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ABSTRACT

In full waveform inversion (FWI), the update of velocity is obtained by calculating the
gradient of the misfit between recorded and predicted data, which is defined by the cross-
correlation of the reverse time of receiver wavefield and source wavefield. Benefits can be
achieved by solving a direct non-linear mapping between the correlation and model update.
In this report, we train a fully connected neural network with residual blocks which allows
migrated images to be directly mapped into velocity models. The input images and the true
velocity model comes from reverse time migration results on randomly generated 4-layer
models. The training is performed with ADAM optimizer combined with L1/L2 norms
as the loss function. Performance and convergence of the neural network with different
hyper-parameters are also investigated systematically. We have tested the trained model
with different synthetic inputs. Results show the that the trained network is relatively model
dependent which performs well on the validation set but does a poor job on datasets that
come from different distributions.

INTRODUCTION

Machine learning (ML) has become a great tool in the field of geophysics. It can
overcome some drawbacks of the theory and could also bring the power of modern CPUs
and GPUs because of its potential to parallelize. Machine learning has great power in
numerical analysis, but it also has limitations. The most crucial limitation is about generality.
Since machine learning is a data-driven technique, the trained network is often model-
dependent and hard or invalid to be applied to other data. Especially in seismic inversion
and forward modelling, there are tons of acquisition setups that can be adopted on a single
velocity model, which brings great challenges to the training. Most of the researchers on
solving modelling/inversion problems often assume a fixed acquisition geometry and train
networks with data based on random velocity models. This generalizes the network to
be working with velocity models in the real world, however, the process will be heavily
dependent on the acquisition geometry.

In this report, we will explore a way to extract velocity from reverse time migration
images. The reason why we use images from migration that it is best to try to remove the
dependencies on the acquisition geometry. Shot gathers are a function of time, acquisition
setups and the geology that lies beneath. Not all of them are of our interests — we care
more about the structure and the rock properties. Migration, however, is a technique that
tries to reduce the amount of less interesting parameters by mapping seismic events to
reflector boundaries. Reverse time migration (Claerbout, 1971) uses the correlation of
source wavefields and receiver wavefields to show the location of the reflector. This method
requires a good background velocity model and does not deal with multiples (which is related
to acquisition geometry), but has become very popular because of its accuracy. Different
imaging conditions have been proposed and they all aim to achieve better accuracy for
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estimating the reflectivity, from which we can extract more information about the subsurface.
It is crucial to recover the correct reflectors’ amplitude and it is beneficial for model updates
in inversion methods such as FWI (Lailly and Bednar, 1983; Tarantola, 1984). Starting from
the inaccurate amplitude from migration images, we trained a neural network to convert
them into velocities at low costs.

THEORY

Reverse time migration

Reverse time migration (RTM) calculates the dot product of the up-going wavefield
and down-going wavefield. Following Claerbout (1971), the reverse propagation of the
shot record will coincide with the source wavefield at the position of the reflector. Most
of the reverse time migrations follow this basic idea but there are many expressions of the
correlation, which is called imaging condition. A typical 2D cross-correlation imaging
condition can be defined as

I(x) =
∑
t

S(x, t) ·R(x, T − t) (1a)

I ′(x) =
2

v0(x)

∑
t

∂2S(x, t)

∂t2
·R(x, T − t) (1b)

where S refers to the source wavefield while R refers to the receiver wavefield. The dot
in between refers to element-wise production. Then all images are superposed together to
reduce the dependency on time. Equation 1a does not yield the true reflectivity but will
be the easiest and most stable imaging condition to calculate. In this report, we define the
imaging condition by Equation 1b as it is closer to the FWI gradient. The source wavefield
is replaced by its 2nd derivative with respect to time and the amplitude is normalized by the
background velocity model vo(x).

L1 norm and L2 norm

L1 norm and L2 norm (or its square) are the most common loss functions used in opti-
mization problems. The choice between them can leads to different results in deconvolution
problems (Taylor et al., 1979). Suppose the observation/true data is y and prediction is ypred,
then

L1(y,ypred) =
1

n

n∑
i

∣∣∣y(i) − y
(i)
pred

∣∣∣ (2a)

L2
2(y,ypred) =

1

n

n∑
i

(
y(i) − y

(i)
pred

)2
(2b)

Equations 2a and 2b are both metrics that positively related to the magnitude of error and
will be zero if no error is present between y and ypred. Note that Equation 2b is L2 norm
square to be precise, but it is called L2 in this report for simplicity. A more interesting aspect
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their gradients. Let∇yL denote the gradient of L with respect to y, then

∇yL1 =
1

n
· sign (y − ypred) (3a)

∇yL
2
2 =

2

n
(y − ypred) (3b)

We can see that the gradient of L2 is related to the error at that point while the gradient of
L1 is essentially a direction which could only be either 0, 1 or −1. These characteristics can
be both advantages of disadvantages. Optimizations based on L2 gradient can do updates
that are more adaptive but could be harder to achieve smaller errors because the gradient
would be small as well. On the other hand, Optimizations based on L1 has a more stable
model update but will oscillate when the learning rate is bigger than the error.

Another way of understanding the difference between L1 and L2 loss is the priority
when dealing with drastic errors or outliers. From Equation 2b we can see that L2 values
the error from a point that is away from the true value a lot more than a point that is close to
the truth since the error is in second-order and the gradient scales with the distance. Using
an L2 norm as a loss function will focus more on solving these large errors first, which can
be hard if the initialization is bad. On the other hand, L1 norm treats these errors in an equal
way.

Chain rule and back-propagation

The chain rule from calculus can be summarized with the following equation. Assuming
L = f(y) where y = g(x), then

∇xL =

(
∂y

∂x

)ᵀ

∇yL (4)

L is a scaler function that could represent the loss while x and y are two vectors that do not
necessarily have the same dimension. ∇ refers to the gradient with respect to the subscript.
We can see that the gradient with respect to x, ∂y/∂x, refers to the Jacobian matrix, which
links the the two gradients. One can calculate the gradient with respect to later variables (y),
then converted to the gradient of previous variables (x). That is why this scheme is named
“back-propagation”. The back-propagation starts from ∂J/∂J = 1 and then recursively
multiply the Jacobian matrices all the way to a trainable parameter, which yields the gradient
for parameter updates. Then the gradient will keep propagating until it reaches the beginning
of the computation graph.

One can infer that if the chain becomes too long and any of the gradients in this chain
have become a small number, the resulting gradient will end up with an even smaller number
and make the parameters hard to update. This phenomenon is called vanishing gradient.
There are several ways to mitigate gradient vanishing. The first cure is to avoid too deep
networks. This is usually not the case because more layers are needed for adding enough
non-linearity. Another popular method is to add shortcuts to the network, which allows the
neural network to learn some features first and then deal with the other. U-Net (Ronneberger
et al., 2015) and ResNet (He et al., 2016) are two of the most popular frameworks that use
shortcuts.
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Residual network (ResNet)

+

Transform Block

NN Block NN Block

FIG. 1. A ResNet building block modified from He et al. (2016). Regular triangles refer to activation
functions. Dashed arrows are connected to other blocks.

Figure 1 shows a building block of the typical ResNet. The building block contains two
parts, the main stream which contains the structure of the neural networks and a shortcut to
skip neural network blocks. Each of the NN blocks can contain several neural layers which
can be either convolutional of fully connected. The shortcut contains a transformation that
will fix the dimensional mismatch of its inputs and outputs. The transformation is linear
with no activation function applied. The transformation will be identical if the input and
output are already the same dimensions. Then the result of the transformation is added to
the output of the main stream and the sum then feed to an activation function. The dashed
line on either side may be connected to other ResNet building blocks.

The introduction of shortcuts enables the neural network to skip unnecessary steps.
Since there are fewer terms when applying the chain rule. This process prevents vanishing
gradient to some degree. Furthermore, the shortcuts are more than skipping some layers
because of the existence of the addition node. This could be understood in another way.
Suppose that the transformation block is identity. Instead of fitting a function that maps
from the block input x to the block output y, the ResNet block is trying to fit a function that
maps from x to (y − x). In other words, the ResNet is forced to focus on learning features
that are non-linear to x.

EXAMPLE

Images from RTM

The velocity models are defined as 4-layer 1D models. Each of the model contains 1000
points with spacings of 8 m. We fixed the shallowest layer to have a velocity of 3000 m/s
and assume it is the minimum of the entire model. The other layers have random velocities
within (3000, 5500) m/s. The range was designed to match the global range for the acoustic
Marmousi model. The positions of reflectors are randomized with uniform distribution,
however, we reject the models with layers being too thin in order to avoid severe overlapping
of primaries. There is no need to apply similar restriction to the velocity differences in
adjacent layer. Models can be treated as fewer layers if any adjacent velocities is close.

The RTM images are generated by following Equation 1b. The forward modelling used
2nd order finite difference method for calculating both temporal and spatial derivatives. The
source wavelet is a Gaussian source. The source is non-negative and symmetric, which
helps to identify reflectors. The source and receiver are both placed at 8 m below the surface.
We use absorbing boundary conditions on both sides of the wavefield and direct waves are
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removed before the shot record was injected for calculating the receiver wavefield.

The definition of input/output
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FIG. 2. Four random examples of input and label pairs.

Here we define the input fed to the neural networks to be 50000 RTM images from
random 1D velocity models as described in the above section. In machine learning, the
theoretical values used to calculate the loss of predictions are called true labels. In this case,
the true labels are the velocity model corresponding to each image. There is an infinite
number of choices on the forms of inputs and labels, which will affect the focus of the
network. For example, the labels can be vectors that store respectively the depth and velocity
of each layer since we have flat velocity models. The representation is efficient in terms of
telling information and the model would spend no effort in learning each layer has constant
velocity. The problem is that this representation makes the problem hard to generalize
because we have to know the number of layers in advance and train models for different
situations. Another representation is to use the true reflectivity directly as labels. This
may also be problematic since the entire information is concentrated on the “spikes” in the
reflectivity. Useful information will be flooded by less significant information and make the
network less intuitive to what type of information should be learned.

Different input-label pairs are called samples in machine learning. Both input and labels
have the dimensions of nsample × nz, which is 50000 by 1000 in this case. Figure 2 shows 4
example input-label pairs from the dataset. The left column are inputs, which are normalized
to be ranging from (−1, 1). The right column shows the labels, which are the corresponding
velocity models. The magnitudes have been normalized to the same range. Note that the
“velocities” of the first layer are all−1. This is because they are equal to the minimum of the
entire set of velocity models, i.e. 3000 m/s. For the same reason, the maximums of the labels
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are all equal to 1. The entire dataset is then separated randomly into training and validation
sets. The training set takes up 80% from the whole and the rest forms the validation set. The
training set contains the data used directly for calculating the gradients at each iteration. The
gradients would be directly related to the misfit between the predictions of the model and
labels in the training set. On the other hand, the validation set is used indirectly as a metric
of the optimization process. We used the performance on the validation set to help determine
hyper-parameters, the degrees of over-fitting or the timing for early stopping. The trained
network is then still a function of the validation set and this is how a validation set differs
from the test set. In an ideal case, the dataset should be divided into training/validation/test
sets. The test set, which never gets involved in the training process from the start to finish, is
the only reliable metric for judging a model. However, we ignore the difference and use
validation error to estimate test error in this case. This may be unfair in some sense but will
allow us to have more data reserved for the training set. The ADAM optimizer (Kingma and
Ba, 2014) is used throughout this report. Algorithm 1 shows a typical a training template.
The algorithm saves the model that has the lowest validation error in a training process.
More details about can be found in Niu and Trad (2019).

Algorithm 1 Training workflow.
Require: L(·), model(·), optim(·)

for each epoch do
for each minibatch do

zero the gradients
load X and Y . load inputs/labels
Ypred ← model(X) . compute prediction
L← L(Ypred, Y ) . compute loss
g ← BP (L) . back-propagate
model(·)← model(·) + optim(g) . update model parameters

Yval ← model(Xval)
Lval ← L(Yval, Y ) . compute validation loss
if Lval is the smallest then

save the model(·)

Fully connected neural network

All neural networks in this report are implemented with the machine learning package
PyTorch (Paszke et al., 2017). A fully connected model is used for solving the original
problem (see Figure 3). The model contains 7 layers. The input layer and output layer have
1000 nodes, the same as the length of the model. There are 5 hidden layers in between
with 500 nodes in each layer. The activation function for each hidden layer is leaky ReLU
(leaky rectified linear unit) with a slope of 0.2 on the negative side. The leaky ReLu will
capture features on the negative half but still add non-linearity. The activation function
for the outputting layer is tanh. The connections between two adjacent layers in a fully
connected network can be represented by a matrix containing trainable parameters. In this
network structure, the trainable parameters are, 1000 by 500 for the connections between
the inputs and 1st layer; 4 of 500 by 500 matrices for interconnection between hidden layers;
and a 500 by 1000 between the last hidden layer and the outputting layer. Despite the biases,
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FIG. 3. A 7-layer fully connected neural network. Each circle represents 100 nodes.

the total number of trainable parameters is 2 × 106, which is smaller than the number of
data points provided. However, this is not sufficient to state an over-determined problem
since data points maybe not fully independent of each other.

Choosing the right loss function
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FIG. 4. Predictions made by models with L1 and L2 loss function, respectively.

Figure 4 shows predictions from different models trained with L1 and L2 loss. The
bottom figure refers to the inputting RTM image and the corresponding velocity model is
shown as the blue line in the top figure. We used the same network structure and hyper-
parameters for both tests. We can see that the L1 prediction (green) is visually better than
the L2 prediction (orange). Especially, L1 reacts faster when there is an abrupt change
in the label, which eventually helps updating other velocities. We can also notice the L2
prediction is affected by another layer at around 1000 m to 1500 m. Similar observations
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can be made in the last layer (from 6000 m to 6500 m), where the prediction is affected by
greater velocities above it. One interesting part is that although L1 is overall more stable
than L2, they have similar behaviours handling different layers. We define the model to have
a fixed min and max velocity, which are −1 and 1 after normalization. This is because we
use tanh as the outputting activation, which suppresses all prediction that is too large or too
small. The raw output may have great oscillations.
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FIG. 5. L1 and L2 loss comparison.

Figure 5 shows the comparison between L1 and L2 loss on the training set. The L2
loss in Equation 2b is square rooted to be comparable with L1 loss. The figure shows that
the optimization curve with L1 not only converges faster but also achieves lower error at
later stage. Since the label contains abrupt changes, L2 norm focuses on dealing with those
changes from the beginning but gets confused with iterations and eventually this causes
fluctuations. On the other hand, L1 norm seems less affected by this issue.

Although the L1 loss curve shows that the network probably needs more iterations or a
larger learning rate to reach a plateau, it proves that L1 is a more suitable loss function for
this type of problem. Therefore we adopt L1 norm as loss function. However, there may be
better choices of loss function, like total variation (Anagaw and Sacchi, 2012).

ResNet

Figure 6 shows the ResNet tested in this report. In addition to the network in Figure 3,
skipping connections are added to the hidden layers. As shown by the black arrows, each
connection skips two trainable FC layers and add the input directly to the output of the
ResNet building block. Since the input and output of each building block are the same, the
transformation block is identical. There are no additional trainable parameters introduced,
hence the network has the same training burden.

We train the ResNet with the same setup and hyper-parameters. The loss curve on the
validation set is very similar to and almost overlapping the loss curve of the fully connected
case. (see Figure 7). Both models achieve small L1 errors and do a good job on identifying
reflection interfaces. However, the two models make predictions differently.

As shown in Figure 8, although the two networks have similar errors, the ResNet
predictions (green in the top figure) has fewer fluctuations than the fully connected (FC)
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FIG. 6. A ResNet based on the fully connected network in Figure 3.
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FIG. 7. Loss curves of the fully connected (FC) and the ResNet model.

predictions (orange in the top figure). This characteristic is common in different samples.
The only difference between the ResNet and the FC models is the shortcuts that fed back to
the main stream. The direct input from several layers before makes the network easier to find
relationships between points and hence reduce the fluctuations. However, the shortcuts do
not help too much on the convergence in this case. This is because we are using a relatively
shallow network that may not suffer too much from vanishing gradient.

Problematic cases

For testing, one thing to keep in mind is that the testing dataset must be normalized in
exactly the same way as the training dataset. In this report, the training data are normalized
by linearly stretching the min and max value to (−1, 1). The test dataset must be stretched
in the same way—with the min and max of the training dataset but not its own.

As shown in Figure 9, We test the model with inputs and output pairs generated by
using a different wavelet (Ricker wavelet). The image (bottom) is easy for human brains,
especially for recognizing the positions of the reflectors. However, the predictions are bad
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FIG. 8. A comparison between predictions from the fully connected (FC) model and the ResNet.

for both models. The predictions somewhat react to reflections at the first two interfaces
but failed to detect the deepest interface. Also, the velocity is correct only for the first 150
points and this is partly because the velocity of the first layer is fixed. Similar results can be
observed if we change the imaging condition. This is certain because we have broken the
fundamental rule of machine learning: the test set must come from the same distribution for
the training set. In order to make the model work with different wavelets, we should either
remove the wavelet effect by some methods (as we remove dependencies on acquisitions by
migrations) or provide enough data for the network to learn about the change. The former
will make the whole problem less meaningful as if the wavelet effect is fully removed, the
results will be the true reflectivity and we can get velocity by integration. The latter would
require the dataset to be several times larger and perhaps need a network with more complex
structure, more trainable parameters and more advanced technique for the training (such as
gradient boosting, which takes a lot more power to perform). This is hard to do, either more
data is not available or computation cost is too high even for today’s computation power.

CONCLUSION

In this report, we use fully-connected networks to recover the migration images from
random four 4-layer velocity models. We investigate different behaviours when using L1/L2
norms as loss function and we conclude L1 is more suitable for this type of problem. We test
ResNet shortcuts to the network and they reduce fluctuations. The model performs poorly
on data from different distributions of the training set. Future works may include applying
more advance training techniques like gradient boosting or seeking better representations of
the input and outputs. Also, we may need to try total variation instead of L1 norm.
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FIG. 9. A typical prediction on data with Ricker wavelet.
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