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ABSTRACT

Inspired by the image super-resolution problem, a CNN-based residual dense network
(RdNet) is utilized to interpolate missing seismic traces within 2D synthetic seismic data.
For the sake of comparison, interpolations are also implemented with a previously proposed
residual network (ResNet) and a minimum weighted norm inversion (MWNI). As demon-
strated by a series of synthetic experiments in this study, the contiguous memory mecha-
nism, residual learning and feature fusion in both local and global levels enable RdNet to
interpolate regularly missing traces with relatively high recovered S/N and accommodate
spatial aliasing. In cases of randomly missing traces, RdNet produces comparable though
slightly degraded results relative to the conventional minimum weighted norm inversion.
Reliable results are obtained with less missing data, e.g., recovered S/N of ∼ 40 dB and 30
dB for 10% and 30% randomly missing traces, respectively. As the missing-trace percent-
age increases, errors accrue in regions of the data with big gaps (typically larger than five
consecutive traces). We expect that this will be improved by including more training data,
which is currently being examined.

INTRODUCTION

Acquisition costs, bad trace removal, and constraints associated with the acquisition en-
vironment, lead to recorded seismic data sets whose sampling is generally inadequate and
irregularly distributed in space. This may cause aliasing, which adversely affects the reso-
lution of migrated subsurface structures. Thus, a key step in conventional seismic data pro-
cessing is seismic trace interpolation, an umbrella term referring to a range of algorithms
and approaches to the solution of this sampling problem. Investigations of interpolation
methods have been documented in a number of previous studies, which mainly differ in
complexity, assumptions, operator size, and the mathematical/numerical engine used (Trad,
2009). Generally, these interpolation techniques can be classified into four categories: pre-
diction filter-based approach (Spitz, 1991; Naghizadeh and Sacchi, 2007), wave-equation-
based approach (Ronen, 1987), mathematical transform-based approach (G. Hennenfent
and Herrmann, 2010; Chen et al., 2014; Gan et al., 2015) and rank-reduction-based ap-
proach (Oropeza and Sacchi, 2011; Ma, 2013; Kreimer et al., 2013).

Recently, as a sub-set of artificial intelligence, machine learning (ML) has grown rapidly
in popularity and effectiveness, as the result of improvements in the computational capacity
of computers and rapid developments within the big data revolution. At present a big push
is underway to formulate and examine algorithms for processing, inversion, and interpre-
tation of seismic data which take advantage of the optimizations and “learning” capacities
of AI and ML. Not only are we motivated by the possibility of extending the accuracy
and reach of existing algorithms by doing so, but also by the fact that properly-formulated
ML processing fits straightforwardly and naturally into new and future computing architec-
tures and hardware technology. Thus even a reproduction of an existing seismic processing
approach within the context of ML represents an important step.

CREWES Research Report — Volume 31 (2019) 1



Zhang et al.

Researchers have attempted to formulate interpolation within the ML environment in
the recent past. In some cases promising results have been obtained; e.g., Jia et al. (2018)
used a support vector regression (SVR) approach integrated with Monte Carlo analysis, in
which patches of existing data are selected for training, and the missing traces are generated
from the learned regression model; Wang et al. (2019) adopted an eight-layer CNN-based
network, ResNet, to reconstruct the regularly missing traces with high accuracy. It has been
demonstrated that this algorithm avoids certain assumptions (e.g., linear events, sparsity
and low-rank) at the centre of most conventional interpolation algorithms.

In this report, we will apply the residual dense network (RdNet), a convolutional neu-
ral network normally used for the image super-resolution problem, to the interpolation of
missing seismic traces. We will first introduce the structure of the RdNet and the work-
flow of interpolation based on it. Using the synthetic seismic data and RdNet, we will
then investigate the application to the case with regularly missing traces and compare with
results obtained using existing conventional interpolation algorithm and the other convo-
lutional neural network (CNN)-based approaches (i.e. minimum weighted norm inversion
(MWNI) and ResNet). Next, synthetic data with different levels (i.e. 10%, 30% and 50%)
of randomly missing traces are also used to investigate the potential of the RdNet for inter-
polation.

METHOD

The residual dense network (RdNet) was originally designed for image super-resolution
(Zhang et al., 2018), which can make full use of the hierarchical features from the origi-
nal low-resolution images. Here, we take the seismic interpolation as an image super-
resolution problem and will adopt a similar RdNet as the study of Zhang et al. (2018) for
seismic interpolation. Figure 1 shows the blocks for three different convolutional neural
networks, residual network (Figure 1 (a)), dense network (Figure 1 (b)) and residual dense
network (Figure 1 (c)). Compared with the ResNet, a CNN-based approach that has been
proved to be effective for interpolating regularly missing seismic traces (Wang et al., 2019),
the RdNet block also includes a dense block with contiguous memory support allowing the
output of each block to have direct access to each layer of the next block.

2 CREWES Research Report — Volume 31 (2019)



Interpolation through machine learning

FIG. 1. Structures of (a) residual block, (b) dense block and (c) residual dense block used in this
report (modified from Zhang et al., 2018).

Figure 2 shows the architecture of the RdNet, in which the input is seismic data with
missing traces, and the output is the data after interpolation. To extract shallow features of
the input data, the first convolutional layer is used in Figure 2. As mentioned previously,
the output of preceding block and each layer within the current block connect to all the
subsequent layers directly through the so-called contiguous memory mechanism. In ad-
dition, there is a concatenation operation at the end of each residual dense block, which
is designed for adaptively fusing the states of preceding blocks and all the layers in the
current block. Furthermore, the local residual learning is also included in each block for
further improving the representation ability of the neural network. As shown in Figure 2,
the feature fusion and residual learning are also designed in a global way, and this feather
fusion can extract global feathers by fusing the states from all the residual dense blocks.
As a comparison, Figure 3 shows the architecture of the ResNet used in the study of Wang
et al. (2019).
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FIG. 2. The architecture of the RdNet used in this study (modified from Zhang et al., 2018).

FIG. 3. The architecture of the ResNet with three blocks (modified from Wang et al., 2019).

SYNTHETIC EXAMPLE

Data set

To test the effectiveness of RdNet on seismic interpolation, the 2D synthetic seismic
data is used. To make the seismic data contain more features, we use the velocity model
in Figure 4 to generate seismic shot gathers, which includes flat, dipping, curved layer
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interfaces, and two salt bodies with higher velocities compared with surrounding medium.
The receiver spacing, source spacing, and time sampling interval are set to be 10 m, 30 m
and 1 ms. Seismic waveforms are generated using finite difference code with staggered grid
and PML boundary condition. The dominant frequency of the wavelet is 20 Hz. Altogether,
146 shot gathers are generated, and each has 513 surface receivers. In the network training,
80% of shot records are used for training and 20% for validation. Figure 5 shows one shot
gathers generated using the velocity model in Figure 4.

FIG. 4. Velocity model used to generate the training and validation data.

FIG. 5. One shot gather in the training data.

To further test the flexibility of the trained RdNet on the other dataset, we also generated
two shot gathers using the two velocity models in Figure 6, one of which (Figure 6 (a)) is a
layered velocity model, and the other (Figure 6 (b)) has two thin embedded layers.
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FIG. 6. Velocity models used for generating the test data.

RdNet training

The residual dense network is trained with Keras using synthetic dataset. The loss
function is defined as the mean squared error (MSE) between the interpolated and labeled
data. In the neural network training, the evaluation metric is normally used for tuning the
hyperparameters. Here, the evaluation metric is defined as the recovered signal to noise
ratio (S/N) in dB, which can be denoted as

M = 20 log10
‖dlabel‖2

‖dlabel − dint‖2
, (1)

where dlabel and dint represent the labeled and interpolated data, respectively.

In the training phase, the Adaptive momentum algorithm (Adam) (Kingma and Ba,
2014) is used to update and search the optimal parameters. The pseudo code of this al-
gorithm can be found in Appendix A. In the training stage, the maximum training step
number is set to be 150, and the initial learning rate is set as 1E-4 after testing a series of
values. The learning rate decreases with training step, and its value is reduced by 5% after
each epoch. We also adopt an early stopping scheme in the training stage, i.e., the training
will stop if there is no improvement in the S/N of validation set after 10 consecutive epochs.
In this study, the interpolation results using RdNet will be compared with those obtained
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with ResNet. Similar to the procedure adopted in the ResNet training (Wang et al., 2019),
we break each seismic shot gather into small patches for training. The size of small patches
is 127 × 127 (temporal sampling × points spatial sampling points) for regularly missing
cases and 128 × 128 for randomly missing cases with 50% overlap between two adjacent
patches in both spatial and temporal directions. The GPU used for training is GTX 1660
Ti (6GB). Due to the limited memory, we use the mini-batch to update parameters in each
iteration and set the batch size as 16 in the training.

RESULTS

Regularly missing traces

In this section, two cases are investigated to reconstruct dense data with halved and one
third of the original trace interval using RdNet, respectively. Figure 7 shows the learning
curves of ResNet (Figure 7 (a)) and RdNet (Figure 7 (b)) for reconstructing data with
halved trace intervals, respectively. It can be observed that both ResNet and RdNet can
reconstruct the regularly missing traces with high S/N, but RdNet yields smaller loss (∼
1.5E-11) and larger recovered S/N (∼ 44 dB) for both training data and validation data,
which outperforms the ResNet (∼ 1.1E-10 for loss and ∼ 35 dB for S/N). From Figure 7,
it can also be noticed that training processes early stopped for both of the two networks
because S/Ns of the validation set no longer increase.

FIG. 7. Learning curves for ResNet (left two figures) and RdNet (right two figures). Figures (a) and
(b) show the training losses using these two neural networks. Figures (c) and (d) are the recovered
S/Ns for the two networks.

Figure 8 shows the S/N of each reconstructed shot gather (with halved receiver spacing)
using these three interpolation methods, demonstrating that all these three approaches can
reconstruct the seismic data with S/N larger than 30 dB. It’s also noticeable that RdNet
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yields significantly larger S/N than both MWNI and ResNet. In comparison, the results
generated with MWNI have the lowest S/N typically within the range between 30 and 35
dB. Figure 9 shows the interpolation result for a typical shot gather in the validation set. No
significant differences can be observed between the results using the three methods. Figure
10 shows one reconstructed trace (# 490), in which it could be easily noticed that the trace
interpolated with RdNet (marked in red) has least error from the true data.

FIG. 8. S/N of each reconstructed shot gather within (a) train set and (b) validation set using three
different interpolation techniques.

FIG. 9. Interpolation results for validation shot # 1 using MWNI (2nd row), ResNet (3rd row) and
RdNet (4th row). S/Ns for the reconstructed shot gather using the three methods are 31.3, 34.1
and 43.0 dB, respectively.
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FIG. 10. Interpolation results for trace # 490 of validation shot # 1.

To investigate the flexibility and applicability to the data sets that have different features
from both the train and validation sets, we use the pre-trained RdNet to reconstruct the two
shot gathers synthesized using velocities in Figure 4. The results for the two shots are
shown in Figures B1-B3 (in Appendix B), which are similar to the results obtained with
the train and validation sets. The S/Ns of the two reconstructed shot gathers using RdNet
are 42.5 and 43.4 dB, respectively. The values are 29.7, 34.4 dB using MWNI, and 34.4,
35.9 dB with ResNet.

Similar to the work done for interpolating missing traces with halved receiver spacing,
we also reconstruct the data with one third of the original receiver spacing, i.e., interpo-
lating two traces between every two adjacent traces for decimated data. Figure 11 shows
the learning curves for ResNet and RdNet. S/Ns using both RdNet and ResNet are lower
than those in Figure 7, nevertheless, Figure 11 presents consistent results with Figure 7
that RdNet yields results with higher S/N than ResNet (∼ 38 versus 28 dB). Figure 12 also
exhibits similar trend as in Figure 8 that RdNet outperforms the other two approaches.
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FIG. 11. Learning curves of ResNet (left two figures) and RdNet (right two figures) for the case
of reconstructing the data with one third of receiver spacing. Figures (a) and (b) show the training
losses using these two neural networks. Figures (c) and (d) are the recovered S/Ns for the two
networks.

FIG. 12. S/Ns of the reconstructed seismic data using three methods for the case of interpolating
two traces between two adjacent traces.

Figure 13 shows the interpolation results for a typical shot. Differing from Figure 9, it
can be observed from the F-K spectrum (the rightmost figure of the 1st row) that the dec-
imated data are aliased because of the large receiver spacing (30 m). Both of ResNet and
RdNet can handle the aliased data and reconstruct the missing seismic traces with relatively
high S/Ns (27.7 and 37.5, respectively). But in comparison, there are still significantly large
errors in both the reconstructed shot gather and F-K spectrum using MWNI, which is not
surprising because the conventional 2D MWNI is not a good anti-aliasing algorithm. The
aliasing effects could be effectively eliminated when MWNI is applied to 5D data inter-
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polation (Trad, 2009). Although much smaller than that of MWNI, the interpolation error
using ResNet is still visually noticeable especially at larger offset. Figure 14 shows one
interpolated seismic trace (# 60) of the shot gather in Figure 13, in which the interpolated
trace using MWNI displays significant error from the true value.

FIG. 13. The same as for Figure 9 but for validation shot # 12 and for the case of interpolating two
traces between every two adjacent traces. S/Ns for the reconstructed shot gather using the three
methods are 14.7, 27.7 and 37.5 dB, respectively.

FIG. 14. Interpolation results of trace # 60 for the shot gather in Figure 13.

In addition, the two test shot records are also used to test the flexibility of RdNet. The
results are presented in Figures B4-B6, in which similar results are obtained demonstrating
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the advantages of RdNet over the other two to reconstruct the regularly missing seismic
traces.

Randomly missing traces

To investigate the effectiveness of RdNet on the case of randomly missing traces, we
decimate the data by randomly removing 10%, 30% and 50% traces, respectively. Follow-
ing the similar procedure for the regularly missing cases, we train the RdNet and interpolate
the missing traces with the pre-trained network parameters. In addition, the MWNI is also
applied to the interpolation for comparison.

Figure 15 shows the learning curves for training the RdNet to reconstruct the different
levels of randomly missing traces. It could be seen that, with the increase of the percentage
of missing traces, the S/N of the reconstructed data decreases, which are ∼ 40, 30 and
22 dB, respectively for the three cases. Figure 16 shows the interpolation results for each
individual shot gather using RdNet and MWNI. In contrast to the interpolation results for
regularly missing traces, MWNI yields better results than RdNet, and the S/Ns for most
shots using MWNI are close to or larger than those obtained with RdNet. On average, the
recovered S/Ns using MWNI are 47.2, 33.8 and 25.1 dB for 10%, 30% and 50% missing
cases, respectively.

FIG. 15. Learning curves of RdNet for the case of reconstructing seismic data with randomly
missing traces.
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FIG. 16. S/Ns of the reconstructed seismic data using RdNet and MWNI for randomly missing
cases: (a)(b) 10%, (c)(d) 30% and (e)(f) 50%.

In terms of the data with 10% missing traces, both RdNet and MWNI reconstruct the
seismic data with sufficiently high S/N. Figure 17 shows the interpolation result for vali-
dation shot # 13 which has the lowest S/N (∼34.6) among the validation set using RdNet.
It can be seen that both RdNet and MWNI yield negligible errors within the reconstructed
data, by comparison traces interpolated using MWNI exhibit smaller errors (see Figure 18).
Similar results are also obtained using two test shots (Figures B7-B8 in Appendix B).
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FIG. 17. Interpolation results for validation shot # 13 using MWNI (2nd row) and RdNet (3rd row) for
the case of 10% missing traces. S/Ns for the reconstructed shot gather using these two methods
are 49.9 and 34.6 dB, respectively.

FIG. 18. Interpolation results of trace # 454 for the shot gather in Figure 17.

With respect to the data with 30% missing traces, as can be observed in Figures 16 (c)
and 16 (d), for most shots, the recovered S/Ns using MWNI are higher than those with
RdNet. Figures 19-22 show interpolation results for two typical validation shots: shot # 2
which has lowest recovered S/N using RdNet, and validation shot # 29 which has relatively
high S/N using either MWNI or RdNet. Figure 19 shows that main reconstructed error
for this shot using RdNet focuses between the traces # 470 and # 480, whereas the error
resulted using MWNI are generally smaller by comparison. Figure 20 shows the interpo-
lation results for five consecutively missing traces, in which the bottom three traces have
larger errors using RdNet compared with the results using MWNI. Figures 21 and 22 show
the interpolation results for another validation shot, and both the two methods generate
comparable results, especially for the case with several continuously missing traces (e.g., 5
traces in Figure 22). In Appendix B, comparable results are also obtained for the two test
shots using MWNI and RdNet (Figures B9 and B10).
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FIG. 19. Interpolation results for validation shot # 2 using MWNI (2nd row) and RdNet (3rd row) for
the case of 30% missing traces. S/Ns for the reconstructed shot gather using these two methods
are 32.7 and 18.1 dB, respectively.

FIG. 20. Interpolation results of five traces for the shot gather in Figure 19.
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FIG. 21. The same as for Figure 19 but for validation shot # 29. S/Ns for the reconstructed shot
gather using the two methods are 36.1 and 32.6 dB, respectively.

FIG. 22. Interpolation results of five traces for the shot gather in Figure 21.

Figure 23 shows interpolation results for a typical validation shot with 50% randomly
missing traces, in which both MWNI and RdNet yield noticeable errors. The most signif-
icant error resulted from RdNet mainly lies between traces # 59 and # 72, where there is a
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14-trace gap (empty traces) in the decimated data. Figure 24 shows the interpolation results
for 7 traces within that gap, in which MWNI can reconstruct these missing traces more ac-
curately, but RdNet can only successfully interpolate these traces near the gap boundaries.
The error becomes increasingly larger as it goes to the center of the gap. Figure 25 shows
the interpolation result for another trace, for which RdNet works much better than MWNI.
In Appendix B, interpolation results for two test shots are shown in Figures B11-B12.

FIG. 23. Interpolation results for validation shot # 22 using MWNI (2nd row) and RdNet (3rd row) for
the case of 50% missing traces. S/Ns for the reconstructed shot gather using these two methods
are 24.3 and 13.9 dB, respectively.
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FIG. 24. Interpolation results of five traces for the shot gather in Figure 23.

FIG. 25. Interpolation results of trace # 290 for the shot gather in Figure 23.
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Training result summary

Interpolation results for both regularly and randomly missing cases are summarized in
Table 1. It can be noticed that RdNet outperforms the other two approaches in the case of
regularly missing cases, and the reconstruction errors from MWNI are the largest among
the three especially for the case with spatial aliasing. A series of synthetic experiments
demonstrates that both RdNet and ResNet can handle the aliasing problem effectively, and
in comparison, RdNet yields higher S/N for the reconstructed seismic traces. In the cases
of randomly missing traces, we observe that the recovered S/Ns using RdNet are close to
or slightly lower than those obtained using MWNI. In addition, the recovered S/N starts to
decrease with the increasing the percentage of missing traces.
Table 1. Average recovered S/N (in dB) using three interpolation methods based on the synthetic
data.

Furthermore, with the missing percentage exceeding 30%, reconstruction errors for
some certain shots mainly exhibit in areas where there are relatively large trace gaps (typi-
cally > 5 consecutive traces). Theoretically, the number of combinations for selecting 30%
or 50% out of 512 traces is much larger than that for selecting 10%, however, training data
sizes for these three cases are the same, which may result in the insufficient training sam-
ples for these scenarios. Therefore, in future work, reconstruction errors for the large trace
gap could be greatly reduced by incorporating more data examples, which, however, will
in turn increase the requirement for the hardware (e.g., the memory of GPU).

Table 2 lists some parameters in the training phase for both ResNet and RdNet. Due
to the constraint of the GPU memory (6GB), the batch size for ReNet is 16, which smaller
than that of ResNet. Although RdNet consumes more training time (due to more model
parameters), the interpolation results using RdNet show significant improvement compared
with ResNet, i.e., ∼ 10 dB increase in recovered S/N.

Table 2. Training-parameter comparison between ResNet and RdNet.

CREWES Research Report — Volume 31 (2019) 19



Zhang et al.

CONCLUSIONS

We have applied a CNN-based network, RdNet, to the seismic interpolation based on
2D synthetic data. Due to its unique architecture (e.g., residual learning and feature fusion
designed in both local and global levels, and contiguous memory mechanism), RdNet could
reconstruct the missing seismic traces with relatively higher recovered S/N for regularly
missing cases compared with MWNI and ResNet. Synthetic experiments also demonstrate
its effectiveness to handle the spatial aliasing effects. In terms of the randomly missing
cases, RdNet could achieve interpolation results with recovered S/N close to or slightly
lower than conventional MWNI. If the percentage of missing traces is small (i.e.,10% and
30% in this study), RdNet can still produce relatively good results (∼40 dB and 30 dB for
recovered S/N, respectively). Furthermore, with the missing percentage exceeding 30%, re-
construction errors for some certain shots mainly exhibit in areas where there are relatively
large trace gaps (typically > 5 consecutive traces), which is mainly due to the insufficient
train dataset for these scenarios. This issue is expected to be solved in future work by
including more data during the training phase.

Like most deep learning algorithms, the RdNet-based interpolation in this study is also
data driven, and can be only applicable to the cases where this is no significantly large
difference between seismic features of real data and train data. In this study, only synthetic
data are used, and the performance and flexibility could be improved if more data with dif-
ferent features are included in the training. In addition, this study only presents preliminary
interpolation results using 2D data on regular grid, and more complex scenarios (e.g., data
with higher dimension, irregular grid) will be considered in future research.
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APPENDIX A

Pseudo-code for Adam algorithm

Pseudo code of Adam algorithm (Kingma and Ba, 2014): g2t indicates the elementwise
square of gt. Good default settings are α = 0.001, β1 = 0.9, β2 = 0.999 and ε = 1E-8. β1
and β2 to the power t are represented by βt1 and βt2, respectively.

Require: Learning rate α

Require: β1, β2 ∈ [0,1): exponential decay rates for the moment estimates

Require: f (θ): Stochastic objective function with parameter θ

Require: Initial parameter θ0
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m0 ← 0 (initialize 1st moment vector)

v0 ← 0 (initialize 2nd moment vector)

t← 0 (initialize training step)

while θt not converged do

t← t+ 1

gt ← ∇θft(θt−1) (calculate gradient)

mt ← β1 ·mt−1+(1−β1) · gt (update biased 1st moment estimate)

vt ← β2 · vt−1 + (1− β2) · g2t (update biased 2nd moment estimate)

m̂t ← mt/(1− βt1) (calculate bias-corrected 1st moment estimate)

v̂t ← vt/(1− βt2) (calculate bias-corrected 2nd moment estimate)

θt ← θt−1 − α · m̂t/
√
v̂t + ε (update paramters)

end while

return θt (resulting parameters)
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APPENDIX B

Interpolation results for test data

FIG. B1. Interpolation results for test shot # 1 using MWNI (2nd row), ResNet (3rd row) and RdNet
(4th row). S/Ns for the reconstructed shot gather using the three methods are 29.7, 34.4 and 42.5
dB, respectively.

FIG. B2. Interpolation results for trace # 70 of test shot # 1
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FIG. B3. Interpolation results for test shot # 2 using MWNI (2nd row), ResNet (3rd row) and RdNet
(4th row). S/Ns for the reconstructed shot gather using the three methods are 34.4, 35.9 and 43.4
dB, respectively.
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FIG. B4. Interpolation results for test shot # 1 for the case of interpolating two traces between every
two adjacent traces. S/Ns for the reconstructed shot gather using the three methods are 10.9, 27.7
and 35.2 dB, respectively.
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FIG. B5. Interpolation results for test shot # 2 for the case of interpolating two traces between every
two adjacent traces. S/Ns for the reconstructed shot gather using the three methods are 15.5, 23.8
and 27.7 dB, respectively.

FIG. B6. Interpolation results for trace # 446 of test shot # 2.
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FIG. B7. Interpolation results for test shot # 1 for the case of randomly missing 10% traces. S/Ns
for the reconstructed shot gather using the two methods are 39.7 and 41 dB, respectively.

FIG. B8. Interpolation results for test shot # 2 for the case of randomly missing 10% traces. S/Ns
for the reconstructed shot gather using the two methods are 45.6 and 41.2 dB, respectively.
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FIG. B9. Interpolation results for test shot # 1 for the case of randomly missing 30% traces. S/Ns
for the reconstructed shot gather using the two methods are 32.1 and 31.3 dB, respectively.

FIG. B10. Interpolation results for test shot # 2 for the case of randomly missing 30% traces. S/Ns
for the reconstructed shot gather using the two methods are 36.7 and 32.1 dB, respectively.
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FIG. B11. Interpolation results for test shot # 1 for the case of randomly missing 50% traces. S/Ns
for the reconstructed shot gather using the two methods are 19.1 and 23.6 dB, respectively.

FIG. B12. Interpolation results for test shot # 2 for the case of randomly missing 50% traces. S/Ns
for the reconstructed shot gather using the two methods are 21.7 and 24.2 dB, respectively.
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