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ABSTRACT

Distributed acoustic sensing is an important technology that offers distinct benefits for
reservoir monitoring. The increased access they provide to borehole acquisition geome-
tries, has the potential to supply transmission data crucial to successful applications of full
waveform inversion on land data. The properties of the fiber such as its geometric shape,
and the its gauge length, especially in relation to the geometry, are expected to have impli-
cations for parameter resolution in FWI. In this paper we explore the role of the fiber gauge
length in FWI, by examining (1) how it affects a given fibers sensitivity to each component
of the strain field, and (2) how the relative sensitivity to these strain components affects
parameter resolution. This explored through numerical simulations on a simple model on
both clean and noisy data, as well as a more complex, and geologically reasonable model.

INTRODUCTION

Full waveform inversion (FWI) is a powerful tool for estimating the spatial distribu-
tion of subsurface properties (Tarantola, 1984, 1986). Elastic FWI, proposed by Tarantola
(1986), assumes isotropic-elastic wave physics, and focuses on estimating the spatial dis-
tribution of three elastic parameters, typically P-wave velocity (vp), S-wave velocity (vs),
and density (ρ) to characterize the medium. The successful application of FWI faces the
two major challenges of cycle skipping, and cross-talk when applied to land data. Cycle
skipping occurs when the observed and modeled data are out of phase by more than one
half cycle, causing adjacent cycles to align during minimization, leading to erroneous up-
dating of the model. Its occurrence is a result of the choice of objective function and the
data quality as a function. While mitigation strategies focusing on the choice of objec-
tive function have been developed (van Leeuwen and Mulder, 2010; Luo and Sava, 2011;
Warner and Guasch, 2016; Metivier et al., 2018), the single best method for combating cy-
cle skipping is to acquire the long-wavelength data that prevents the matching of adjacent
cycles. Cross-talk is also a function of the acquisition geometry, and occurs when the per-
turbation of two subsurface properties produces similar perturbations in the wavefield over
the acquisition aperture. When this occurs, changes in the wavefield could reasonably be
caused by a perturbation in either property, and FWI can erroneously update the incorrect
property. From this discussion, it is evident that the acquisition geometries afforded by our
sensor technology are paramount for land applications of elastic FWI.

The prevalent technology for recording the wavefields required for elastic FWI, are 3C
geophones. This is due in large part to their ability to economically provide multiple com-
ponents of high signal-to-noise ratio (SNR) data. However, geophones come with a major
drawback. The size of geophones limits their access to the borehole geometries crucial for
providing transmission type data. Geophones often affect production processes in bore-
holes, requiring dedicated monitoring wells, or production shut-in for their deployment.
The expense of horizontal wells, means that geophones are rarely deployed in them, as
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dedicated monitor wells, and shut-in become uneconomical. The transmission data that
can be acquired with sensors in borehole geometries provides crucial long-wavelength in-
formation about the subsurface than mitigate cycle-skipping. Additionally, cross-talk can
be strongly mitigated when we have access to large aperture recording provided by a com-
bination of surface and borehole recording (Pan et al., 2018).

A relatively new technology that provides enhanced access to borehole geometries is
distributed acoustic sensing (DAS). Using non-invasive optical fibers for sensing seismic
strain, DAS can economically deployed in boreholes without requiring dedicated moni-
toring wells, or well shut-in. However, due to the rigidity of the optical fibers employed
in DAS, they are only sensitive to those normal components of strain along the tangential
component of the fiber (Kuvshinov, 2015). Shaping DAS fibers, into e.g. a helix, alters the
tangents sampled by the fiber which has important implications on the parameter resolu-
tion that can be obtained through FWI (Eaid et al., 2020). It is also important to note that
DAS sensors are not point sensors. To improve signal-to-noise, the strain measurements
are averaged over a spatial length of fiber on the order of ten-meters, known as the gauge
length (Dou et al., 2017). This limits the benefit of shaping fibers by averaging away some
of the enhanced sensitivity they supply. In fact, most commonly deployed fiber geometries
fall into a symmetry class of fibers insensitive to shear strains (Eaid et al., 2020). However,
Farhadiroushan et al. (2016) indicate that small gauge lengths on the order of 5cm appear
to be on the horizon. In this paper we are interested in exploring how gauge lengths smaller
than the distance advanced by a helical wind of fiber, which unlocks access to the shear
strains, influences parameter resolution in FWI. This will be explored using a number of
simple models and numerical simulations.

SIMULATION OF DAS DATA

Developing an inversion framework for DAS data requires a general methodology for
simulating the data supplied by DAS fibers. This requires two main components, a method
of simulating isotropic-elastic wavefield propagation, and a geometric model for the fiber
that allows for projection of this elastic wavefield onto the tangent of the fiber. In this paper
we consider 2D frequency domain isotropic-elastic wave propagator that involves medium
perturbations in depth and the inline coordinate, but not the cross-line (y) direction. The
fiber, is a 3D object, but is embedded in a medium with no wavefield or medium variations
in the y-direction, allowing us to consider only its x-z properties.

Elastic wavefield simulation

Following from Pratt (1990), the 2D displacement wavefield is computed through solu-
tion to the coupled system of equations:
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where ux = ux(x, z, ω), and uz = uz(x, z, ω) are the x- and z-components of the frequency
domain particle displacement; λ = λ(x, z) and mu = µ(x, z) are the Láme parameters; ρ
= ρ(x, z) is the density; and sx and sz are x and z-components of the frequency domain
source function. Solving equations (1a) and (1b) provides the x and z-components of the
frequency domain particle displacements. The associated components of the strain field in
the x-z plane, solved on a grid staggered from the displacement grid are,

εxx =
1

2∆x

[
ux(xn+1, zn+1)− ux(xn, zn+1) + ux(xn+1, zn)− ux(xn, zn)

]
(2a)
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1
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εzz =
1

2∆z

[
uz(xn+1, zn+1)− uz(xn+1, zn) + uz(xn, zn+1)− uz(xn, zn)

]
. (2c)

Fiber response

Generation of the local fiber response requires projection of the strain field in the
(x, y, z) coordinate system described by equations (2a)-(2c), into a Frenet-Serret coordi-
nate system in the tangent t̂(s), normal n̂(s) = n(s)/|n(s)| where n(s) = d̂t(s)/ds and the
bi-normal b̂(s) = t̂(s)× n̂(s) along the arc-length s. At time t, and arc-length s along the
fiber, the strain in this Frenet-Serret coordinate system,

εtnb = P(s)εxyzP(s)T (3)

where P(s) is a rotation operator transforming between the two systems, defined by,

P(s) =


t̂(s) · x̂ t̂(s) · ŷ t̂(s) · ẑ
n̂(s) · x̂ n̂(s) · ŷ n̂(s) · ẑ

b̂(s) · x̂ b̂(s) · ŷ b̂(s) · ẑ

 . (4)

Due to the rigidity of the glass in DAS fibers, they are sensitive only to the normal com-
ponent of tangential strain εtt. The localized DAS fiber response, computed by solving
equation (3) and extracting the εtt component is,

εtt = (̂t·x̂)2εxx+2(̂t·x̂)(̂t·ŷ)εxy+2(̂t·x̂)(̂t·ẑ)εxz+(̂t·ŷ)2εyy+2(̂t·ŷ)(̂t·ẑ)εyz+(̂t·ẑ)2εzz. (5)
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Equation (5) represents the strain sensed by the DAS fiber, if it were to measure lo-
calized point measurements, however, with current technology this leads to insufficient
signal-to-noise. In practice, the interrogator unit that processes light backscattered from
the fiber, combines interference patterns from two scattering centers to infer strain. This
interrogator contains an unbalanced Mach-Zehnder interferometer that delays the signal
from the second scattering center, combining the interference patterns from two separated
portions of fiber, where the separation distance is the gauge length. All of the strain be-
tween the two scattering centers contributes to the displacement of the second scattering
center, and for this reason, DAS supplies an average of the strain over the gauge length.
The DAS datum, averaged over gauge length L, for a fixed time t is,

d(s) =

∫ L/2

−L/2
W (s− s′, L)εtt(s

′)ds′ (6)

where,

W (s, L) =

{
1/L, −L/2 < s < L/2
0, otherwise . (7)

Assuming the strain is approximately constant over the gauge length L, equation (6)
can be written as,
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(8)

Sensitivity of DAS fibers

Consider a fiber of arbitrary shape embedded in a generalized 3D elastic medium, and
let the fiber be parameterized by the direction of its core ĉ and the two components of a
plane normal to this core p̂1 and p̂2. This fiber has the datum,

d(s) = εcc
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′)2ds′ + 2εcp1

∫ L/2

−L/2
tc(s
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′)ds′ + 2εcp2
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′)ds′

+εp1p1
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−L/2
tp1(s

′)2ds′ + 2εp1p2

∫ L/2

−L/2
tp1(s

′)tp2(s
′)ds′ + εp2p2

∫ L/2

−L/2
tp2(s

′)2ds′.

(9)

Now consider a symmetry class of fibers, such that within one wind of this fiber, for every
point k there exists another point k + δk, such that the direction of the core is preserved,
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but the directions of both p1 and p2 are reversed as plotted in Figure 1. This definition of
symmetry was defined by Eaid et al. (2020), and includes some of the commonly proposed
geometries, including straight fibers, helical fibers, and chirped helical fiber (Ning and
Sava, 2018). If the gauge length contains an integer number of winds, or sufficiency many
winds such that a small amount of fiber outside the gauge length contributes negligibly,
then the shear strain components in equation (9) disappear, showing this symmetry class of
fibers is insensitive to shear strain.

FIG. 1. Example of a section of symmetric fiber, showing change in sign of t̂(s) · p̂(s) and preser-
vation of the sign of t̂(s) · ĉ(s) from Lk to Lk + δk. The thin line represents a section of symmetric
fiber, the dashed lines the tangent to the fiber, and the thick lines the components of the tangent
t̂(s) · ĉ, t̂(s) · p̂1, and t̂(s) · p̂2.

This means that the symmetry class of fibers, representing the majority of deployed
fibers, are insensitive to a large, and potentially important to FWI, portion of the wave-
field. We are left with two options, design some complex fiber geometry that violates this
definition of symmetry (Eaid et al., 2020), or assume gauge lengths much shorter than
the distance advanced by the fiber, such that the definition of symmetry is violated over the
gauge length. Helical fiber geometries have been deployed with radii of 2.54cm with winds
of approximately 30o. The distance advanced by a fiber of this geometry is,

h =
2π(2.54cm)

tan(30o)
≈ 27.64cm. (10)

Farhadiroushan et al. (2016) develop a DAS system with the potential for 5cm gauge
lengths. Thus it would appear that gauge lengths smaller than the distance h advanced
by one period of typical fiber geometries (equation (10)), are plausible.
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Figure 2a plots a segment of a helical fiber in a horizontal well, with a lead angle of
19.5o. The sensitivities of this fiber to εxx, εxz, and εzz are,

Sxx =

∫ L/2

−L/2
tx(s′)2ds′ Sxz = 2

∫ L/2

−L/2
tx(s′)tz(s

′)ds′ Szz =

∫ L/2

−L/2
tz(s

′)2ds′. (11)

Figure 2a shows a fiber that advances 24cm in one wind in black, and a length interrogated
by this fiber in green. Figures 2b-2d plot the sensitivities for this fiber with a gauge length
much longer than the distance of the fiber (72cm in blue), a gauge length much shorter
(8cm in red), and a gauge length of zero giving the point-wise sensitivity (black).

FIG. 2. (a) A section of 19.5o helical fiber (black) and an interrogated wind of this fiber (green). (b)
Sensitivity of the fiber in (a) to εxx, (c) sensitivity of the fiber in (a) to εxz, and (d) (d) sensitivity of
the fiber in (a) to εzz. The black line is the point-wise sensitivity, the blue points are the long gauge
length averaged sensitivity, and the red points are the short gauge length averaged sensitivity. The
blue and red lines indicate the gauge length over which the sensitivity is averaged. The green
dashed lines represent the wind of interrogated fiber in (a).

Figure 3 explains why short gauge length fibers have increased sensitivity. When the
gauge length is much longer than the wind of the fiber, the projections (̂t(s′) · x̂)2, and
(̂t(s′) · ẑ)2 are constant and equal to their mean value over the wind, furthermore 2(̂t(s′) ·
x̂̂t(s′) · ẑ) = 0. Figure 3a shows a single wind of helical fiber (black line). When the
gauge length, L, is much shorter than the fiber wind, the segment of fiber can be broken
into sections of length L over which the sensitivities can be averaged. Figure 3a plots these
sections with the red, blue, and green segments, and their associated tangents. Each of
these sections samples a different subset of tangents, and therefore sensitivity. Figure 3b-
3d shows the sensitivities explore by each segment, and gauge length averaged sensitivity
by the colored dots. Clearly, each segment has a different sensitivity to the wavefield,
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highlighting that short gauge length fibers have enhanced sensitivity to a larger portion of
the wavefield.

FIG. 3. (a) One wind of helical fiber (black) and three segments of length equal to the gauge length
and their tangents (red, green, and blue). Sensitivity of these segments to (b) εxx, (c) εxz, and (d)
εzz. The colored lines show the point-wise sensitivity of each segment, and the colored dots the
gauge length averaged sensitivity.

Figures 2b-2d highlight that for a fiber oriented in the x-direction, with long gauge
lengths relative to the distance advanced by the fiber, have reduced sensitivity to εzz, rela-
tive to a fiber with a short gauge length. Furthermore, the long gauge length fiber is fully
insensitive to shear strain εxz, while the short gauge length fiber has nearly complete sensi-
tivity to this component. We are interested in how gauge lengths much shorter than distance
advanced by one wind of the fiber, providing access to a larger portion of the wavefield, in
the form of shear strains, affects parameter resolution in FWI.

FWI OF DAS DATA

The objective function in conventional least-square FWI, measuring the L2 norm of the
difference between observed data and modeled data is,

φ =
1

2
||Ru− d||22 (12)

where R is a matrix transforming the modeled wavefield u into quantities directly compa-
rable with the observed data d. Equation 12 can be written as a constrained optimization
problem,
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min
m

=
1

2
||Ru− d||22 subject to Su = f (13)

where m is a vector of model parameters, S is a wave equation operator, and f is the source
function. Using Lagrange multipliers, and the adjoint state method (Metivier et al., 2013),
the gradient of equation (12) is,

g =
∂φ

∂m
=

〈
∂S
∂m

u, λ
〉

(14)

where, < ., . > represents the inner product, and λ is the adjoint wavefield computed
through solving the adjoint wavefield problem,

S†λ = R†(Ru− d). (15)

The FWI update direction, ∆m, in this paper is given by approximate, truncated Gauss-
Newton solutions to the problem,

H∆m = −g (16)

H is the Hessian matrix.

Inclusion of DAS in FWI

The above discussion on the development of FWI equations for our problem typically
assumes multi-component geophone data for d, and simulated displacement components
for u, allowing us to preform FWI of geophone data. However, it is important to note that
no assumptions are made about the matrix R. This matrix has the responsibility of trans-
forming the wavefield u into a form that is comparable to d. If we assume that d consists
of measurements made with a DAS fiber or arbitrary geometry, then the development of a
matrix R that simulates DAS data according to the above discussion, will allow for inclu-
sion of DAS data in FWI. Following from the previous discussion, the matrix R for DAS
data, must

1. Compute the strain tensor at the locations of the DAS receivers using equations (2a)-
(2c).

2. Average the sensitivities of the fiber over the gauge length and compute the fiber
response using equation (8).

We are interested in understanding how the gauge length in relation to the fiber geometry,
and the extra wavefield components sub-period gauge lengths provide access to, affect
parameter resolution in FWI.
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NUMERICAL RESULTS

Inversion of DAS data from a coiled-fiber with varying gauge lengths: Simple model

To investigate the role the gauge length of coiled fibers, especially in relation to the
fiber geometry, has on the quality of parameter estimates from FWI, we will invert data
from a helical DAS fiber with varying gauge length. Figure 4a-4c plots the true models in
density, P-wave velocity (Vp), and S-wave velocity (Vs). Starting models are equal to the
background values of ρ = 1400 kg/m3, Vp = 3000 m/s, and Vs = 1800 m/s.

Data were generated from these models using 33 explosive sources, spaced 30 meters
apart at a depth of 30 meters. The data were recorded with a four fibers in a horizontal well
oriented in the x-direction at a depth of 750 meters. Each fiber had a lead angle of 19.5o

that results in an advance of 24 cm per turn. The fiver fibers have gauge lengths of 10.08
meters, 24cm, 18cm, and 3cm. A dataset was also recorded with geophones spaced at 10
meters, and at the same 750 meter depth as the fiber. These data were inverted over 10
frequency bands with a multi-scale (Bunks, 1995), truncated Gauss-Newton optimization
with the Hessian approximated by 25 iterations of L-BGFS. Each iteration consists of five
evenly spaced frequencies, with the minimum frequency set to 1 Hz in each iteration, and
the maximum frequency growing by 2Hz for each iteration from 2-20Hz. Figure 4d-4f
plots the inversion for data from the fiber with a 10.08 meter gauge length, Figure 4g-4i
for the 24cm gauge length, Figure 4j-4l for the 18cm gauge length, and Figure 4m-4o for
the 3cm gauge length. Figure 4p-4r plots the inversion results using the geophone data.
The relative least square error (RLSE) per freuency band is plotted in Figure 5 for all four
fibers, and the geophone inversion results.

Figures 4 and 5 highlight the important effect of sub-period gauge lengths. Figures 4d-
4f and 4g-4i plot the inversion results for density, Vp, and Vs for two fibers with L = 42h
and L = h where L is the gauge length, and h is the distance advanced by one helix
wind. Both fibers provide identical inversion results, which is a direct result of the fact
that both provide the same wavefield sensitivity due to their super-period gauge lengths.
Gauge lengths longer than the helix period average away a significant portion of the en-
hanced sensitivity provided by the coiling of the fiber, resulting a marked degradation in
the inversion quality. Gauge lengths smaller than the fiber period, provide access to better
sampling of more tangent directions, and enhanced sensitivity as suggest by Figure 2 and
3. The sensitivity to shear strains, and enhanced sensitivity to εzz in our examples results in
marked improvements in the inversion results, especially for Vs. Figures 4j-4l and 4m-4o
plot inversion results for L = 3h/4 and L = h/8. Comparison of these inversion results
to those for geophones in Figures 4p-4r, suggests that as the gauge length decreases and
DAS approaches a point sensor, inversion results comparable to those obtained with true
point sensors like geophones are plausible. Figures 5b and 5c, plotting the relative least
squared error for Vp and Vs, shows that a marked improvement in the inversion is evident
at point where the gauge length drops below the fiber period, and that as the gauge length
approaches zero, DAS inversion results approach the quality of those supplied by a point
sensor.
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FIG. 4. (a)-(c) True models for density, P-wave velocity, and S-wave velocity. Inversions for density
(column 1), P-wave velocity (column 2), and S-wave velocity (column 3), (d)-(f) for a gauge length
of 10.08 m, (g)-(i) for a gauge length of 24 cm, (j)-(l) for a gauge length of 18 cm, (m)-(o) for a gauge
length of 3 cm, and (p)-(r) for geophones.

CONCLUSIONS

Distributed acoustic sensing is becoming a prevalent technology for reservoir monitor-
ing due to the ease with which it can be deployed in borehole geometries, without the need
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FIG. 5. (a) Relative least squares error per TGN iteration for the density inversions, (b) Vp inversion,
and (c) Vs inversion. The magenta line represents the RLSE for the 10.08 meter gauge length, the
black lines for intermediate lengths (24cm and 18cm), the red line for the 3cm gauge length, the
blue represents the RLSE for the geophone inversions.

for dedicated monitoring wells. To realize the full potential of the data they can supply, it
is important to develop a methodology for their inclusion in FWI as well as appraisal tools
for understanding how the fiber properties affect inversion resolution. We briefly review
the development of Eaid et al. (2020) for the inclusion of DAS data in FWI, in which the
effect of geometry on parameter resolution was explored. In this paper, we explore the role
of the gauge length in FWI of coiled DAS-fiber data. The results presented here suggest
that DAS fibers can provide good inversion results, but to move DAS measurements closer
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to those provide by true point sensors like geophones, gauge lengths have to fall below
the periodicity of the fiber geometry. Encouragingly, with a realistic fiber geometry, we
show that gauge lengths of 3cm produce inversion results comparable to those provided by
geophones. Gauge lengths of this scale appear to be on the horizon (Farhadiroushan et al.,
2016) and could make DAS a powerful reservoir monitoring technology.
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