveling with a speed of about four times the normal speed. There-
fore, four blended shots overlap in the time window of a conventional shot. Moreover,
the dithering of the sources is limited to simulate the operational constraints in a marine
acquisition. Figure 4 shows the firing times of the blended sources. This figure shows
the limited randomization of the source firing times, which reduces the incoherency of the
source interferences in common receiver gathers and makes the deblending more challeng-
ing. The results of the denoising-based and inversion-based deblending are shown in Figure
5 and 6, respectively. Again, these figures show a clear advantage for the inversion-based
deblending over the denoising-based method.

CONCLUSIONS

We have implemented an inversion-based deblending method that uses robust inversion
of Stolt-based Radon transform. We demonstrated that the inversion-based approach is bet-
ter in deblending, especially in acquisition scenarios where operational constraints limit the
dithering of the source firing times. However, the inversion-based deblending can require
more computational resources, especially memory requirements, since it uses the blend-
ing operator in the inversion cost function. Therefore, computationally efficient transforms
such as Stolt-based Radon transform can be beneficial in expanding the inversion-based
deblending to 3D acquisition.
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FIG. 2. Marmousi data example deblended using denoising approach. (a) Pseudo-deblended
common receiver gather . (b) Noise-based deblended common receiver gather. (c) Deblending
error of common receiver gather. (d) Pseudo-deblended common source gather. (e) Noise-based
deblended common source gather. (f) Deblending error of common source gather.
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FIG. 3. Marmousi data example deblended using inversion approach. (a) Pseudo-deblended com-
mon receiver gather. (b) Inversion-based deblended common receiver gather. (c) Deblending error
of common receiver gather. (d) Pseudo-deblended common source gather. (e) Inversion-based
deblended common source gather. (f) Deblending error of common source gather.
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FIG. 4. Sources firing times for Gulf of Mexico data example. (a) Firing times of conventional
(blue) and simultaneous seismic sources (red). (b) Time delay between successive sources for
conventional (blue) and simultaneous sources (red).
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FIG. 5. Gulf of Mexico data example deblended using denoising approach. (a) Pseudo-deblended
common receiver gather. (b) Noise-based deblended common receiver gather. (c) Deblending
error of common receiver gather. (d) Pseudo-deblended common source gather. (e) Noise-based
deblended common source gather. (f) Deblending error of common source gather.
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FIG. 6. Gulf of Mexico data example deblended using inversion approach. (a) Pseudo-deblended
common receiver gather. (b) Inversion-based deblended common receiver gather. (c) Deblending
error of common receiver gather. (d) Pseudo-deblended common source gather. (e) Inversion-
based deblended common source gather. (f) Deblending error of common source gather.
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