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ABSTRACT

Distributed acoustic sensing (DAS) is an increasingly prevalent technology for seismic
acquisition, especially in reservoir monitoring settings. Recently, it has attracted interest
for microseismic monitoring during hydraulic fracturing and as a complement to broadband
seismometers for measuring teleseismic waves generated by earthquakes. A key compo-
nent of these data is the source mechanism information encoded in the direct arrivals and
how to best utilize this data to make inferences about the source mechanism, given DAS
measurements of the direct arrivals is an open question. DAS is a relatively new tech-
nology, providing very large datasets of different physical aspects of the wavefield than
geophones or seismometers. Consequently, conventional moment tensor inversion is chal-
lenging to transfer directly to DAS data. Instead, we turn our attention to deep learning
algorithms for estimating these source mechanisms. Viewing our seismic data as contain-
ing diagnostic features of the source mechanism, we reduce the data to only those features
most pertinent to moment tensor inversion by training a convolutional auto-encoder. The
extracted features are then analyzed using clustering and generative adversarial networks
(GAN). Clustering based on source mechanism is observed, confirming the extracted fea-
tures contain important source mechanism information. Furthermore, we develop a trained
GAN that provides an accurate mapping from feature space to moment tensor estimate,
which shows promise when applied to a field DAS-microseismic dataset collected during
hydraulic fracturing. Data modeled with the predicted source mechanism shows a strong
correlation to the field data event.

INTRODUCTION

Due to the increased frequency and complexity of hydraulic fracturing a need has arisen
to monitor treatments and ensure fractures are propagating as planned, remaining in the tar-
get formation, propagating deep into the reservoir, and creating permeability for economic
production. Microseismic monitoring is the most prevalent technology for realizing this
goal (McClain, 1971; Power et al., 1976; Albright and Pearson, 1982; Warpinski et al.,
1998; Maxwell et al., 2002; Maxwell, 2010). As hydrualic fractures propagate through the
subsurface they generate energy in the form of seismic waves. These waves are convention-
ally recorded with a combination of 3C geophones in surface arrays, shallow well arrays,
and deep downhole arrays (e.g. Eaton, 2018). One of the challenges with this strategy is
recording high quality microseismic data in an economic fashion. Surface arrays are an
economical way of recording wide aperture microseismic data, a requirement for sufficient
source information, but this places sensors far from the sources and in a noisy environment.
Deep downhole arrays mitigate these problems by placing receivers closer to the sources,
and in a less noisy wellbore environment, however, this typically requires the drilling of
dedicated monitoring wells, driving up costs, and reducing the number of sensors that can
be placed.
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A new technology that has gained significant interest for microseismic monitoring, that
also has potential applications in earthquake seismology, is distributed acoustic sensing
(DAS). Employing optical fibers, DAS makes measurements of the strain induced by prop-
agating wavefields. A significant benefit of DAS is the noninvasive nature of the fiber used
by DAS systems allowing for their placement in active hydraulic fracturing treatment wells.
This allows for the dual purposing of wells for both treatment and monitoring, negating the
need for dedicated monitor wells. Additionally, fibers generally run from surface to the toe
of the well, turning the entire length of the well into a distributed strain sensor, providing
the wide aperture recording crucial to estimating microseismic source parameters (Eyre
and van der Baan, 2015). However, DAS recording comes with its own challenges. Fore-
most, the rigidity of the optical fibers results in sensors insensitive to all but the tangential
component of strain, meaning that DAS is inherently a single component recording system
(Kuvshinov, 2015). DAS also offers very dense spatial sampling on the order of one meter
(Daley et al., 2013), which produces very large datasets when coupled with the continuous
recording that occurs during multi-day hydraulic fracture treatments, that are cumbersome
to process by conventional means. The focus of this paper is the development of efficient
methods for extracting source information from DAS-microseismic data.

DAS also has potential applications in the closely related field of earthquake seismol-
ogy. Broadband seismometers are curenty the prevelant technology for recording teleseis-
mic waves produced by earthquakes. However, the quality of the data they can record is
limited by their sparsity, and the fact that they tend to exist on continents. Distributed
acoustic sensing holds the potential to leverage terrestial and subsea telecommunications
fiber to record earthquake energy. Lindsey et al. (2017) compare teleseismic data from
fiber and collocated seismometers and show a strong correlation between the two datasets.
They also show DAS is capable of measuring the low-frequency responses crucial in earth-
quake seismology. Yu et al. (2019) develop similar conclusions, and show that DAS can
aid in imaging of deep structures such as the MOHO. The apparent correlation of DAS
data to broadband seismometer data, and the affinity of DAS for recording densely sam-
pled, low-frequency data in marine and land settings suggests that DAS could provide a
strong complement to seismometer data. In anticipation of this, the developments in this
paper produces a workflow for acquiring source-type information from earthquake gener-
ated teleseismic DAS data.

Encoded within the seismic waves emitted by propagating fractures or earthquake sources
is information about the spatial location of the fracture, and the type of fracturing that is oc-
curring in the subsurface. The spatial distribution of fractures provides information about
the extent of the stimulated rock volume, and fracture geometry. Early work on fracture lo-
calization focused on inverting the kinematic information carried by the direct arrivals, but
has since progressed to stacking-based (Gharti et al., 2010; Grigoli et al., 2013), migration-
based (Grandi and Oates, 2009; Mao et al., 2020), and interferometric imaging methods
(Schuster et al., 2004; Zhang and Zhang, 2013; Li et al., 2016). Microseismic signals also
contain important information about the source that generated the recorded data. An im-
portant component of the source information in these signals lies in the moment tensor
which provides information about the type of fracturing occurring in the subsurface (e.g.
Burridge and Knopoff, 1964; Gilbert, 1971; Aki and Richards, 2002). The conventional
method for estimating the moment tensor, moment tensor inversion (MTI), uses phase in-
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formation (Eyre and van der Baan, 2015), amplitude information (Eaton et al., 2014; Eyre
and van der Baan, 2015), or both (Eyre and van der Baan, 2015; Willacy et al., 2019) to
estimate the source mechanism that generated the data. These traditional methods are ex-
pensive, especially on large datasets like those supplied by DAS, and do not readily transfer
to new technologies. With this in mind, this study sets out to examine alternate methods
for extracting the source information embedded in DAS-microseismic data.

Moment tensor inversion relies on polarity information in the first arrivals (Eyre and
van der Baan, 2015) and the relative P-wave and S-wave amplitudes (Eaton et al., 2014)
to estimate the source mechanism. The problem of determining which data features are
most informative about the source mechanism is highly analogous to image-feature ex-
traction problems. Convolutional neural networks (CNN) are a prevalent technology for
solving problems of this type. These networks are optimized for processing image data and
extracting complex features and structure contained within the image, providing a map-
ping from input image to its feature space representation(Lecun et al., 1998; Chen et al.,
2016). Furthermore convolutional neural networks, like most machine learning algorithms,
are data-hungry and thrive when they have access to large datasets from which they can
learn these feature mappings. An unsupervised form of CNN, convolutional autoencoders
(CAE) are adept at extracting complex features from images in the absence of large la-
beled datasets (Ghasedi Dizaji et al., 2017; Wang et al., 2020; Song et al., 2020). CAE
have already found success in complex geoscience image classification problems including
facies classification (Qian et al., 2018), rock image segmentation (Karimpouli and Tah-
masebi, 2019) and recently (Sun et al., 2020), which makes them an appealing candidate
technology for extracting key features of microseismic data here.

Motivated by (1) the treatment of moment tensor inversion as an image classification
problem and (2) the ability of neural networks to efficiently process large datasets like those
supplied by the DAS, we set out with the goal of designing a CAE to extract features related
to source mechanisms from DAS-microseismic images. We then make use of clustering al-
gorithms and a generative adversarial network (GAN) to make predictions about the source
mechanism based on the features extracted from our input images. The theoretical devel-
opment, network training, and initial tests are preformed on synthetic data which allows us
to validate the accuracy of our results. An extension to field data shows promise in using
deep-CNN architecture for moment tensor estimation.

MODELLING DISTRIBUTED ACOUSTIC SENSING DATA

In the absence of labeled field data, which is especially difficult to obtain for DAS data,
it can be challenging to optimize neural network architecture and validate the accuracy of
our results. For these reasons, we develop the methods in this paper on synthetic data,
allowing for inferences into how network hyperparameters influence our results, and vali-
dation of the quality of our results, Once a successful network architecture and workflow
is created, these methods will be extended to field data examples. This section discusses
the simulation of synthetic DAS-microseismic data that will be used as input to the neural
network.

As discussed above, the rigidity of the optical fibers in DAS systems results in dis-
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tributed fiber optic sensors which are sensitive only to the component of strain along their
tangential direction (Kuvshinov, 2015). Modeling DAS signals then requires a geomet-
ric model of the fiber that contains information about the fiber tangents, and the locations
where these tangents are samples (Innanen, 2017). The computation of the tangent requires
transformation from field coordinates (x̂, ŷ, ẑ) to a local Frenet-Serret (Serret, 1851; Frenet,
1852) coordinate system in the tangent, t̂(s), its associated normal n̂ = n(s)/|n(s)|, with
n(s) = t̂(s)/ds, and the binormal b̂(s) = t̂(s) × n̂(s), where s is the arc-length along the
fiber to the point at which we compute the local Frenet-Serret coordinate system.

The DAS response is computed through the projection of the strain tensor onto the local
Frenet-Serret coordinate system at each point along the fiber, for each time sample. For a
fixed time t, the projected strain tensor is,

εtnb(s) = R(s)εxyzR(s)T (1)

where R(s) is a rotation operator transforming from field coordinates to Frenet-Serret co-
ordinates,

R(s) =


t̂(s) · x̂ t̂(s) · ŷ t̂(s) · ẑ
n̂(s) · x̂ n̂(s) · ŷ n̂(s) · ẑ

b̂(s) · x̂ b̂(s) · ŷ b̂(s) · ẑ

 . (2)

The tensor εxyz is the field coordinate strain tensor at point s along the fiber with compo-
nents,

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(i, j) ranging over x,y,z (3)

and εtnb is the Frenet-Serret coordinate strain tensor at point s. The DAS response to a
wavefield at time t and point s is the εtt component of εtnb,

εtt = (̂t · x̂)2εxx + 2(̂t · x̂)(̂t · ŷ)εxy + 2(̂t · x̂)(̂t · ẑ)εxz

+(̂t · ŷ)2εyy + 2(̂t · ŷ)(̂t · ẑ)εyz + (̂t · ẑ)2εzz.
(4)

In practice, DAS does not supply point measurements of the strain described by equa-
tion (4). Instead, in order to improve the signal-to-noise ratio, measurements are averaged
over a length of fiber known as the gauge length. This is accomplished interferometric
process that delays the signal from one portion of the fiber so that the interference pattern
analyzed by the DAS system is constructed of signals from two separated portions of fiber
(Masoudi et al., 2013). The spatial resolution achieved through this process is currently on
the order of ten meters. Due to the gauge length, DAS supplies an average measurement of
the strain over the length (L),
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d(s) =

∫ L/2

−L/2
W (s− s′, L)εtt(s

′)ds′ (5)

where,

W (s, L) =

{
f(s), −L/2 < s < L/2
0, otherwise , (6)

Here we let f(s) = 1/L so that the DAS response is simply the mean value of the sensitiv-
ities explored by the fiber assuming constant strain over the gauge length.

Analytic expressions for DAS strain response from moment tensor sources

The direct arrivals in microseismic data are a rich source of information about the source
mechanism. Provided we are able to sample a sufficient solid angle of this radiated energy,
features encoded in the direct arrivals such as the relative polarity and relative amplitude of
the P-wave and S-wave mode can be used to make estimates about the source mechanism,
in the form of a moment tensor, that generates the seismic energy. Information about the
moment tensor can then be used to make inferences about the in-situ stress state, type of
fracturing, occurrence of new fractures and reactivation of existing fractures, and can help
optimize future treatments. Analytic modeling methods (e.g. Aki and Richards, 2002) are
an efficient way of generating large datasets of the direct arrival data generated by a general
moment tensor,

M =

Mxx Mxy Mxz

Myx Myy Myz

Mzx Mzy Mzz

 (7)

where Mij = fi/δxj represents a force couple pointing in the ith-direction, separated by a
small distance δxj in the jth-direction.

As stated in the introduction, deep learning algorithms are data-hungry, and generally
require large datasets to successfully learn the relationship between input data and network
outputs. If we hope to train a deep neural network to extract features associated with
moment tensor source mechanics from DAS-microseismic data, then we require a method
for efficiently generating large datasets for training. Coupling the ideas that the direct
arrivals contain significant information about the source mechanism and that we require
an efficient modeling algorithm to generate a sufficiently large dataset, we use an analytic
approach for modeling the strain produced by a general moment tensor source, and couple
it to a geometric model of the fiber to produce the DAS-microseismic data. While this
method is unable to consider the effect of complex geology on our data, it provides a means
of efficiently producing the large datasets required to examine the feasibility of using deep
learning techniques for estimating properties of moment tensor source mechanisms.
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Aki and Richards (2002) developed expressions for the analytic displacement at point
x = (x1, x2, x3) generated by a general moment tensor source M. The far-field displace-
ment, representing the P-wave and S-wave motion excited by a moment tensor source, at
a sufficient distance from the source such that the near-field can be ignored (a condition
typically met in microseismic monitoring) is,

ui =
1

4πρα3

mγi
r
ṡ(t− r/α)− 1

4πρβ3

mγi − γ′i
r

ṡ(t− r/β) (8)

where γi = xi/r is the directional cosine unit vector, r is the distance from the source, α
and β are the P-wave and S-wave velocity, and ṡ(t− r/v) is the first time derivative of the
source time function propagating with velocity v. In equation (8) we have made use of the
simplifying expressions, m = γpMpqγq and γ′i = δipMpqγq = Miqγq.

To model DAS-microseismic data, we require expressions similar to equation (8) for
the strain radiated by moment tensor sources. The strain tensor in equation (3) suggests
that this requires derivatives of the form ∂ui/∂xj . Therefore, taking spatial derivatives of
equation (8), and keeping only the resulting far-field terms

(
i.e. εij ∝ r−1

)
provides the

analytic expression for the far-field strain tensor at point x due to a moment tensor source
M,

εij = − 1

4πρα4

mγiγj
r

s̈(t− r/α) +
1

4πρβ4

mγiγj − Γij

r
s̈(t− r/β) (9)

where Γij = (γiγ
′
j + γ′iγj)/2. The DAS response is given by equation (5) with εtt given by

using equation (9) for the strain components in equation (4).

Radiation patterns and their influence on the data

The numerators in the two terms of equation (9) are the far-field P-wave and S-wave
radiation patterns. They are a function of the directional cosine (γi) and the moment tensor
source through the terms m, and Γij . These radiation patterns describe the portion of seis-
mic energy radiated in a given direction γi, by a moment tensor source M. Figure 1 plots the
εxx component of these radiation pattern for the P-wave in 1a-1d, and for the S-wave in 1e-
1h, for four sources MEXP,MTC,MCLVD, and MDC. Let MT = {Mxx,Mxy,Mxz,Myy,Myz,Mzz}
be the six independent components of moment tensor M of source type T, then the explo-
sive (MEXP), tensile crack (MTC), compensated linear vector dipole (MCLVD), and dou-
ble couple (MDC) sources used to generate the radiation patterns in Figure 1 are MEXP =
{1, 0, 0, 1, 0, 1}, MTC = {2, 0, 0, 3, 0, 2}, MCLVD = {−1, 0, 0, 2, 0,−1}, and MDC = {0, 1, 0,
0, 0, 0}.

Figure 1 suggests that moment tensor sources radiate energy in a manner that is di-
agnostic of the source type. For example the explosive and tensile crack sources radiate
P-wave energy in a similar manner for εxx strain as shown by comparing Figure 1a and 1b,
but radiate S-wave energy very differently as shown by comparing Figure 1e and 1f. Con-
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FIG. 1. The εxx component of the analytic strain radiation patterns for four source types. P-wave
radiation patterns for (a) MEXP, (b) MTC, (c) MCLVD, (d) MDC. S-wave radiation patterns for (e) MEXP,
(f) MTC, (g) MCLVD, (h) MDC.

versely tensile crack and CLVD sources radiate S-wave energy in a similar manner for εxx
strain as shown by comparing Figure 1f and 1g, but radiate P-wave energy very differently
as shown by comparing Figure 1b and 1c. Assuming our acquisition geometry records
a sufficient aperture of both the P-wave and S-wave radiation pattern, then the recorded
DAS-microseismic first arrivals should contain features diagnostic of the source type that
generated the.

Consider a horizontal well drilled perfectly on azimuth such that it is parallel to the
minimum horizontal stress σh. This represents a favorable scenario that allows fractures to
propagate deep into the reservoir in a direction transverse to the well, and open parallel to
the well (Addagalla et al., 2018). Without loss of generality assume that σh is parallel to
the x-direction, so that a straight fiber in the horizontal portion of this well is sensitive only
to the εxx component of strain, represented by the radiation patterns in Figure 1. Suppose
a propagating fracture excites seismic energy at the location xs = {3300, 400, 9300}ft in a
homogeneous medium with a P-wave velocity of 15000 ft/s and an S-wave velocity of 9000
ft/s. The energy radiated by this fracture is recorded by a straight DAS fiber in a horizontal
well aligned with the minimum stress, at a depth of 9300 ft. Figure 2a plots a schematic
representation of the source and fiber locations, and Figure 2b-2e plots the energy recorded
by the DAS fiber for the four source types considered in figure 1. Figure 2b-2e shows that
the source type is encoded within distinct features in the data. As an example, the tensile
crack type source produces balanced P-wave and S-wave amplitude ratios in Figure 2c, a
feature diagnostic of these source types (Eaton et al., 2014). Another example is the distinct
polarity pattern encoded in the S-wave energy of Figure 2e radiated by double couple types
sources. In general, microseismic field data is more complex and events are often generated
by closely related moment tensors that represent distinct fracture mechanisms, but result in
more subtle variations in the data than the ones shown in Figure 2. Motivated by the idea
that diagnostic features in the data provide clues to the fracture mechanism that generated
it, but that these features may be complex, the next sections of the paper set out to develop
neural networks that learn how to extract these features, and then analyze them to estimate
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the source mechanism encoded in the data.

FIG. 2. (a) Schematic representation of the fiber trajectory shown by the black line, and the source
location indicated by the red star. Data recoded by the fiber for (b) MEXP, (c) MTC, (d) MCLVD, and
(e) MDC.

DEEP NEURAL NETWORK FOR FEATURE EXTRACTION

Deep learning algorithms generally fall into two main categories, unsupervised and
supervised methods. Supervised methods require access to large labeled datasets in which
the output and inputs are known. Their goal is to learn a function that maps the inputs to
the outputs. Once trained they are able to label new input data and typically compute the
probability of that label being accurate. DAS being a relatively new technology means that
we do not have access to the large labeled datasets, such as those provided by conventional
MTI, crucial to the development of successful supervised learning networks. In light of
this, this paper focuses on the development of unsupervised learning techniques that learn
how to extract structure in the data, in the absence of labeled data.

The direct arrivals in microseismic data are rich with information about the source
mechanism. This information is encoded in features like the relative P-wave and S-wave
amplitudes (Eaton et al., 2014), first arrival polarity (e.g. Hardebeck and Shearer, 2002),
and the polarity differences between P-wave and S-wave energy. Making predictions about
the presence or absence of features within input microseismic records in the form of im-
ages, and then extracting those features offers a method for forming estimates of DAS-
microseismic source mechanisms. Convolutional neural networks (CNN) are a proven, and
powerful technology for complex and nonlinear feature extraction from image data, finding
applications in wide ranging disciplines (e.g. Bin et al., 2012; Hertel et al., 2015; Spanhol
et al., 2016; Lopes and Valiati, 2017), with many recent applications in geophysical and
geological problems (Qian et al., 2018; Wang et al., 2020; Sun et al., 2020). Deep convo-
lutional neural networks take input data in the form of images, pass them through multiple
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layers, known as hidden layers, and compute a feature space representation of the input
data. They can be thought of as a method of compressing our generally high dimensional
input data, to a low dimensional feature space that represents the input data by only its most
salient features.

In convolutional neural networks a filter of a prescribed size (Np×Np) is overlain on the
input image, where Np is the number of x and y pixels in the filter. The pixels overlain by
the filter are weighted by the filter coefficients, wi, summed and passed through a nonlinear
activation function g. The output of this process ŷj constitutes the jth value in the feature
map for that filter. Mathematically this process is expressed as,

ŷj = g

( N2
p∑
i

wiyi

)
(10)

where yi is the value of the ith pixel overlain by the filter. This filter slides across the image,
in a process akin to convolution, and the feature map value is computed for each position
of the filter. Generally, many filters are computed for each layer, and a single output feature
map is computed for each filter. Each filter is tasked with detecting the presence of a
single feature within the input image, and the feature map describes the spatial presence of
features in the input image. Deeper layers follow the same process, but combine all feature
maps from the previous layer as their input, allowing them to combine relatively simple
features from the previous layer to make predictions of increasingly complex and abstract
features as the network depth increases.

During training the filter weights are computed by minimizing a loss function which
measures how well the network is mapping the input images to some desired output. For
example in classification problems the loss function is typically a cross-entropy loss that
measures how well a network correctly labels input data. Minimization creates a network
that is tuned for extracting features required for accurate classifications. Many of the early
uses of CNN were directed at supervised problems in which the input and outputs were
known, and the networks goal was to learn the function, in the form of the filter weights,
required to map the inputs to the outputs (e.g. Hasegawa et al., 1991; Lo et al., 1995). In the
problem we are considering, we do not have the large labeled dataset required for this, and
so we turn our attention towards an augmented form of the CNN tuned for unsupervised
learning.

Convolutional autoencoders (CAE) for unsupervised feature extraction

Convolutional autoencoders (CAE) are an unsupervised learning algorithm, based on
the idea of CNN, that are useful in situations where we want to extract features from image
data, but do not have access to a large labeled dataset for training. The question in this sit-
uation is, how do we extract a meaningful feature space representations of our data, when
we are unsure what that representation may look like? CAE networks use an augmented
form of standard CNN to solve this challenge. Figure 3 shows the general network archi-
tecture for a CAE, which consists of two main components, an encoder and a decoder. The
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encoder is a standard deep CNN, and its main goal is to extract features from an input DAS-
microseismic image, outputting the salient feature space representation of the image as an
N -dimensional vector. The decoder uses this feature space representation as its input, and
passes it through a deconvolutional neural network, which is a mirror image of the encoder,
composed of transposed convolutions. Its goal is to form an accurate reconstruction of the
original input image, given a feature space representation for that image. With these goals
in mind, an appropriate loss function for a CAE architecture should track some measure of
the discrepancy in the input images and those generated by the decoder. In this study, the
loss function we minimize through training of the CAE is the L2 norm of the difference in
the input and reconstructed images,

φ =

NI∑
i

∣∣∣∣ψ̂i(w)− ψi

∣∣∣∣2
2

(11)

where ψ̂i(w) is the ith reconstructed image as a function of the weights w, ψi is ith input
image, and NI is the number of images in the training dataset.

FIG. 3. Overview of network architecture used in convolutional autoencoders. The squares in each
layer represent a single feature map.

During training, the loss function in equation 11 is minimized with respect to the model
weights w. As training progresses, the CAE learns the weights that produce an optimal
mapping from input images to reconstructed images. For the decoder to be successful in its
reconstruction, the feature space representation must contain sufficient information about
the important features in the input image. Therefore, for the loss function to be minimized
the encoder must learn the weights that allow it to extract the N most salient features
from input images. When training is complete the decoder is detached from the network,
resulting in an encoder network that maps input DAS-microseismic images to their salient
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features. In the next sections we will discuss methods for using these features to make
predictions about the moment tensor source that generated the data.

Analyzing features for source mechanism information

Training the CAE produces a function that maps a high-dimensional input image con-
taining tens-of-thousands of pixels, to a low-dimensional feature space representation con-
taining the most salient features in the image. The feature space is anN -dimensional vector
that describes the presence and absence of certain features in the image, and is diagnostic
of the class of the input image. However, further processing is generally required to under-
stand the information contained in the feature space. In this paper, we take two approaches
to realize this goal. The first is a common approach to understanding structure in feature
space representations, and is known as clustering. The second approach, is more novel and
consists of training a secondary deep neural network, known as a generative adversarial
network (GAN), that learns how to map the feature space representation to an estimation
of the moment tensor.

Clustering

Clustering is a commonly used unsupervised learning method for unveiling relation-
ships in complex data. Many algorithms exist for clustering, but all share the same goal of
grouping data, such as feature vectors, into groups such that items within the same group
are more similar to each other than they are to feature vectors in any other group (e.g. Jain
et al., 1999). Many clustering algorithms group points based on some measure of their
distance to other points in the feature space. For example, one of the most common meth-
ods for clustering is the k-means algorithm. In this algorithm a predetermined number of
clusters, k, and points are then assigned to the cluster associated with their closest centroid
µi. K-means comes with the limitations of requiring a predetermined number of clusters,
something we may not know, and its preference for spherical clusters of approximately
equal data density (Nagy, 1968; Jain et al., 1999).

In this paper we use a more sophisticated clustering algorithm, introduced by Ester et al.
(1996), known as density-based spatial clustering of applications with noise (DBSCAN).
Figure 4 highlights the central idea behind this algorithm. A Euclidean search distance,
and minimum number of points are specified, and the algorithm cycles through every point
in the dataset searching the neighborhood of that point for the presence of other points. If
a point has the minimum number of points in its neighborhood then it is deemed a core
point for the cluster to which it belongs (the gray star in Figure 4 is a core point). If a point
does not include the minimum number of points in its neighborhood but is reachable by a
core point (that is, it lies in the neighborhood of a core point), it is deemed a border point
of the cluster to which its associated core point belongs (the squares in Figure 4 are border
points). The last class of points, deemed noise points, are those points that do not have the
minimum number of points in their neighborhood, and are not reachable by a core point
(the triangles in Figure 4 are noise points).

One of the main benefits of DBSCAN is that it does not require a predetermined num-
ber of clusters. Instead, it decides how many clusters exist in the data based on how many
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FIG. 4. Schematic overview of DBSCAN clustering algorithm. The gray star represents a core point,
the squares border points, and the triangles noise points. The solid circle is the neighborhood of
the core point, and the dashed circles are the neighborhood of the border points. The minimum
number of points in this example is set to five.

unique core points it finds. It is also not limited to isotropic clusters, but is limited by pre-
ferring clusters with similar data density. Another benefit of DBSCAN is that it can cluster
nonlinear data, allowing it to be more successful in instances where simpler algorithms like
k-means produce poor clusters.

Once the feature space representations are clustered, the data in each cluster can be ex-
amined to understand what kind of data each cluster represents. For example, examination
of the data may reveal that all of the data in one cluster share the same S-wave polarity
patterns that were shown to be diagnostic of double couple type events. Clustering on the
feature space representations provides a method for grouping data based on its similarity,
and then investigating that similarity for source information. If the features extracted by the
CAE carry important source information, then data in the same cluster should share similar
source mechanisms.

Generative adversarial networks (GAN) for moment tensor estimation

The second method we examine for extracting source mechanism information from
the feature space representation is a technology known as generative adversarial networks
(see figure 5 for a schematic representation). These networks are comprised of two neural
networks which compete against each other in a zero sum minimax game (Goodfellow
et al., 2014). In our approach, the first network, known as the generator (G), takes feature
space representations, output from the CAE, and tries to map them to a good estimate of the
true data distribution, consisting of moment tensor labels. Put another way, the generator’s
goal is to produce believable moment tensor labels for an input feature space representation.
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The second network, known as the discriminator (D), takes in a feature space representation
and moment tensor label pair and assigns a probability the label belongs to the true data
distribution. Its goal is to correctly differentiate true labels and those generated by network
G.

FIG. 5. Schematic representation of a generative adversarial network for predicting moment tensor
labels from feature space representations. G is the generator network, and D is the discriminator
network.

Training progresses by optimizing the cross-entropy loss function (Goodfellow et al.,
2014),

min
G

max
D

V (D,G) = Ex∼pdata(x) log
[
D(x)

]
+ Ez∼pz(z) log

[
1−D

(
G(z)

)]
(12)

where D(x) is the probability that x came from the data distribution, G(z) is the sample
generated by the generator with input z, Ex∼pdata(x) is the expectation over all data samples,
and Ex∼pz(z) is the expectation of all inputs to the generator z. Early in the training process
when the generator has not yet learned a mapping of input data z to a good estimate of the
true data distribution, the discriminator is good at identifying true data labels and assigns
low probabilities to samples created by the generator network. To minimize equation (12),
the generator must learn how to produce labels that better match the true data distribution,
convincing the discriminator to assign generated labels a high probability of belonging to
the true distribution. As this occurs the maximization of equation (12) requires that the
discriminator becomes more adept at detecting generated labels, which in turn forces the
generator to improve in its task. This back-and-forth competition between the networks
results in a generator that produces labels for the input feature space representations that
are a good representation of the true labels.

Once training is complete, the generator network is extracted, providing a network that
is capable of forming accurate predictions of the label associated with a feature space rep-
resentation. In our study we will test two candidates for the type of labels we try to predict,
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the Hudson space representation of the moment tensor (Hudson et al., 1989), and the six
independent components of the moment tensor. This may seem to be problematic from
the perspective of requiring information about the true moment tensors associated with the
data. However, the approach we take is to learn the mapping from feature space representa-
tion to moment tensor label on synthetic data and then use the synthetically trained network
to make predictions of the moment tensor on field data. Given sufficient training data, with
a sufficient variation in the moment tensor, this should provide a physics driven catalog for
mapping features to moment tensor predictions. Ideally as the use of DAS becomes more
prevalent in field applications, a conventional MTI could be computed on small subset of
the data, and the supervised techniques we develop here could readily accommodate these
field data labels. It is important to note that identification of the clusters is unsupervised
but their labeling by moment tenor source was supervised task.

The above problem of mapping data in the form of feature space representations to mo-
ment tensor label can also be achieved with a standard feed-forward neural network using
supervised learning. However, generative adversarial networks come with some potential
advantages. Chief among these is the distinct difference in the way the GAN and stan-
dard neural networks learn. Neural networks take data, here CAE extracted features, and
predict a model that maps the data to an estimate of the moment tensor. This is akin to
an inverse problem in which the network can only leverage the labeled data. Conversely
GAN learn in two distinct phases. The generator takes in data and learns how to produce
moment tensor estimates, but it does so independently of existing moment tensor labels,
instead learning how the data and moment tensor relate by gaining an understanding of the
behavior of the GAN discriminator (Goodfellow et al., 2014). Thus the generator training
is unsupervised with respect to the moment tensor labels. The discriminator learns how the
generator behaves in forming moment tensor predictions, and in doing so learns how the
data and moment tensor relate through a verification problem. In other words the discrimi-
nator learns by verifying that the input data (CAE features) and the moment tensor its been
supplied form a valid pair, which is more akin to a forward problem. This suggests the
GAN may be able to leverage smaller datasets since it learns about the physics of the prob-
lem through simpler forward problem instead of the inverse problem the neural network
must learn through.

Generative adversarial networks come with other advantages as well. It is not always
trivial to determine and effective model-space loss function when using neural nets. GAN
circumvent this issue by using the data driven loss function in equation (12). Another
potential benefit arises if a small subset of labeled field data is used to augment the synthetic
data. In this case the discriminator can determine if systematic differences exist between
the field and synthetic data. If discrimination occurs on the basis of data alone, and the
discriminator assigns a low probability to correct label-field-data pairs, then it suggest a
difference exists between field data and modeled data. Thus the discriminator can be used
to gain information that can lead to better modeling or feature extraction. The distinct
advantages that GAN supply over simpler neural networks motivates their use in this paper.
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NUMERICAL EXAMPLES

Analytic modeling dataset

To test the feasibility of using the above deep learning tools for extracting meaningful
feature space representations from DAS-microseismic data, and then use those representa-
tions to form predictions of the underlying source mechanism, we generate an analytically
modeled test dataset. This dataset consists of 10,000 events with random moment tensors,
constrained by being either compensated linear vector dipole, double couple, or tensile
crack dominant. The Hudson space (Hudson et al., 1989) distribution of these sources is
plotted in Figure 6. Data were generated using equation (9), where the P-wave velocity
(α), S-wave velocity (β), and source position were allowed to vary for each event, with
α = 15000± 1000 ft/s, β = 9000± 600 ft/s, xs = 3500± 200 ft, and ys = 400± 200 ft.
A straight DAS fiber with the geometry of the well in Figure 2 is used, that is with a vertical
depth of 8800 ft, a total depth of 9300 ft, and a horizontal length of 5700 ft. To simulate
the DAS fiber response, the analytically propagated wavefield is projected onto the fiber
using equations (4), (5), and (6). Figure 7 plots six randomly selected event records from
this dataset, as a representation of the input data.

FIG. 6. Hudson space representation of the moment tensor source distribution in the input data set.
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FIG. 7. Images randomly selected from the data distribution in Figure 6. (a) Image 1436, (b) image
1740, (c) image 4120, (d) image 5494, (e) image 6016, (f) image 8002.

CAE network architecture and design

Successful networks require tuning of what are known as network hyperparameters.
These hyperparameters define the network architecture and are typically not trainable. Im-
portant hyperparameters for the CAE architecture in Figure 3 are the number of convolu-
tional layers, the number of filters in each layer, and the size of the filters in each layer,
respectively influencing the nonlinearity that can be modeled, the number of features that
can be learned, and how local those features are. Generally, the optimal hyperparameters
are deduced through trial-and-error by running many simulations and monitoring how a
change in a hyperparameter affects the loss functions minimization. The goal is to produce
the network that is minimally complex while still meaningfully reducing the loss function.
Overly complex networks are expensive to train, and run the risk of memorizing the input
data, preventing them from generalizing to new data, while overly simple networks cannot
learn complex relationships between data and features. The network architecture used in
this study is summarized in table 1; the stride dictates how far the filter moves in pixels,
strides smaller than the filter size result in overlapping filters.

Table 1. Convolutional autoencoder network architecture

Layer No. Activation Number of Filters/Nodes Filter Size Stride
1 ReLU 32 5x5 2
2 ReLU 64 5x5 2
3 ReLU 128 5x5 2

Feature Space tanh 7 N/A N/A

A batch normalization (Bjorck et al., 2018) is included between each of the convolu-
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tional layers in the encoder to make training more stable. The optimizer chosen for this
study was Adam with an initial learning rate of 1× 10−5 due to its success in training deep
CNN (Kingma and Ba, 2017). Rectified linear units (ReLU), is the activation function
chosen for the convolutional layers, while the output layer in the decoder has a hyperbolic
tangent (tanh) activation to force the reconstructed images to the same [-1,1] range as the
input images.

Pre-processing of data

Perhaps the most important hyperparameter is the feature space dimensionality. Similar
to the other hyperparameters, we desire the minimally complex feature space that captures
sufficient information about the input image, such that the decoder can successfully recon-
struct the input images. Higher dimensional feature spaces lead to better image reconstruc-
tions but run the risk of learning less meaningful features. For example, the upper bound
on the feature space dimensionality is the dimensionality of the input images, but in this
case the input images are mapped to themselves, and every pixel (feature) in the input im-
age is learned. Clearly, not every pixel will contain important information about the source
mechanism. How do we then decide on the size of the feature space representation?

A reasonable starting range for the feature space dimensionality can be determined
through domain specific knowledge and intuition. In our study, we are trying to capture
features associated with a moment tensor that can be fully characterized by six indepen-
dent components, Mxx, Mxy, Mxz, Myy, Myz, and Mzz. Thus the quantity we are trying
to estimate contains six components, or features, that can influence the data. It is then hy-
pothesized that the feature space will need to contain approximately six features in order
to capture the variability in the input images related to the moment tensor sources. To test
this hypothesis we will monitor the loss function over 100 epochs for feature space di-
mensionality ranging from three features to twenty-five features. The minimally complex
feature space that sufficiently minimizes the loss function will be chosen for the feature
space dimensionality. If multiple feature space dimensionalties produce similar reduction
in the loss function, then the smallest feature space of that group will be selected for further
testing.

Training the CAE on raw input data proved to be challenging. Figures 8a-8c plot three
randomly selected input images, Figures 8d-8f plot the CAE predictions using ten features
in the feature space, and Figures 8g-8i,plot the difference between input and reconstructed
images. On the whole these predictions are relatively poor for what is expected from the
CAE training process. Large errors exist in the prediction of the P-wave (arrows labelled B
in figure 8), and the existence of erroneously predicted moveout (arrows labelled A in figure
8), and nodal locations is evident (arrows labelled C in figure 8). Even more discouraging
is that the images in columns 2 and 3 of Figure 8, which represent images held back for
validation, have many errors. This suggests that the algorithm is not generalizing well to
data that was absent during training. It is possible that our hypothesis was incorrect, and
more than ten features are required to characterize the input data. Figure 9 plots the same
results as Figure 8 but now for a feature space defined by 25 features. While the predictions
improve for all three input images, this example highlights a problem with using the raw
data as an input. Comparison of Figures 8h and 9h, shows that the increased number of
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features has allowed the CAE to make better predictions about the moveout. On the surface
this may seem beneficial, however, we are interested in learning information about the
source mechanism. Further increase in the feature space dimensionality would likely result
in better predictions, however, it is apparent that the algorithm is now learning features
associated with source location, and velocity structure, parameters that while important are
not what we are interested in learning for this study. Their inclusion here acts to increase the
complexity of the feature space, without providing us improved information about source
mechanisms.

FIG. 8. (a)-(c) Three randomly selected input images, (d)-(f) CAE predictions of these images for
ten features in the feature space, (g)-(i) differences between original and predicted images. Arrow
A points to incorrectly predicted moveout, arrows B point to poorly predicted P-waves, arrows C
point to poorly predicted nodes, and arrow D points to incorrectly predicted polarity.

Motivated by the above discovery that the raw data is unsuitable for our study, because it
inherently contains information not related to the source mechanism, we set out to develop a
pre-processing workflow that removes velocity and location information, allowing the CAE
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FIG. 9. (a)-(c) The same three input images from Figure 8a-8c, (d)-(f) CAE predictions of these
images for twenty-five features in the feature space, (g)-(i) differences between original and pre-
dicted images. Arrow A points to the improvement in the predicted moveout compared to Figure
8h, arrows B point to poorly predicted P-waves.

to focus on source mechanism parameters. Figure 10 highlights the workflow we adopt in
this paper. First, an apex is picked for the P-wave and S-wave modes. Next, NMO curves
are fit to the P-wave and S-wave, and an NMO correction is applied to each separately,
producing flattened P-waves and S-waves. When each NMO correction is applied, the
unflattened event is filtered, producing the image in Figure 10c. The P-wave and S-wave
are then extracted in windows centered on the P-wave and S-wave apexes, that is 32-pixels
by 416-pixels in the x-direction and y-direction respectively. The windowed P-wave and
S-wave images are then concatenated, producing the data that will be input to the CAE in
Figure 10d.

We then proceed by examining the optimal feature space dimensionality on the pro-

CREWES Research Report — Volume 32 (2020) 19



Eaid et al

FIG. 10. Processing workflow to produce images that aid the CAE in learning source mechanism
features. (a) Raw input data, (b) data with picked apex locations and NMO curves, (c) flattened
data with window outlines for P-wave (yellow) and S-wave (blue) extraction, (d) processed image
after NMO correction, windowing, and P-wave and S-wave concatenation.

cessed images. Figure 11 plots the loss function for 300 epochs as a function of the feature
space dimensionality for three to twenty-five features. The loss function continues to de-
crease with the number of features in the feature space, until the feature space consists of
approximately 6-7 features. After this point the loss function appears to saturate, and the
inclusion of more features in the feature space acts to increases the complexity, without
producing substantially more accurate predictions. For this reason, the optimal number of
features required to characterize the input data is chosen as seven for this study.

In the training phase, 80% of the data (8000 images) are used for training and 20% are
used for validation. The validation data is not used for training, but the loss is calculated on
reconstructions using the validation data at the end of each epoch. Monitoring of the vali-
dation loss is important to minimize the risk of over-fitting our model. A lack of decrease,
or an increase in the validation loss signals that the algorithm is no longer generalizing to
data that is absent during training, and that the training data is being memorized, leading to
an over-fit model. To mitigate this risk, an early stopping criteria is used such that if the val-
idation loss does not decrease for 100 epochs, the training is stopped. Figures 12a-12e plot
five randomly selected images from the processed dataset, Figures 12f-12j plot the CAE
predictions using seven features, and Figures 12k-12o plot the differences in the processed
images and their predictions. It is apparent that the processing has helped the CAE learn
how to accurately predict the input images. Furthermore, the number of features required
for success is similar to our hypothesis of six features.

While the accurate predictions in Figure 12 are encouraging, we need to analyze the
features extracted from the input images, using the clustering and GAN methods discussed
previously, to understand if they contain information about the source mechanism encoded
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FIG. 11. Training loss versus epoch for the loss function in equation (11), for feature spaces defined
by 3 latent variables (red), 4 latent variables (orange), 5 latent variables (yellow), 6 latent variables
(green), 7 latent variables (black), 15 latent variables (blue), and 25 latent variables (purple).

FIG. 12. (a)-(e) Five randomly selected input images from the processed dataset, (f)-(j) CAE pre-
dictions of these images for seven features in the feature space, (k)-(o) differences between original
and predicted images.

in the data. The first method we will examine is clustering using the DBSCAN algorithm.
Prior to clustering, it is common to perform a dimensionality reduction step. As the dimen-
sionality of the feature space increases, the finite dimensional training dataset occupies a
smaller subset of the feature space. When this occurs some of the ideas involved in cluster-
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ing, such as Euclidean distance and nearest neighbor become less effective discriminators
(Domingos, 2012).

Introduced by van der Maaten and Hinton (2012), a powerful method for this dimen-
sionality reduction is t-distributed stochastic neighbor embedding (t-SNE). In the high di-
mensional space the similarity of two data points xi and xj is the joint probability pij
that they would choose each other as neighbors, if neighbors were chosen in proportion to
their probability density under a Gaussian centered on xi where the probability is (van der
Maaten and Hinton, 2012),

pij =
exp(−||xi − xj||2/2σ2∑
k 6=l exp(−||xk − xl||2/2σ2

. (13)

A similar joint probability is computed in the low dimensional space between the counter-
part points yi and yj . To reduce challenges associated with crowding, moderate distances in
the high dimensional space are mapped to large distances in the low dimensional space by
using a heavier-tailed distribution (van der Maaten and Hinton, 2012) such that moderately
dissimilar points in high dimensional space become very dissimilar in low dimensions. A
Student t-distribution with one degree of freedom is a common choice for the heavy-tailed
distribution resulting in the low dimensional joint probability,

qij =
(1 + ||yi − yj||2)−1∑
k 6=l(1 + ||yk − yl||2)−1

. (14)

T-SNE finds a low dimensional representation of the data that minimizes the mismatch
between the two probability distributions in equations (13) and (14). A natural measure of
this mismatch is the Kullback-Leibler divergence (Kullback and Leibler, 1951),

KL(P ||Q) =
∑
i

∑
j

pijlog
pij
qij

(15)

Figures 13a-13u plot cross-plots of one feature versus another for all seven features in
the feature space, where each dot represents one of the 10,000 input images, colored by
their assigned cluster from applying DBSCAN to the t-SNE representation of the data as
described below. The cross-plotted features in Figure 13a-13u are hard to interpret due to
their high-dimensionality and the crowding of points that occurs in the high-dimensional
space. Applying t-SNE to this feature space representation, the result of which is plotted in
Figure 13v, creates a much more cluster friendly representation of the data. Clearly, t-SNE
has separated the natural clusters in the feature space (Figures 13a-13u) resulting in a more
successful application of the DBSCAN clustering algorithm.

The t-SNE representation of the feature space is clustered using DBSCAN with a search ra-
dius of 5.2, and a minimum number of samples of 120. Using these parameters, DBSCAN
detects the seven clusters plotted in Figure 13v. What we are interested in, is whether these
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FIG. 13. (a)-(u) Cross-plots of the seven features in the feature space, where each subplot is a
cross-plot of one feature versus another, and each dot is one of the 10,000 images. (v) The t-SNE
representation of the cross-plotted features in (a)-(u).

clusters contain events that share similar source mechanisms, which would indicate the ex-
tracted features contain important source information. To examine this, the 10,000 input
images are plotted by the Hudson space representation of their moment tensor source, and
colored by the cluster to which they belong. The results of this are plotted in Figure 14.
By-and-large, points that fall within the same cluster in Figure 13v, plot in a similar region
of Hudson space. For example, points that fall within the red cluster tend to plot in the
tensile crack closing (TCC) portion of Hudson space. This indicates that points that are
similar in their feature space representation, which results in them being grouped in the
same cluster, also share similar source mechanisms. This suggests that the convolutional
autoencoder we have trained is extracting meaningful source mechanism information from
the data, and that clustering groups images with similar source characteristics.
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FIG. 14. Images plotted by the Hudson space representation of their moment tensor source, colored
by the cluster to which they belong in Figure 13v.

Encouraged by the results obtained through clustering analysis, we now analyze the
use of generative adversarial networks for predicting the source mechanism information
encoded in the feature space. A GAN is trained for 250 epochs, using 80% of the data for
training, and 20% for validation. For more robust results, Goodfellow et al. (2014) suggests
training the discriminator for multiple iterations per epoch, and training the generator only
once per epoch. The number of times the discriminator is trained is a network hyperpa-
rameter, again tuned through trial-and-error. Here we train the discriminator 16 times for
each generator training. Two scenarios are tested, one where the goal of the generator is
to estimate the two-component Hudson space label, and another where the generator tries
to predict the six-independent components of the moment tensor using the feature space
representations as inputs. The generator and discriminator network are standard densely
connected neural networks, each with three layers. Table 2 summarizes the network archi-
tecture for the generator and table 3 summarizes the discriminator architecture.

Figure 15a plots the true Hudson space labels associated with the input data in purple,
and the labels predicted by the trained generator in yellow. The distribution of the predicted
labels matches the true dataset very well. Figure 15b plots the difference in the true and
predicted labels with histograms showing the variance in the error in u and v components of
the Hudson space labels. On the whole, the generator accurately predicts the Hudson space
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Table 2. Generator network architecture

Layer No. Number of Neurons Activation
1 64 Leaky ReLU, α = 0.1
2 128 Leaky ReLU, α = 0.1
3 64 Leaky ReLU, α = 0.1

Output 2 or 6 Linear

Table 3. Discriminator network architecture

Layer No. Number of Neurons Activation Dropout
1 64 Leaky ReLU α = 0.1 0.35
2 128 Leaky ReLU α = 0.1 0.35
3 64 Leaky ReLU α = 0.1 0.35

Output 1 Sigmoid 0

label associated with the feature space representation. This lends further credence to the
idea that the feature space representation contains important source information. If it did
not then the association between feature space and Hudson label would be approximately
random, and the generator would struggle to find a quality mapping between the two.

FIG. 15. (a) True labels (purple) and labels predicted by the trained GAN (yellow). (b) The difference
between the true and predicted labels in (a) with histograms showing the variance in the error in
the Hudson variables u and v.

A more challenging problem, that provides superior information about the source mech-
anism, is estimation of the full moment tensor from the feature space. Solving this problem
follows a similar course to estimating the Hudson space label, but the generator is now
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trained to predict a six-component vector, that is a good representation of the true moment
tensors in the input data. Figure 16a-16f plots histograms for the error in the estimated
moment tensor components for Mxx, Mxy, Mxz, Myy, Myz, and Mzz. While the errors are
larger than those when predicting the Hudson space labels, they are still reasonable for all
six-components. This suggests that the extracted features contain important information
about the full moment tensor source that generated the data, and that the GAN can learn
this relationship to predict the moment tensor.

FIG. 16. Histograms for the error in the estimated moment tensor components using the GAN
prediction for (a) Mxx, (b) Mxy, (c) Mxz, (d) Myy, (e) Myz, and (f) Mzz.

EXTENSION TO FIELD DATA

The encouraging results of the synthetic examples suggest that the direct arrivals in
microseismic data contain important source information, and that CAE architecture can be
used to extract them. We are interested in extending this concept to examine whether or
not we can extract source information from more complex field data. We follow the same
processing workflow from Figure 10, to place the field data in a more CAE friendly domain.
Figure 17a-17c plots the raw field data with NMO curve fit through semblance analysis, the
extracted P-wave and S-wave, and the concatenated image for the CAE respectively. This
concatenated image is then passed into the CAE that was trained on the synthetic data,
and the reconstruction is shown in Figure 17d. While this reconstruction is not a perfect
representation of the field data, it captures the significant features. For example the field
data has attenuation of its P-wave on the toe side of the well (right side of Figure 17c) which
is captured by the reconstruction, and the distinct polarity of the S-wave is also captured.

Motivated by this successful reconstruction, the features extracted by the encoder are
supplied to the generative adversarial network, and a Hudson space label of (u, v) =
(−0.1994, 0.3006) is predicted. The moment tensor,
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FIG. 17. (a) Field data, with picked apex and NMO for P-wave (red) and S-wave (blue), (b) ex-
tracted P-wave and (c) S-wave, (d) concatenated image for input to the CAE, and (e) the CAE
reconstruction.

M =

 0.69 1.00 −0.69
1.00 0.35 −0.22
−0.69 −0.22 0.69

 (16)

producing a Hudson space label (u, v) = (−0.2012, 0.3019) is then used as input to equa-
tion (9) for modeling. If the Hudson space label predicted by the GAN is an accurate one
for the input data, then the modeled data should correlate well to the input field data. Fig-
ure 18a plots the field data, and Figure 18b the synthetic modeled data with the Hudson
space label (u, v) = (−0.2012, 0.3019). The modeled data captures the important trends
in the field data such as the S-wave polarity pattern, and attenuation of the toe side P-wave
energy, suggesting that the predicted Hudson space labels is a good approximation of the
true moment tensor generating the field data.

DISCUSSION

We have developed deep learning techniques for estimating the source mechanism en-
coded within the direct arrivals of DAS-microseismic data. We are motivated by (1) the
growing interest in DAS in reservoir monitoring during hydraulic fracturing, and in seis-
mology studies, (2) the lack of studies focused on extracting earthquake source mechanisms
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FIG. 18. (a) Field data, (b) data modeled with a moment tensor producing a similar Hudson space
label to the one predicted by the generator.

from DAS data, an (3) the desire for efficient data-hungry algorithms that would benefit
from the large datasets that DAS supplies. DAS is becoming an increasingly prevelant
technology for microseismic monitoring, and has potential applications in seismology. Be-
ing a relatively new technology, robust methods do not currently exist for processing these
large DAS-microseismic datasets for source information. The methods developed in this
paper enable the estimation of source mechanism information from DAS data, increasing
the information we can extract from DAS-microseismic data.

DAS technology offers an economic means of acquiring microseismic data during hy-
drualic fracturing, that allows for the dual purposing of wells for production and monitor-
ing, and reduces the need for dedicated monitoring wells. The direct arrivals in the DAS-
mircroseismic data are encoded with important information about the source mechanism
that generated the data. This information is encoded within features of the direct arrivals
such as the relative P-wave and S-wave amplitudes and polarity. In our method we lever-
age feature extracting deep learning techniques to detect the presence of these features, and
make predictions about the class of source mechanism that generated the data.

Our results supply evidence that DAS-microseismic data do in fact contain features
that provide clues to type of source mechanism that generated the data, and that these fea-
tures can be extracted and processed to gain knowledge of the source mechanism. Part
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of the motivation for this work is to extend the usefulness of DAS-microseismc data that
is being acquired with increasing frequency. DAS data has the potential to transform en-
tire unconventional fields into distributed strain sensors, and the methods for extracting
source information developed here could expedite its application. Furthermore DAS has
the potential to complement broadband seismometers used for seismology studies of large
earthquakes, where methods for understanding the source mechanism are crucial.

Many of our conclusions and results derive from numerical simulations in relatively
simple media, however, the results presented in this paper appear to transfer to the pro-
cessing of direct arrivals in field data for source information. For the work presented here
to be useful, they must be robust on large field datasets. Future work should focus on the
extension of these methods to a full field dataset. Ideally, a dataset with conventional MTI
should be compared to the methods developed in this communication, and neural network
training should be preformed on field data. The advantage with the method presented here,
is that once a mapping is learned, it should generalize well to other datasets, especially
similar data from perhaps a different well in the same field.

CONCLUSIONS

Distributed acoustic sensing (DAS) is a growing technology for seismic reservoir mon-
itoring, especially in unconventional fields requiring hydraulic fracture treatments. Offer-
ing access to unique acquisition geometries, DAS in principle supplies datasets that should
contain features necessary for moment tensor estimation. DAS supplies large datasets of
seismic strain measurements, preventing them from being directly included in conventional
moment tensor inversion. To facilitate the estimation of moment tensors from DAS data
we turn our attention to algorithms rooted in deep learning. Using a convolutional au-
toencoder we compress DAS microseismic images to a vector of only their most salient
features, with the expectation that these features contain important information about the
moment tensor. These features are then analyzed for the moment tensor information they
contain using clustering techniques and through training of a GAN for moment tensor pre-
diction. Feature vectors are shown to form localized clusters, where each cluster contains
data with strongly correlated source mechanisms. The trained GAN proves to be accurate
in its ability to predict the moment tensor associated with a given feature vector. The GAN
trained on synthetic data is then used to predict the moment tensor from an example field
data event. Data modeled with the predicted moment tensor correlates strongly with the
field data. These results suggest that DAS-microseismic data contain features indicative
of the source mechanism, and that deep learning techniques can be used to extract these
features, and process them to form predictions of the source mechanism.
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