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ABSTRACT

Elastic and attenuative effects play a major role in the determination of wave ampli-
tudes and phases observed at seismic sensors. Viscoelastic full waveform inversion (FWI)
has the potential to recover much of the information content of measured seismic data by
simultaneously accounting for these effects. However, viscoelastic FWI introduces a set
of new challenges and open research questions, related to its use of frequency-variations
and phase information. These impact our understanding of anelastic parameter resolution,
especially the phenomenon of cross-talk. Cross-talk is typically characterized through anal-
ysis of the radiation patterns of point scatterers; however, the point scatterer model is not
well suited to viscoelastic FWI, because: (1) attenuation introduces a significant potential
for cross-talk between variables distant from one another in space, and (2) interpreting the
effect of frequency and phase dependence on the radiation patterns of point scatterers is not
straightforward. We present and examine a numerical approach to assessing viscoelastic
cross-talk based on differences between various model residual quantities. With it, we ob-
serve strong cross-talk both between velocity andQ variables, and into density for a variety
of acquisition geometries. Of particular note is our characterization of the tendency for Q
variables to leak into elastic variables from which they are spatially separated. This type of
cross-talk is not easily characterized through the use of radiation patterns.

INTRODUCTION

The goal of full waveform inversion (FWI) is to infer subsurface medium properties by
maximizing the use of the information content of measured seismic data (Tarantola, 1984).
This goal cannot be achieved in full, because approximate models of true wave propaga-
tion must be selected. However, the move from simple to more complex wave models,
which better approximate true wave propagation, has historically led to improved recovery
of useful, accurate information about the subsurface. Much of the information constraining
subsurface elastic properties resides in the amplitude and phase of the observed waveform.
Scalar-acoustic FWI cannot use such information effectively, because of its neglect of elas-
tic and attenuative effects. Elastic, viscoacoustic, and, less frequently, viscoelastic FWI
approaches have been developed to address this deficiency (e.g., Tarantola, 1986; Hicks
and Pratt, 2001; Tromp et al., 2005; Malinowski et al., 2011; Kamei and Pratt, 2013; Mé-
tivier et al., 2015; Plessix et al., 2016; Yang et al., 2016; Keating and Innanen, 2017). As
in any multi-parameter FWI problem, inter-parameter trade-off, or ‘cross-talk’, is a major
obstacle to the implementation of these approaches (e.g. Kamei and Pratt, 2013; Alkhalifah
and Plessix, 2014; Pan et al., 2016). Cross-talk occurs when data residuals caused by an
error in the estimate of one physical property are attributed to another, impeding conver-
gence and potentially leading to mis-characterization in the inversion output. Strategies
exist for cross-talk reduction, but to design these effectively it is important to understand
the cross-talk process, i.e., to determine which properties leak in to one another, and to
what extent.
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The most commonly used tool for characterizing cross-talk is radiation pattern analysis
(e.g. Tarantola, 1986; Moradi and Innanen, 2016; Oh and Alkhalifah, 2016; Kamath et al.,
2017). Radiation patterns express the change in an incident wave-field after interacting
with a point scatterer, typically in an otherwise homogeneous medium. These patterns
change for different choices of model perturbation. Greater cross-talk is predicted when
the radiation patterns of two variables vary proportionally within the range of scattering
angles sensed in an experiment, because this behavior is suggestive that the two variables
are not distinguished within the available data. Radiation patterns are not investigated for
every variable in the inversion, as the number of these is very large. Instead, a representative
radiation pattern for each parameter type is usually investigated, with the scattering point
set at a fixed location.

In elastic and anisotropic FWI, radiation pattern analysis has proven effective in pre-
dicting cross-talk (e.g., Oh and Alkhalifah, 2016). Guided by analysis of the patterns to
select inversion parameters with minimal overlap between different radiation patterns in
the data, the extent of cross-talk in the inversion can be reduced. Scattering patterns do
not, however, completely characterize cross-talk. They are not well suited to providing in-
formation about cross-talk between variables at different spatial locations, as two different
scattering angles for variables at different locations may represent the same part of data
space. They are limited to providing information about the gradient and do not naturally
allow the effects of iteration to be characterized. Consideration of both the second-order
aspects of the objective function (e.g., via the Hessian) and iteration are key to the success-
ful implementation of multi-parameter FWI (e.g. Virieux and Operto, 2009; Operto et al.,
2013); hence, scattering patterns do not provide for complete characterization of cross-talk.

Including attenuation in FWI complicates cross-talk in a way that makes radiation pat-
tern analysis even less suitable. Cross-talk involving Q generally involves confusion be-
tween different parameters at different points in space. For instance, a density perturbation
will exhibit cross-talk with a remote Q region obscuring it from the sources and receivers.
Another complication is the frequency and phase dependence of these radiation patterns,
which are key to distinguishing Q from velocity (Innanen and Weglein, 2007; Hak and
Mulder, 2011; Keating and Innanen, 2017), but whose role in reducing cross-talk is more
difficult to discern from a radiation pattern alone.

Cross-talk can also be analyzed by examining numerical FWI examples in which cross-
talk occurs (e.g. Köhn et al., 2012; Operto et al., 2013). By comparing inversion results
to a known true model, errors in the inversion process can be identified. Some of these
errors can be attributed to cross-talk, but because confusion between parameters is not the
only source of error in inversion, it can be difficult to accurately and confidently identify it.
More accurate approaches to quantifying cross-talk can be designed by comparing inver-
sion results of different ‘true’ models in synthetic tests, as in Kamei and Pratt (2013), or by
investigating the Hessian matrix in a specific case, as in Pan et al. (2018).

Here we describe, and analyze with 2D frequency-domain simulations, an alternative
approach to characterizing viscoelastic cross-talk, with some specially-designed numerical
FWI tests on simple models. This approach allows cross-talk between parameters to be
understood as a function of either or both incidence angle and/or frequency. It also naturally
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accounts for the effect of iteration and spatial distribution on parameter resolution. If the
models considered are suitably chosen, these results allow general conclusions to be drawn
about the nature of cross-talk.

THEORY

The approach for viscoelastic FWI we investigate here largely follows the work of
Keating et al. (2018). To simulate viscoelastic wave propagation, we solve by the finite
difference method the 2D viscoelastic system described by Pratt (1990):
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where ω is the angular frequency, ρ is the density, ux and uz are, respectively, the horizontal
and vertical displacements, f and g are their respective source terms, and λ̃ and µ̃ are the
complex, frequency dependent Lamé parameters. Assuming a Kolsky-Futterman model of
attenuation (Kolsky, 1956; Futterman, 1962), these are defined in terms of ρ, the P and S
wave speeds, vP and vS , as well as the quality factors QP and QS , by
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where ω0 is a reference frequency. This system is solved using the finite difference equa-
tions set up by Pratt (1990), which take the form

Su = h, (5)

where u is a vector containing ux and uz, h is a vector containing f and g, and S is
a Helmholtz matrix containing the finite difference coefficients. The matrix S applies a
finite difference star to u approximating the wave equation in equations 1 and 2. Perfectly
matched layers (Berenger, 1994) are used to prevent reflections from the boundaries of the
model.

Optimization and parameterization

The objective function for the FWI problem we consider here is

Φ =
∑
xs, ω

1

2
||d−Ru(m)||22, (6)
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where d is a vector containing the measured data, R is a matrix representing the receiver
sampling of the wave-field, xs represents the surface location of the source, ω is angular
frequency, and m is a vector containing subsurface model parameters. The gradient of this
function with respect to m was originally derived by Tarantola (1984), and was expressed
in a simple, general form by Metivier et al. (2013) as

∂φ

∂m
=

〈
∂S

∂m
u, λ

〉
, (7)

where 〈 , 〉 represents an inner product, and λ satisfies

S†λ = RT (Ru− d) . (8)

We formulate FWI in terms of five parameters, selected for their simplicity: α1ρ , α2v
−2
P ,

α3Q
−1
P , α4v

−2
S , and α5Q

−1
S , where the αn are scale terms introduced to improve condition-

ing. The elastic problem having been thoroughly investigated, our focus is on cross-talk
involving the Q variables. The Q−1 parameterization is convenient because of its limited
numerical range (in comparison to a Q parameterization).

A measure of cross-talk

Cross-talk can be defined as the contribution to the inverted value of variable 1 occur-
ring as the result of model error in variable 2. Variable 1 can be different from variable 2
because they are distinct in spatial position or in type; each leads to behaviour that can be
classified as cross-talk. Our focus is the case in which the variables are different in their
parameter type (e.g., P-wave quality factor versus density). This definition of cross-talk
covers an important class of behaviors which are undesirable in FWI, as they tend to slow
convergence and give rise to misleading inversion results. The definition also lends itself
to direct calculation in synthetic tests.

Let FWI(·) be an operator that contains a complete process of full waveform inversion;
if d are simulated data measurements generated from the model m, and an initial model
m0 is given, we reconstruct via FWI the estimate

m̂ = FWI
(
d(m),m0

)
. (9)

The overall model residual at the outset of the process is r = m −m0. If the model grid
has N rows (or depths) and M columns (or lateral positions), then m is a (5MN)-length
vector

m =


mvp

mvs

mqp

mqs

mρ

 , (10)

where each element (e.g., mvp) is an (MN)-length column vector containing the model
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parameter values. Organized this way, the model residual is evidently

r =


mvp −m0

vp

mvs −m0
vs

mqp −m0
qp

mqs −m0
qs

mρ −m0
ρ

 . (11)

We can focus on model residuals associated with one parameter class only, for instance
the P-wave quality factor, by constructing model residual vectors where the four other
contributions are replaced with zero vectors:

rqp =


0
0

mqp −m0
qp

0
0

 , (12)

or, going further, by setting all MN of the remaining non-zero elements, except the nth, to
zero:

rqpn =



0
0
0
0
...

mqpn −m0
qpn

...
0
0
0


. (13)

Similar constructions, containing four zero vectors and one non-zero vector, allow us to
form rA for any parameter type A of the five, or further, by setting all but the nth of those
vector elements to zero, to form rAn for any parameter type A or spatial position n of
interest.

If the true subsurface model did not differ from the initial model in the nth element of
parameter type A, then there would be no contribution from rAn to the inversion. We can
consider the case in which a given model residual rAn does not exist by defining a model

m′ (rAn) = m− rAn . (14)

The result of the inversion

m̂′(rAn) = FWI
(
d(m′(rAn),m0

)
(15)

is then equal to m̂ less the contribution to the inversion from the model residual rAn , im-
plying that the contribution of rAn to the inversion result is

∆m̂(rAn) = m̂− m̂′(rAn). (16)
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In so far as ∆m̂(rAn) represents changes in the model for variables other than the single
non-zero element of rAn , it represents cross-talk. Cross-talk contributions from a class of
variables, rather than from a single variable, can be computed as ∆m̂(rA), where rA are
the model residuals associated with a full class of parameters (as exemplified for the P-
wave quality factor in equation 12). By including all of the variables describing parameter
type A, the part of ∆m̂(rA) representing a change in variable B is a full measure of the
cross-talk from A into B. In fact this framework allows the cross-talk from any set of FWI
unknowns into any other set to be discussed quantitatively.

There are several advantages to using this approach to characterize cross-talk. It allows
for the determination of cross-talk between any two sets of variables, not just those with
the same position in space. This means that cross-talk between spatially separated variables
can be identified. It offers the potential to study the effects of iteration on the inversion,
a key consideration in FWI. It can also help to characterize the effectiveness of Hessian
information in suppressing different modes of cross-talk, which can be very difficult to
quantify using other approaches.

One may reasonably ask why we consider the contribution of an unknown parameterA,
element n to the inversion to be the difference between the inversion result with and with-
out rAn , namely ∆m̂(rAn), rather than the result of an inversion involving model residual
rAn only. The key difference here is that the latter does not capture the interaction between
rAn and other model residuals. This distinction may be a fine one when analyzing some pa-
rameter classes, but when considering cross-talk from Q it can lead to a neglect of changes
in the amplitude of other recovered anomalies. The definition of cross-talk we use here is
able to include these effects.

NUMERICAL ANALYSIS OF VISCOELASTIC CROSS-TALK

We next discuss how to use the measure of cross-talk introduced above on a simple
model, to allow for general conclusions to be drawn, in a way analogous to that in which
radiation pattern analysis is used. Our main objectives are to (1) characterize the effects
of acquisition geometry on cross-talk, to (2) identify the extent of cross-talk from quality
factor variables into elastic variables at other positions, and to (3) investigate these behav-
iors for several optimization strategies. We calculate the cross-talk for a series of simulated
problems, using the same model in each, but each time changing the acquisition geometry,
optimization approach, or choice of r.

Model geometry and inversion parameters

We designed a simple model with geometry selected to allow relatively general conclu-
sions to be drawn about the character of viscoelastic parameter cross-talk. The design is not
intended to represent geology, but rather to expose aspects of confusion between parameter
values, especially those between quality factors and elastic properties which are separated
in space. An unknown region of low Q (≈ 20) in both the P- and S-wave modes obscures
from the sources and receivers a smaller region containing unknown changes in the elastic
parameters (each a 10% increase over the initial model). The elastic region is a small circle
at the center; the low QP and QS region is a larger circle containing it (Figure 1). The ini-
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FIG. 1: The true model involves (a) elastic parameter unknowns confined to a small
circular region at the center of the volume, and (b) P- and S-wave mode 1/Q

unknowns occupying a larger and smooth circular region surrounding the smaller
circle.

tial model used in the inversion is constant for each parameter, set equal to the background
values. The attenuative region is chosen to produce a high probability of cross-talk between
QP or QS variables that obscure elastic perturbations from source/receiver positions. Be-
cause of the differences in the relative magnitudes of the model errors between the quality
factor and other parameters, these tests should not be interpreted as providing strong evi-
dence for the relative amplitude of cross-talk from quality factor variables as compared to
elastic variables. Cross-talk from QP to vP can be directly compared with QS to vP or QS

to ρ, for instance, but caution should be used when considering comparisons of cross-talk
terms arising from different relative residuals, e.g. QP to vP and ρ to vP .

In the analysis, cross talk from seven different choices of model residual is considered.
In five of these, the residual is chosen to be the full vector of unknowns for each parameter
type (i.e., rA for parameter A in the terminology of the previous section). These allow
for calculation of the total cross-talk from and to each parameter in the inversion. We
refer to the cross-talk from the parameter α2v

−2
P as ‘cross-talk from vP ’, and adopt similar

terminology for the other parameters. In the other two cases, the residual vector is chosen
to include only some of several parameter types, namely, the outer rings of the QP and
QS anomalies, as shown in Figure 2 (i.e., rAn for values of n corresponding to designated
regions of space). These are chosen so that we can develop an understanding of cross-talk
between the obscuring QP and QS region and the elastic anomaly, an important example of
cross-talk between spatially distant variables. Instances of cross-talk from the partial (outer
ring) model residuals shown in Figure 2, for 1/QP and 1/QS , are referred to as cross-talk
from primed variables Q′P and Q′S .

We consider four acquisition geometries, each with sources and receivers evenly spaced
along one or several edges of the model in Figure 1. In Type 1, sources and receivers are
placed along the top of the model, and reflections are the main source of information. In
Type 2, sources are placed at the top of the model and receivers on the bottom, simulating a
transmission or cross-well geometry. In Type 3, sources/receivers are placed on both the top
and bottom of the model, providing comprehensive reflection and transmission information.
In Type 4, to examine fundamental features of cross-talk, sources/receivers are placed on
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FIG. 2: Model residual used to calculate
cross-talk from Q′P and Q′S

all four sides. These acquisition geometries were chosen to help develop an understanding
of the relative importance of reflection and transmission ray-paths in the resolution of the
parameters. Explosive sources are considered, and both components of displacement are
recorded at the receivers. These cases are chosen to determine the importance of reflection
and transmission ray-paths on the different cross-talk modes, and to compare with cross-
talk in the case of ideal acquisition.

In each inversion test, 10 frequency bands are inverted, each containing 5 evenly-spaced
frequency values. The upper end of the bands is increased with iteration, the first spanning
1-2Hz, and the last 1-20Hz. No regularization is used, except in the examples involving
truncated Gauss-Newton optimization, where a small stabilization term is added to the
Hessian matrix. Three different numerical optimization strategies are considered.

Cross-talk within single-iteration steepest-descent updating

In our first set of numerical tests, we consider an FWI implementation which employs
only a single iteration of steepest descent optimization at each frequency band. With ten
frequency bands this results in ten total iterations. This set-up allows us to examine the
cross-talk behavior with limited impact from the iterative nature of the inversion problem.
This is the type of cross-talk that radiation pattern analysis is best suited to describe.

Figure 3 illustrates the cross-talk into the inversion parameter α2v
−2
P , in terms of the

equivalent relative change in vP , referred to here as ‘cross-talk into vP ’. This figure is sub-
divided into several panels, each of which illustrate the cross-talk into vP from one of the
model residual terms, given data from one of the acquisition geometries considered. Within
each panel the x dimension and z dimension represent x and z position. The amplitudes of
the model changes ∆m̂ = m̂ − m̂0 differ considerably for the different acquisitions. To
allow for comparison, the cross-talk amplitudes were normalized so as to be fractions of
the largest amplitude in the model change ∆m calculated for that acquisition type.

In Figure 3 we observe strong leakage from QP into vP , as expected given the mathe-
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matically similar roles played by the two parameters in equations 4 and 3. Cross-talk into
vP from all others is substantial in the Type 1 acquisition; cross-talk from vS to vP remains
high in the other acquisition types. The cross-talk term from QP into vP for acquisition
type 4 is particularly notable. As the QP anomaly is largely homogeneous in the interior
region, cross talk into vP from QP at or near the same point might be expected to also be
homogeneous inside of the region where the QP anomaly is present. Instead, significantly
larger amplitude cross-talk can be observed in a small interior region, approximately where
the vP anomaly is present. This suggests that an additional cross-talk mechanism must
be present in this specific area. A likely cause is that the obscuring QP region is couples
with, and confuses, the spatially distant vP anomaly. This can be verified by examining the
cross-talk between the outer QP region alone and vP , i.e., the cross-talk from Q′P .

Still within Figure 3, we observe in the Type 4 acquisition similar cross-talk from QP

and Q′P , including for the interior region. This suggests that cross-talk from the obscuring
QP region is not only present at the center of the model, it is in fact dominant in this case.
Comparison of the cross-talk fromQP andQ′P for the other acquisition types shows similar
behavior; the obscuring Q region contributes substantially to the cross-talk at the center of
the model. While the relative amplitude of cross-talk from QS is smaller, Figure 3 exhibits
similar trends in those cross-talk terms.

The corresponding cross-talk signatures into density and vS are plotted in Figures 5 and
6. The Q-to-density terms are notable as most of the observed cross-talk occurs between
spatially separated variables at the location of the density anomaly; relatively little cross-
talk between co-located variables can be observed here. The cross-talk into density in
the Type 2 acquisition is very strong, but this is consistent with expectations based on
purely elastic results (it is well established that density is very difficult to recover from
transmission data). Cross-talk into vS again involves confusing between spatially-separated
variables. Significant contributions come from both QP and QS in this case.

The cross-talk into QP and QS are plotted in Figures 4 and 7. The most striking feature
is the low degree of cross-talk from the elastic anomalies into an obscuringQ region, despite
the fact that the reverse is observed for all three elastic parameters. Both of these variables
exhibit strong cross-talk with their corresponding velocities for each acquisition type. The
cross-talk fromQS toQP for acquisition Type 4 is notable for the fact that, in this one case,
cross-talk from the obscuring region into the center of the model appears to be negligible.
The cross-talk from Q′S in this case is very similar to the model residual considered in that
case (Figure 2), suggesting that cross-talk from co-located unknowns dominates here.

Cross-talk within multiple-iteration steepest-descent updating

While the measures shown in the previous subsection are informative about the cross-
talk in the gradient, there are limits to the insight they provide about the actual experience of
solving the FWI problem, in which iteration plays an important role. To better understand
the impact of iteration we consider in this section steepest descent optimization with five
iterations per frequency band (i.e., involving a total of 50 iterations).

In Figure 8 the cross-talk into vP using an iterative steepest-descent optimization is
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FIG. 3: Numerically calculated cross-talk into vP with one iteration of
steepest-descent optimization per frequency band.

plotted. Comparison with Figure 3 reveals similarities but also contrasts with the single-
iteration case. While cross talk from the attenuation variables in acquisition geometries
including transmission ray-paths (Types 2-4) is substantially suppressed by iteration, cross-
talk in the Type 1 reflection-only acquisition is minimally improved, as is the cross-talk
from density and vS . The differences between cross talk signatures after a small (Figure 3)
and large (Figure 8) number of iterations are substantial for several acquisition geometries;
the effects of iteration on cross-talk appear to be significant here.

Cross-talk into density with this optimization approach, plotted in Figure 10, behaves
similarly: cross-talk is notably suppressed in some panels, but not in others. In comparison
with Figure 5, cross-talk fromQS is evidently reduced in the region of the elastic anomalies
in both acquisition Type 1 (reflection) and 4 (surrounding). Similar reduction occurs for
the cross-talk from QP for acquisition Type 4. As with cross-talk into vP , there is limited
reduction in cross-talk from elastic parameters.

Cross-talk into vS is substantially reduced from all other parameters in this approach,
especially in the cross-talk from QP (Figure 11 as compared to Figure 6). The reductions
are also largely limited to acquisition geometries other than type 1. Cross-talk into QS un-
dergoes similar reductions (figures 12 and 7). The similar behavior of these two parameters
in contrast to the others is likely due to the great importance of converted waves on the
recovery of these parameters in comparison to the other variables. If non-explosive sources
were considered, these results might be expected to change.
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FIG. 4: Numerically calculated cross-talk into QP with one iteration of
steepest-descent optimization per frequency band.

Cross-talk into QP from vS and QS is reduced through iteration, as is cross-talk from
vP in acquisition Type 4, in which sources and receivers surround the unknown structures
(Figure 9). In this case, however, cross-talk appears to increase slightly for several param-
eters in the Type 2 acquisition tests.

Cross-talk within Truncated Gauss-Newton updating

The Hessian matrix is known to play a major role in the suppression of cross-talk. In
this subsection we investigate cross-talk in the context of truncated Gauss-Newton opti-
mization, where the Gauss-Newton step is iteratively estimated (e.g. Metivier et al., 2013).
Five inner-loop iterations were used at each FWI iteration to calculate the approximation
to the Gauss-Newton step.

The cross-talk results calculated from these FWI updates are plotted in Figures 13–17.
These results are similar to those obtained using steepest descent with five iterations per
frequency band. This suggests that at the cost level chosen (i.e., with a small number of
truncated-Newtong iterations) there are only small differences between these approaches.
An exception to this similarity is evident for cross-talk into vS , as plotted in Figure 16.
Cross-talk from QP is substantially reduced in this case, and cross-talk from QS somewhat
reduced, except for acquisition Type 1.
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FIG. 5: Numerically calculated cross-talk into ρ with one iteration of steepest-descent
optimization per frequency band.

DISCUSSION

The numerical calculations of the cross-talk quantities introduced in this paper appear
to be informative about the various modes of cross-talk present in viscoelastic FWI; a key
next step is to implement viscoelastic FWI based on this information to reduce cross-talk.
Radiation patterns are often used in elastic FWI to guide strategies for cross-talk reduction
based on scattering angles. In many of these approaches, data from angle ranges within
which only one parameter has a significant radiation energy are used to update just these
parameters. If such ranges do not exist, alternate parameterizations may be sought. This is
difficult to apply when considering attenuation, because velocity and Q radiation patterns
are not made distinct by scattering angle information (Keating and Innanen, 2017).

If cross-talk cannot be limited simply through data-selection strategies, the second
derivative information contained in the Hessian must play a major in a successful cross-
talk reduction scheme. The technique we have described here is expected to be a useful
means of comparing the efficacy of cross-talk reduction between optimization strategies
using different approaches to approximating the effect of the Hessian matrix.

CONCLUSIONS

Inter-parameter cross-talk in full waveform inversion is often characterized through the
use of radiation patterns. These are poorly suited for viscoelastic FWI because of the
significant potential for cross-talk between variables distant from one another in space,
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FIG. 6: Numerically calculated cross-talk into vS with one iteration of
steepest-descent optimization per frequency band.

and the challenge of interpreting the frequency and phase dependence of radiation patterns
on cross-talk. Simple numerical simulations offer an alternate approach for characterizing
cross-talk which may be better suited to the viscoelastic problem. Tests using this approach
suggest that cross-talk between velocity variables and the corresponding Q variables is
quite strong, and occurs both between variables at the same location and those far apart.
Cross-talk between spatially separated variables can be the dominant contribution at a given
point in space. Iteration and Hessian information have a major impact on cross-talk, and
this approach offers a means of capturing this dependence.
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FIG. 10: Numerically calculated cross-talk into ρ with five iterations of
steepest-descent optimization per frequency band. Compare with figure 5.
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FIG. 11: Numerically calculated cross-talk into vS with five iterations of
steepest-descent optimization per frequency band. Compare with figure 6.

18 CREWES Research Report — Volume 31 (2019)



Cross-talk in viscoelastic FWI

FIG. 12: Numerically calculated cross-talk into QS with five iterations of
steepest-descent optimization per frequency band. Compare with figure 7.

CREWES Research Report — Volume 31 (2019) 19



Keating and Innanen

FIG. 13: Numerically calculated cross-talk into vP with truncated Gauss-Newton
optimization. Compare with figures 3 and 8.
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FIG. 14: Numerically calculated cross-talk into QP with truncated Gauss-Newton
optimization. Compare with figures 4 and 9.
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FIG. 15: Numerically calculated cross-talk into ρ with truncated Gauss-Newton
optimization. Compare with figures 5 and 10.
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FIG. 16: Numerically calculated cross-talk into vS with truncated Gauss-Newton
optimization. Compare with figures 6 and 11.
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FIG. 17: Numerically calculated cross-talk into QS with truncated Gauss-Newton
optimization. Compare with figures 7 and 12.
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