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ABSTRACT

We implemented a deblending framework in the CMP domain to test the efficacy of
deblending outside the commonly used receiver domain. By operating in the CMP domain
instead of the common receiver domain, dipping reflectors are centered as opposed to apex
shifted, this allows us to implement a simple hyperbolic Radon operator to decrease pro-
cessing time taken to invert for a deblended data set versus an apex shifted operator. The
Radon operator is posed as an inversion problem using a L1 model norm to support focus-
ing in the Radon domain allowing better mapping of data back to their focused gathers.
Implementation of deblending in an inversion-based framework is a relatively newer route
to exploring deblending, with previous source separation implementations being denoising
the pseudo-deblended data. Inversion based deblending allows us to explain all the data by
refitting back to the blended dataset using the blending operator.

INTRODUCTION

Seismic exploration research is an economics driven field, and as a result, methods of
cost reduction while retaining quality and resolution are often a point of interest. Simul-
taneously sourced acquisition originally proposed in 1983 (Garottu, 1983) and expanded
upon in 1998 (Beasley et al., 1998), is a method to reduce the time spent in the field col-
lecting data by firing multiple sources at the same time. This is in contrast to traditional
acquisition which tries to avoid source interference. In blended acquisition, sources are
allowed to interfere while they are later separated in processing thus reducing time spent
in the field. There are generally two main streams of thought to deblending data, the de-
noising approach to remove blending noise (Mahdad et al., 2011), and the inversion-based
approach (Abma et al., 2015) to refit the entire dataset. Both methods work best when
the simultaneously fired shots are fired with a small randomized delay time between each
other (Berkhout, 2008). Deblending takes advantage of random delay times of each source
through a process called pseudo deblending. Pseudo deblending moves shots into their own
data panels mimicking a conventional survey. After pseudo deblending is applied, the shots
to be separated show up as coherent events while the other interfering shots show up as ran-
domized blending noise. Deblending through the use of the blending operator (Berkhout,
2008) has originally be applied through the denoising method. Many different deblending
approaches include direct separation in the shot domain using apex shifted Radon (Trad
et al., 2012), the use of the Stolt operator as a denoising method in the receiver domain
(Ibrahim and Sacchi, 2015) (Ibrahim and Sacchi, 2014), a thresholding approach in the FK
domain using an inversion scheme (Stanton and Wilkinson, 2018), and a proposed deblend-
ing using migration-demigration operators (Trad, 2015). This paper introduces inversion
based deblending in the CMP domain as a high-speed approach using a relatively simple
Radon focusing operator.
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THEORY

Blending operator

The blending operator allows us to transition between the blended domain where sources
are overlapped, commonly known as a super shot and the unblended domain where sources
belong to individual shot records. This can be represented as the blending operator Γ which
contains the overlap and delay time information. We can then represent our unblended data
as D and out blended data as Dbl with the following relationship (Berkhout et al., 2009;
Berkhout, 2008)

Dbl = ΓD. (1)

By implementing the adjoint of the blending operator on the blended data we can then
recover the pseudo-deblended data, which is represented in the unblended space, with each
shot having its own data frame as opposed to multiple shots per data frame. This can be
expressed by the following (Berkhout et al., 2009; Berkhout, 2008)

D̃ = ΓHDbl. (2)

D̃ represents the pseudo-deblended data in standard shot frames. The blending matrix
serves only to add shots together with random delay times and as such it is just a superpo-
sition of the individual shot record’s data. This also means that pseudo-deblending acts to
redistribute the data to their individual frames. This forms an overcomplete representation
of the data with redundant information stored in each and every pseudo-deblended source
panel. Note that the adjoint operator does not remove the source interference from the data
and only serves to copy it.

FIG. 1. Blended vs Pseudo deblended data: Blended data in a) and pseudo deblended data in
b), the most significant change can be noted in the common reciever domain where a single shot
becomes coherant per frame, the same effect occurs in offset and CMP domains.

One of the key factors to make deblending easier is the random delay incorporated into
the blending scheduling, and in extension the blending operator. This random delay be-
tween shots becomes important when we apply the adjoint blending operator commonly
referred to as pseudo-deblending to the blended data set. We can view the blending oper-
ation as an operation on the standard acquisition data, for our example we will call S our
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acquisition data, seen in Figure 2. The columns of S represent each individual survey and
the rows are each individual shot. We can then introduce the random delay times as just
a linear phase shift in the frequency domain in the blending operator Γ. This then gives
us the blended data Sbl such that each survey, contains multiple shots each of which has a
random time delay.

FIG. 2. Illustration of the Blending operator Γ (Urruticoechea, 2015): Where the unblended source
is blended using the blending operator to output the blended data set.

FIG. 3. Illustration of the effect of pseudo deblending (Urruticoechea, 2015): Where Γ is the blend-
ing operator and ΓH is the pseudo deblending operator and combined is an operation on the true
data S.

The adjoint of the blending operator is then represented as the conjugate transpose of
the blending operator ΓH which then can be combined with Γ to show the behavior of
pseudo deblending seen in Figure 3.
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FIG. 4. Illustration of the effect of blending and pseudo deblending (Urruticoechea, 2015): It can
be seen that the main data is preserved in the main diagonal and off diagonal events are phase
shifted/time delayed.

With the random delay times, after pseudo-deblending the data, transformation into
another domain like the CMP or receiver domain shows us that one set of events appear as
coherent or in focus while other sets of events are incoherent or out of focus. The coherence
of the pseudo deblended data pertains to shots that have their delay times corrected for in
pseudo deblending. The coherent events correspond with the corrected shots, while the
out of focus information corresponds to the shots that are not properly corrected, and thus
does not belong in that particular shot frame. By utilizing a coherency based denoising or
inversion algorithm, removal of the incoherent blending noise can be achieved leaving only
the unblended coherent signal.

Radon Transform

Due to the forward and adjoint blending operators being very simple there is no unique
solution to the inverse thus it is considered ill-posed, and as such a constraint is required to
aid in the inversion of blended data. The hyperbolic Radon transform acts as a focusing op-
erator representing a coherency constraint for the inversion of blended data. The hyperbolic
Radon transform is represented by the equation (Thorson and Claerbout, 1985)

u(p, τ) =

∫ h2

h1

d(h, t =
√
τ 2 + p2h2)dh. (3)

Where u(p, τ) is the radon space data, p is the slowness, τ is the two way travel time, h1 is
the upper offset limit, h2 the lower offset limit, and d is the data space to be transformed.
The slowness p is then defined as the inverse of velocity 1/v. This operator focuses events
into points along hyperbolic arrivals according to a range of moveout velocities. The Radon
transform has been used in many applications such as interpolation in frequency or time
domain (Trad et al., 2003), velocity analysis (Thorson and Claerbout, 1985), and deblend-
ing via denoising (Ibrahim and Sacchi, 2015). The sparse hyperbolic Radon transform
re-formats the ill-posed inversion to one that uses sparse regularization, with only a few
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points in the radon space representing a large amount the information in shot space. By
implementing a sparse constraint on the combined operators we can then implement an
inversion based scheme to deblend the blended data. A limitation to this basic hyperbolic
radon operator is that the operator only focuses events on a single apex location, generally a
specified midpoint where the offset h is 0. The issue with operating at single apex locations
is that in seismic data, dipping reflectors have their apexes shifted relative to zero offset
and thus will not properly map into the radon domain, this comes as a significant issue due
to seismic data commonly being complex a dipping. There are two solutions to this issue,
either the implementation of an apex shifted hyperbolic radon transform (Trad et al., 2004),
or to apply the hyperbolic Radon transform in a domain where apexes are not shifted. In
this paper, the basic hyperbolic radon transform is implemented in the CMP domain where
dipping events are centered (Claerbout, 1985) and thus the hyperbolic Radon transform
will be able to map all events properly.

Sparse inversion

Sparse inversion seeks to find the solution to problems that are expected to behave more
closely to the least absolute value solution as opposed to the least-squares solution. This
sparse inversion is done through a framework called iteratively reweighed least-squares
inversion (IRLS), where a set of model weights and data weights are used to guide the
results to either the `1-norm or `2-norm solution. IRLS is implemented using a nested loop
algorithm with the inner loop consisting of a standard conjugate gradient (CG) algorithm
with the outer loops recalculating the weights for the model and data. The advantages `1-
norm for the data space is that the inversion is less sensitive to sporadic events commonly
associated with noise referred to as the robust solution. The `1-norm applied to the model
space then pushes the model space to the solution with the most zero values favoring single
large numbers instead of multiple small ones, this is commonly referred to as the sparse
solution. Given a standard transformation operator that uses a mapping operator L that
maps the data space d to the model space m (Claerbout, 1992)

d = Lm, (4)

where to calculate the inverse we need to seek an m that fits the data while also minimizes

||m||11, (5)

with the fit to the data determined by minimizing

||d− Lm||22. (6)

By adding model and data weights we can then dictate the algorithm to converge towards
the least absolute value solution (`1) or least squares (`2) by reformulating the original
least-squares equation through the minimization of the modified equation

||Wmm||22
Subject to ||Wd(d− Lm)||22.

(7)

Where Wd is the data weights and Wm is the model weight. These weights allow the
user to adjust the preference to either the residual or model, where Wm can be changed
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to obtain a certain fit to either a sparse `1 or smooth `2 model, and Wd can be changed to
prefer non-spontaneous events or "weight" all events equally in the input data. The weights
for the matrices are generally diagonal with Wd constructed as

diag(Wd) = |r|(p−2)/2

where r = Lm− d.
(8)

Where p is either 1 or 2 for inverting based on either the `1 or `2 data norm. Wm is normally
constructed as

diag(Wm) = |m|(2−p)/2. (9)

Where p is either 1 or 2 for inverting based on either the `1 or `2 model norm. Due to the
data weights being created through division a damping factor is chosen to avoid division
by zero. The damping factor is determined as a percentile of the data.

For the inversion approach instead of using a single operator L we use two operators Γ
and R as the blending operator and radon operator respectively. The relationship of which
is dictated by

L = ΓR, (10)

where the adjoint is represented by

LH = (ΓR)H ,

LH = RHΓH .
(11)

The main advantage of the inversion approach for deblending is that all of the signal and
blending noise can be explained in other domains where they appear coherent, as opposed
to the denoising approach which seeks to simply remove the blending noise frame by frame.

The denoising approach first applies pseudo-deblending to the blended data to return a
data set in standard acquisition frames seen in Figure 1 b, which then allows for separation
of the shots through denoising in the other domains. Due to the fact that blending noise
is just interfering signal, the amplitude of the blending noise is the same as the signal’s.
The amplitude similarity results in an issue where the larger amplitude blended reflections
would cover and destroy low amplitude events like those of diffractions or weak reflections
in the data thus making it unrecoverable. This issue, however, does not affect the inversion
approach as it seeks to remap all events back to their coherent frames, thus allowing for
the recovery of low amplitude events. The general process to denoising using sparse/robust
radon is to first apply the adjoint blending operator to deblend the data

Dpseudo = DblΓ
H , (12)

which then the pseudo deblended data is used in the inversion with the following objective
function to denoise using the Radon transform

||Dpseudo −Rm||pp + µ||m||qq, (13)
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Where Dpseudo is the pseudo deblended data, R is the Radon transform operator, m is the
model, µ is the tradeoff parameter, and p and q are the data and model norms respectively.
A graphical representation of radon denoising can be seen in Figure 5, using standard
hyperbolic radon to down weight spontaneous events in the shot record in an attempt to
recover to coherent signal.

FIG. 5. Denoising approach to deblending: The denoising approach to deblending, using
sparse/robust radon to remove the blending noise from each pseudo deblended reciever frame.

The inversion approach is seen in Figure 6, is not prone to issues like large-amplitude
blended noise overpowering small-amplitude events, as it seeks to find a solution that fits
all the data. Large blending noise, in this case, can be explained by refitting the blending
noise back to their own data frames weather it is in CMP or receiver domain. With the
amplitude explained, the lower amplitude events are then recovered. The only drawback to
the inversion approach to deblending is the memory requirement, this is because the entire
data set and the model must be held in memory to calculate the gradient on each iteration.
In contrast, the denoising approach is much more lightweight due to only needing to hold
the frame being denoised in memory rather than the entire data set. The inversion approach
uses a different objective function as it seeks to incorporate both the blending operator as
well as the Radon operator in the inversion, we can formulate the objective function given
the generic equation

||d− Lm||pp + µ||m||qq,
where L = ΓR,d = Dbl,

giving us ||Dbl − ΓRm||pp + µ||m||qq.
(14)

Where instead of using the pseudo deblended data, we input the blended data and have the
operator contain both the blending and Radon operators.
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FIG. 6. Inversion based deblending: Using the inversion on both the radon and blending opera-
tors to remap data to their own frames, blending noise is mapped to coherent frames, all data is
explained.

By implementing the deblending as an inversion based operation using the blending
and Radon operators together, the system acts like an overcomplete dictionary, where the
information is represented and redundant in the pseudo deblended frames. This aids in
convergence as the redundant information explains each other through the remapping of
data back to their respective shot frames.

EXAMPLES

To examine the performance of the inversion completed in the CMP domain, all in-
version performed are using sparse constraints or `2-`1 for the data and model weights
respectively. We created a set of increasingly complex finite difference data sets, blended
both numerically and through finite-difference itself, the simplest of which is shown in Fig-
ure 8, which was performed on a two-layer wedge model with diffraction points planted
along the model seen in Figure 7. The blending was done through finite-difference with
two shots being fired at the same time with a randomized delay between 0 and 400 samples.
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FIG. 7. Wedge model: Model consisting of two layers, a dipping refector(wedge), and a set of
diffraction points.

FIG. 8. Wedge model results: Deblending of a two simultanious source survey with a) unblended
data, b) pseudo-deblended data, c) deblended data, and d) differnce respectively.
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The CMP domain of the pseudo deblended data can be seen in Figure 9b where the
blending noise can be seen overlapping the signal at the sides and later arrival times. The
results of the deblending in shot domain can be seen in Figure 8c and CMP domain in
Figure 9c. With the pseudo deblended original in Figure 8b.

FIG. 9. Wedge model results in CMP: Deblending of a two simultanious source survey in CMP
domain with a) unblended data, b) pseudo-deblended data, c) deblended data, and d) differnce
respectively.

While there is still some blended signal remaining in the blended shot, the deblending
preserved the in-focus shot well, including the diffractions which can be seen near the top
of both Figures 8b and 8c. The inability to remove the entire influence of the out of focus
shots may be due to over tuning of the sparsity of the Radon transform.
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FIG. 10. Marmousi results: Results of the marmousi model inversion with 5 simultanious shots,
with a) unblended, b) blended, c) deblended and d) difference respectivly.

The next example tested was the marmousi model (Brougois et al., 1990), a more dif-
ficult blending schedule was used to test the limits of deblending in the CMP domain. For
the marmousi examples, 5 shots were simultaneously fired instead of two and firing delay
was randomized between 0-200 samples with an example shot before and after deblending
provided in Figure 10. The increased difficulty in deblending the shots can best be seen in
the CMP domain in Figure 11c where most of the signal is covered with blending noise. In
this condition, deblending by denoising would most likely fail as a significant amount of
the reflections are overpowered by blending noise, in this situation inversion would be the
most effective solution.
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FIG. 11. Marmousi results CMP: Results of the marmousi model inversion in CMP domain with 5
simultanious shots, with a) unblended, b) blended, c) deblended and d) difference respectivly.

The results of the inversion of the marmousi model show that lower amplitude reflec-
tions are capable of being recovered while completely buried by blending noise from the
4 interfering shots, seen in Figure 11 with the primary issue being that not all blending
noise is removed, this is further corroborated in Figure 10c where most of the events are
recovered with only some blending noise remaining.

The results for the marmousi model show close to a worst-case scenario for testing,
with a high number of simultaneous shots while having small delay times, the only notable
issues with the results are not missing events but event amplitudes, we believe that this is
either due to enforcing too much sparsity in the inversion or that the amplitude variation
across an event is too much for the basis function to properly map.
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FIG. 12. Gulf of Mexico data: Deblending using a gulf of Mexico marine dataset with an shot time
interference of 70%, with Blended data in a), deblended in b), and difference in c).

FIG. 13. Gulf of Mexico data in CMP domain: Deblending using a gulf of Mexico marine dataset
with results in the CMP domain, with Blended data in a), deblended in b), and difference in c).

The final example tested was a gulf of Mexico dataset (Ibrahim, 2015), this real-world
dataset was blended numerically with a firing time overlap of 70% using continuous lis-
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tening with 90 receivers and 90 shots. The results of the deblending of the gulf of Mexico
dataset can be seen in with difference plots in Figure 12 and CMP domain in Figure 13.
An enlarged set of results can be seen in Figure 12b and in the CMP domain in Figure 13b.
Looking at the Gulf of Mexico results, the deblending is very effective at separating each
shot from one another. Recovery of events is also quite good with the only issue being that
the first arrivals of later shots are not completely removed seen in the shot domain at around
5.2 seconds where some amplitude is left behind and not properly separated.

CONCLUSION

The proposed inversion approach of deblending in the CMP domain allows for the
separation of blended data by explaining all the data and remapping blended shot back to
their own domain. This allows us to recover low amplitude events that are obscured by
blended noise. By implementing a sparse constraint to the inversion algorithm, we can
converge at a unique solution that maximizes the coherency of the signal in hyperbolic
arrivals. The use of the CMP domain allows us to implement a simple hyperbolic Radon
operator. This allows us to reduce the computational time of the inversion while allowing
us to stay in the time domain avoiding aliasing concerns associated with frequency-domain
methods. Therefore the inversion approach in the CMP domain is a viable way to deblend
simultaneously sourced signals while recovering low amplitude events.
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