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ABSTRACT

In this study, we have proposed a Bayesian time-lapse full-waveform inversion (FWI)
based on the Markov chain Monte Carlo (MCMC) algorithm and a new method to es-
timate the data error standard deviation for the time-lapse data according to its feature.
To achieve the MCMC-based time-lapse FWI, we have employed the inversion strate-
gies including the double-difference time-lapse FWI (DDFWI), the time-domain multi-
source data, the local-updating target-oriented inversion, calculating model covariance with
the adaptive Metropolis algorithm, and the new data error standard deviation estimation
method. The MCMC algorithm applied is a random walk Metropolis-Hastings MCMC, a
typical stochastic global optimization method. In the conventional deterministic optimiza-
tion (DO) DDFWI containing a baseline inversion for the baseline model and a monitoring
inversion for the monitoring model, both inversions are performed by the DO FWI. In the
MCMC DDFWI proposed in this work, we keep the DO FWI for the baseline inversion but
employ the MCMC algorithm for the monitoring inversion. And the final time-lapse model
is the difference between the inverted monitoring model and the baseline model. Synthetic
data tests using a 2D acoustic model have demonstrated the feasibility of MCMC DDFWI
on both time-lapse model inversion and uncertainty qualification. We also have compared
the MCMC DDFWI with the conventional DO DDFWI, which shows that the inverted av-
erage time-lapse model of MCMC DDFWI can provide the results with clearer edges of
the nonzero time-lapse model change and fewer coherent errors.

INTRODUCTION

Full-wave inversion (FWI) (Lailly et al., 1983; Tarantola, 1984; Virieux and Operto,
2009) based on the wave equation has been employed extensively in geophysics. Time-
lapse FWI that can detect time-lapse property changes of the subsurface with a high reso-
lution has become an important tool. Conducting time-lapse FWI normally contains twice
inversions, a baseline inversion for the baseline model and a monitoring inversion for the
monitoring model, and the time-lapse model is produced by subtracting the baseline model
from the monitoring model. Only consider how data and starting models are used, inversion
strategies of the time-lapse FWI can be classified into three basic categories, including the
parallel difference FWI (using baseline data and monitoring data independently, using the
same starting model for twice inversions), the sequential difference FWI (using baseline
data and monitoring data independently, using the inverted baseline model for monitoring
inversion) (Oldenborger et al., 2007; Routh and Anno, 2008), and the double-difference
FWI (DDFWI) (Watanabe et al., 2004; Onishi et al., 2009; Denli and Huang, 2009; Zheng
et al., 2011; Asnaashari et al., 2011; Routh et al., 2012; Raknes et al., 2013; Maharramov
and Biondi, 2014; Raknes and Arntsen, 2014; Yang et al., 2016) adopted in this work.

In DDFWI, the first inversion is the baseline inversion that is the same as the other
strategies, in which the input elements are the baseline data and a reasonable starting model.
But in the second monitoring inversion, DDFWI uses a composited data as an alternative
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of the monitoring data, which is the difference data (the difference between the monitoring
data and the baseline data) plus the synthetic data of the inverted baseline model. Since
FWI is extremely easy to be trapped into a local minimum, it means the twice inversions in
both the parallel difference FWI and sequential difference FWI will yield different conver-
gences on inverted models, it causes coherent errors on the final inverted time-lapse model
(Asnaashari et al., 2014; Yang et al., 2015). Nevertheless, DDFWI is using the difference
data, which helps it to focus on the target time-lapse area, thus DDFWI has fewer coherent
errors in the inverted time-lapse model. Although DDFWI also is of the shortcoming of
requiring good repeatability of baseline and monitoring surveys (Yang et al., 2015), with
the efforts of researchers, some demerits have been improved, for instance, Hicks (2002)
and Yang et al. (2016) use the interpolation technique to resample baseline and monitoring
data to the same grids, Fu et al. (2020) develop a double-wavelet DDFWI method to solve
the case that the wavelets of baseline data and monitoring data are different.

FWI based on deterministic optimization (DO) methods is a very common tool to detect
the physical properties of the subsurface media, and increasing successful examples have
been reported. However, the DO FWI that is a local optimization method is highly model-
dependent (Virieux and Operto, 2009), its success relies too much on the starting model.
If the starting model is not good enough, FWI is easy to fail, especially when lacking low-
frequency data. Recently, more and more researchers resort to stochastic global optimiza-
tion methods for not only model inversion but also uncertainty qualification. Due to that a
great number of time-consuming forward modelings are needed in the global-optimization-
based FWI, at present using only the global optimization method to directly obtain the in-
verted models are mostly reported for 1D models (Hong and Sen, 2009; Afanasiev et al.,
2014; Aleardi and Mazzotti, 2016; Ray et al., 2016), and for 2D models, researchers often
need to combine some other strategies with the global optimization method to alleviate the
computing burden. Datta and Sen (2016) reduce the parameters by sparsely parameteriz-
ing the velocity as several interfaces and use an very fast simulated annealing algorithm.
Sajeva et al. (2016) propose a two-grid technique, that is a coarse grid for the subsurface
model but a finer grid for the forward modeling, based on the genetic algorithm to lower
the model dimension, also see in Mazzotti et al. (2016). Biswas and Sen (2017) parameter-
ize the velocity model with Voronoi cells and represent the parameters with certain nuclei
points, and utilize a Reversible Jump Hamiltonian Monte Carlo algorithm developed by
themselves. Ely et al. (2018) employ a fast field expansion method to simulate the wave-
field. Also, you can see da Silva et al. (2019) adopt a quantum particle-swarm optimization
for a sparse Q (quality factor) macro model. And Visser et al. (2019) present each layer
in a narrow model with velocity, thickness, and lower interface dip angle under the frame
of Bayesian transdimensional (trans-d) Markov chain Monte Carlo (MCMC), then stitch
the narrow models together as a large 2D model. Totally, almost all methods of using a
global optimization for 2D model need a sparse parameterization and then input the in-
verted model as a starting model of the DO FWI. Although some researchers also use the
global optimization method to invert the 2D models directly, it only works for some special
cases. For example, Stuart et al. (2019) combine a two-stage MCMC with a coarse-grid
filter to enhance the acceptance rate of MCMC, and layer models are used in their work.
Another example is given by Gebraad et al. (2020), Bayesian elastic FWI based on Hamil-
tonian Monte Carlo. In our work, we do not use any sparse tool to perform the stochastic
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global optimization FWI for a 2D acoustic time-lapse model.

In this study, we will propose a Bayesian time-lapse FWI based on the MCMC algo-
rithm. Performing the stochastic global optimization FWI with time-lapse data is rarely
reported, you can only see in Kotsi et al. (2020) currently. In their work, they are using
a single shot and a single frequency data based on a Metropolis-Hastings algorithm also
adopted in this work and a local acoustic solver for the forward modeling. Differently, we
will use a time-domain multisource shot gather data and a local updating strategy. More-
over, we will propose a new data error prior estimation especially for the time-lapse data
according to its feature, and we will have a comparison between the conventional DO time-
lapse FWI and the proposed MCMC time-lapse FWI.

DETERMINISTIC OPTIMIZATION FULL-WAVEFORM INVERSION

DO FWI starts from a given model m0 and uses a DO method to search a model m
that makes the synthetic data dsyn(m) match the observed data dobs best. Usually, this is
achieved by minimizing the L2 norm of data residual δd (dsyn(m)− dobs) given by

E(m) =
1

2
δdT δd, (1)

where T denotes the transpose of a matrix. For constant-desity acoustic FWI, the model m
in equation 1 represents the presure wave velocity model v(x) in which x is the coodinate
vector, and dsyn is the pressure field P (x, t) at receiver positions, which depends on x
and time t. In this paper, P (x, t) is obtained by soveling the time-domain constant-desity
acoustic wave equation given by

1

v2(x)

∂2P (x, t)

∂t2
−52P (x, t) = s(t)δ(x− xs), , (2)

where 52 is the Laplace operator, s(t) is the source, and xx is the source position. A
finite-difference method (eighth order in space and second order in time) and a perfectly
matched layer (PML) boundary condition are used to solve the wave equation in our study
as a whole.

Many DO methods have been developed for FWI, including Newton-type optimiza-
tions (e.g., full Newton and Gauss-Newton methods), gradient-based optimizations(e.g.,
steepest-descent [SD] and non-linear conjugate-gradient [NCG] methods), Quasi-Newton
optimizations (e.g., BFGS and l-BFGS methods), truncated-Newton optimations, and so
on. In this work, we typically apply the SD FWI method. According to the adjoint method
(Tarantola, 1984; Bunks et al., 1995; Plessix, 2006) and the preconditioning of deconvo-
lution imaging condition which can compensate the geometric spread effect of wavefields
(Margrave et al., 2011; Pan et al., 2014; Fu et al., 2019), the model perturbation can be
expressed as

∆v(x) = −µ
ng∑
r=1

ns∑
i=1

2

v(x)3

∫ tmax

0
dt[P̈f (x, t;xs)Pb(x, t;xr)]∫ tmax

0
dt[Pf (x, t;xs)Pf (x, t;xs) + λImax]

, (3)
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where µ is the step length obtained by linear search; ng, ns are the number of receivers and
shots, respectively; tmax is the maximum forward/backward propagating time t of wave-
fields; xr is receiver positions; Pf (x, t;xs) is the forward wavefield due to the source
at xs and P̈f (x, t;xs) is its the second derivative with respect to t; Pb(x, t;xr) is the
backward/time-reversal wavefield due to the data residual δu at position xr; Imax =
max
x,t

[Pf (x, t;xs)Pf (x, t;xs)] is the square of maximum absolute value in forward propa-

gation wavefield; λ is a damp factor.

BAYESIAN INFERENCE AND MCMC

Bayesian inference

Inversion based Bayesian inference (Tarantola, 2005) can combine both the model prior
information and data prior information, and allow the uncertainty estimation of solutions.
The prior information of the model m is expressed by the prior probability density function
(PDF) p(m) that should be available before the inversion starting. And the prior informa-
tion on the observed data dobs under a given model m is decribed by the conditional PDF
p(dobs|m), also called likelihood function. With respect to the Bayesian inference frame,
the two pieces of prior information guide to the posterior PDF p(m|dobs) expressed as

p(m|dobs) =
p(dobs|m)p(m)

p(dobs)
∝ p(dobs|m)p(m), (4)

where p(dobs) =
∫
p(dobs|m)p(m)dm is the marginal likelihood or model evidence, which

includes all possibly available information of m given dobs, and is a constant value normal-
izing p(m|dobs). In this study, we do not take p(dobs) into account, since it does not impact
the shape of p(m|dobs).

In our work, we typically assume the prior PDF p(m) and likelihood function p(dobs|m)
conform to Gaussian distributions expressed as

p(m) ∝ exp{−1

2
(m−m0)

TC−1m (m−m0)}, (5)

p(dobs|m) ∝ exp{−1

2
(dsyn(m)− dobs)

TC−1d (dsyn(m)− dobs)}, (6)

where Cm and Cd are, respectively, prior model and data error covariances. Putting equa-
tion 5 and 6 in to equation 4, we rewrite the posterior PDF as

p(m|dobs) ∝ exp{−χ(m)}, (7)

where

χ(m) =
1

2
(m−m0)

TC−1m (m−m0) +
1

2
(dsyn(m)− dobs)

TC−1d (dsyn(m)− dobs). (8)

χ(m) is a misfit function constrained by the prior information.
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The Metropolis-Hastings MCMC algorithm

Since the seismic acquisition geometry is limited on space distribution, the inverse
problem of FWI is strongly nonlinear. In the case of lacking a good starting model, the
DO methods with a local searching capability are often incompetent. Therefore, introduc-
ing Monte Carlo methods (Mosegaard and Tarantola, 1995) that have the global searching
capability is natural and necessary. MCMC achieves by constructing a Markov chain us-
ing an expected distribution as the distribution of equilibrium states that are treated as the
samples of the expected distribution. The Metropolis-Hastings (MH) MCMC algorithm
(Hastings, 1970) as a classical algorithm can be summarized as follows:

1) Use transitional probabilities T (m∗|m) to produce the proposal model m∗, in which
m is the present model and T is the proposal distribution.

2) Calculate the acceptance probability

a(m∗,m) = min(1,
T (m|m∗)p(m∗|dobs)

T (m∗|m)p(m|dobs)
). (9)

Since we take T as a uniform distribution that is a symmetric random walk sampler,
which means T (m|m∗) = T (m∗|m), then the the acceptance probability a(m∗,m) can be
rewriten as

a(m∗,m) = min(1,
p(m∗|dobs)

p(m|dobs)
). (10)

3) Generate a random number u according to the uniform distribution U(0, 1).

4) If a > u, accept m∗ as the present model m; if a <= u, reject m∗ and keep m as
the present model.

5) Iterate 1) - 4) until the set number of iterations is reached, then abstract the equilib-
rium states as the samples of the expected distribution p(m|dobs).

Note that we are using the MH algorithm in a special case that the proposal distribu-
tion is symmetric, which is also called the Metropolis algorithm in such case, that is first
presented by (Metropolis et al., 1953).

INVERSION STRATEGIES

Double-difference time-lapse FWI

Thus in this study, we use the DDFWI that can focus on the time-lapse target and re-
duce coherent errors. In DDFWI, the first inversion is a baseline inversion for the baseline
model, in which the input elements are the baseline data and a reasonable starting model.
And in the second monitoring inversion for the monitoring model, DDFWI uses the in-
verted baseline model as the starting model and a composited data as an alternative to the
monitoring data. The composited data is given by

d′obs2 = bsyn(m′1) + (dobs2 − dobs1), (11)
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where dsyn(m′1) is synthetic data of the inverted baseline model m′1, dobs2 and dobs1 are
observed monitoring data and baseline data, respectively. Then during the monitoring in-
version, the mistfit function of DDFWI can be expressed as

EDDFWI(δm
′) =

1

2
||dsyn(m′1 + δm′)− d′obs2||2, (12)

where || ||2 denots L2 norm, δm′ is the model perturbation under the background model
m′1. Defining

δdsyn(δm′) = dsyn(m′1 + δm′)− dsyn(m′1), (13)

then
dsyn(m′1 + δm′) = δdsyn(δm′) + dsyn(m′1), (14)

where δdsyn(δm′) is the synthetic difference data. Putting equation 11 and 14 into equation
12, we have

EDDFWI(δm
′) =

1

2
||δdsyn(δm′)− δd||2, (15)

where δd = dobs2 − dobs1 is the observed difference data. Therefore, when we are min-
imizing equation 12, actually, we are minimizing the residual of two difference data, that
makes DDFWI focus on the target area. And finally, the inverted time-lapse model is δm′.

But we have to note that the inverted time-lapse model δm′ is different from the true
time-lapse model δm. δm′ corresponds to the difference wavefield δdsyn(δm′) under the
background wavefield dsyn(m′1), but δm corresponds to the difference wavefield δd under
the background wavefield dobs1. When dsyn(m′1) is close to dobs1, i.e., m′ is close to
the true baseline model, δm′ will be close to δm, and vice versa. Thus a good inverted
baseline model is important for DDFWI (Asnaashari et al., 2011). And how the input
starting monitoring model impacts the final inverted time-lapse model will be discussed in
this study.

MCMC time-lapse FWI

For a conventional DO DDFWI, both twice inversions are based on the DO FWI, but
in this study, we develop a new workflow referred to MCMC DDFWI. In MCMC DDFWI,
we use the DO FWI to do the first baseline inversion, then use the Baysian FWI using
HM MCMC to perform the second monitoring inversion. Then the difference between
the inverted monitoring model and the inverted baseline model is the inverted time-lapse
model. In this study, we will have a competition between the conventional DO DDFWI and
the MCMC DDFWI.

Local-updating target-oriented time-lapse inversion

Although DDFWI is a target-oriented method focusing on the time-lapse change, it re-
quires high repeatability between baseline and monitoring surveys. The differences, such
as the different source wavelets, different acquisition geometries, and different noises be-
tween the twice surveys will cause distractions outside the target area (time-lapse change
area). An additional local constraint is helpful for DDFWI to further focus on the target
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area. Before using a local constraint, we need to detect the target area. Detecting the target
area is possible by combining the depth migration of the observed data difference and some
prior information of the reservoir. Raknes and Arntsen (2014) use a simple edge detection
algorithm to the depth migration section to automatically detect the target area, and keep
the model updating only in the target area. Asnaashari et al. (2014) apply the Gaussian
function to build a weighting matrix to constraining the target area, after manually and ap-
proximately detecting the center of the target area. In this study, we also manually choose
the target area and keep the model updating only in the chosen area.

Currently, more advanced techniques are employing the local solvers (Robertsson and
Chapman, 2000; Yang et al., 2012; Huang et al., 2018) that can avoid the wavefield calcu-
lation for the whole model space and constrain the wavefield calculation in a local space,
it is a good time-saving way to perform FWI. However, in local-solver-based FWI, a num-
ber of Green’s functions need to be calculated and the local solver for multisource seismic
data that we will use in this study has not been reported. In our study, we still calculate
the wavefield for the whole model space for the reasons of easy operation and using the
multisource seismic data.

For the conventional DO DDFWI, a target-oriented inversion is a hopeful tool that can
avoid the artifacts outside of the target area, but for the MCMC DDFWI, it could be vi-
tal. Since the local-updating target-oriented strategy can dramatically reduce the number
of unknowns. For a standard MH MCMC, the cost of producing independent samples
raises with O(n2) when the parameter number (dimension) increases by n (Creutz, 1988),
which means the target-oriented inversion strategy can easily save computing time by tens
of times. Another critical reason for using this strategy is that most MH MCMC algorithms
tend to fail for high-dimension problems (Chib and Greenberg, 1995), whereas the dimen-
sion of the inverse problem of FWI is often beyond thousands for a small 2D model or tens
of thousands for a regular 2D model.

Multisource waveform inversion

Multisource waveform inversion is developed to save computing time of FWI, it excites
multiple sources at the same time rather than generating shot gathers one by one. For DO
FWI, we have to use some special treats (e.g., the encoded multisource method of (Krebs
et al., 2009)) to each source to decay the crosstalk artifacts in the final inverted model. But
for MCMC-based FWI, these treats are not necessary, since we have no middle produce of
gradient calculating, through which the crosstalks between shot gathers will be transferred
to the model as crosstalk artifacts. MCMC-based FWI decreases data misfit by directly
accepting the stochastic samples. Thus in MCMC DDFWI, we can more freely employ
multisource seismic data and do not need to worry about the model crosstalk artifacts.

Random Walk sampler

Random walk sampling is initiated by Metropolis et al. (1953), in which the proposal
model m∗ in equation 9 is given by

m∗ = m + X, (16)
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where m is the present model, X is a random number drawn from the proposal distribution
that is a uniform distribution with zero mean value and a proper standard deviation in our
study.

Normally, the present model m at the first time is input as a random model. However,
for the strongly nonlinear and high-dimensional FWI, the random start-up model means a
lot of extra computation and even failure. Thus using the inverted baseline model from DO
FWI as the start-up model of the monitoring inversion of MCMC DDFWI is a guarantee
for the success of MCMC DDFWI.

In addition, we use a component-wise scheme to update the model, updating only one
parameter rather than all at a time and all parameters are updated sequentially, since the
model dimension is pretty high. Even though we are using the target-oriented inversion
strategy, the dimension can easily be as many as hundreds or even thousands. Generat-
ing a perturbation X that suitable for all parameters is rarely possible under such model
dimension, as different parameters have different behaviors. For example, the target area
of a time-lapse model contains at least two types of parameters, one has model change
and the other has no model change, the former prefers to accept the perturbation when the
latter prefers to preserve the start-up model, and the situation will be more complicated in
practice. Thus updating all parameters at a time is effectless here.

Model prior information

In the Bayesian inference frame described in equation 7 and 8, it requires both priors
for data and model, that is, data error covariance Cd and the model covariance Cm. In
our work, Cm is assumed as a diagonal matrix corresponding to independently distributed
model parameters. Cm can be obtained by an adaptive Metropolis (AM) algorithm devel-
oped by Haario et al. (2001). In which the mean values and model covariance are calculated
from all previous models. In our work, we utilize only the calculated model covariance and
the mean value is taken as the present model. This is similar to the adaptive proposal al-
gorithm (Haario et al., 1999) in which the proposal distribution is centered on the present
model, and the covariance is calculated from a fixed finite number of previous models.

In accordance with the AM algorithm, the covariance for iteration k+1 proposal model
is given by

Ck+1 =
k − 1

k
Ck +

sm
k

(km̄k−1m̄
T
k−1 − (k + 1)m̄km̄

T
k + mkm

T
k + εIm), (17)

where m̄k = (1/(k+1)
∑k

i=0mi) is the average model, sm is a small constant that depends
only on model dimension m, Im is a m-dimension identity matrix, ε is a positive constant.
Hereon, εIm is to avoid Ck+1 to be singular, and sm is typically adopted as sd = 2.42/m
suggested by Gelman et al. (1996). Equation 17 is a recursion formula that consumes little
computation. At the beginning period, we use Ck+1 = σm0Im as an alternative of equation
17, in which σm0 is a reasonable constant from some prior information or by trial-and-error
method, after enough models are obtained, we switch to equation 17. Furthermore, all
models are constrained in given bounds.
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Data prior information

In this subsection, we propose a new method to calculate the data prior information,
that is, data error covariance Cd in equation 7 and 8. When considering the data error
to be identical and independently distributed, data error covariance can be expressed as
Cd = σdIs where standard deviations of all data points are given as one value σd and Id is
an identity matrix with the same size as Cd. In most cases, data errors are often entangled
with the effective data corresponding to underground media, so it is difficult to separate
them directly. Usually, people need to estimate σd by trial-and-error method or treating it
as an unknown updating during the inversion, such as the hierarchical inversion method
(Malinverno and Briggs, 2004; Bodin et al., 2012).

For our case, things become easier, since we can separate data errors and effective data
according to the feature of time-lapse data. In DDFWI, the composited data in equation 11
is constructed by the synthetic data and the difference data. All noises in the composited
data come from the difference data in which we can easily distinguish where the effective
data are. Thus we use the part containing no effective data, called the pure noise part
later, to estimate the distribution of data errors. In our work, we assume that data errors
conform to zero-mean Gaussian distribution (it may change with cases), so we only need to
calculate σd from the pure noise part. This method works depending on two requirements
are satisfied, the first is that the baseline and monitoring surveys have good repeatability,
so the pure noise part can be distinguished, and the second is that the pure noise part
contains enough samples, so the estimated distribution is representative. In practice, the
first requirement may not easy to meet but the second one is not a problem. Satisfying the
first requirement is also key to perform DDFWI successfully. In our study, we will use
synthetic baseline and monitoring data with the same acquisition geometry. For practice,
if the acquisition geometries for twice surveys are different, some processes Hicks (2002);
Yang et al. (2016); Fu et al. (2020) should be taken.

NUMERICAL EXAMPLES

To demonstrate the feasibility of our method on both model inversion and uncertainty
qualification, we show some numerical examples using a 2D constant-density acoustic
time-lapse model in this section. The models and corresponding multisource shot gather
seismic data used are displayed in Figure1a-f. The model size is 50-by-50, model spacing
is 10m, a 40m/s identical time-lapse velocity change is centered in the time-lapse model
(Figure 1c, the monitoring model minus the baseline model), 10 sources are spread on the
surface, receivers are put on the surface and two sides, all sources are excited simultane-
ously using an identical Ricker wavelet with a 40Hz central frequency. The method used
to solve the wave equation is a time-domain finite difference method that is eighth-order
in space and second-order in time. The black box in Figure 1c is the target area where
model updating is taken, which is of a size of 19-by-22 and contains 418 parameters. So
the dimension is 418 that is much less than 2500, the dimension for the whole model. In the
monitoring inversion of MCMC DDFWI, we run 8 chains simultaneously with the same
starting model to obtain a number of samples quickly, and each chain is sampled 83600
times. And the burn-in period contains the first 21900 models that will not be used.
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FIG. 1. (a), (b), and (c) are baseline model, monitoring model, and time-lapse model, respectively.
Accordingly, (d), (e), and (f) are baseline data, monitoring data, and difference data, respectively.
The acquisition geometries in (a) and (b) are identical. The black dash lines are the receivers, and
the red stars are sources. The black box in (c) is the target area where model updating is taken.

DO DDFWI vs MCMC DDFWI

We use four different starting models (Model 1, 2, 3, and 4) displayed in Figure 2a-
d and noise-free monitoring data as the input of the monitoring inversion for both DO
DDFWI and MCMC DDFWI. The four starting models include the true baseline model,
the inverted baseline model of DO FWI, and two smooth models. The inverted baseline
model is obtained from the DO FWI using noise-free baseline data and a smooth starting
model in Figure 2c. In Figure 2, the models become worse from left to right. All the results
of MCMC DDFWI in Figure 3 are average models, and the corresponding absolute model
errors of Figure 3 are displayed in Figure 4. From Figure 3, we can see that, compared
with DO DDFWI, the results of MCMC DDFWI contain more random noises that become
heavier with the starting model becomes worse. To reduce the random noise, we use a
median filter to the results of MCMC DDFWI and also use the same filter to the results
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of DO DDFWI for fair comparisons. From Figure 3 and 4, we can see that as the starting
model becomes worse the results also become worse, and compared with the results of
DO DDFWI, that of MCMCM DDFWI have clearer edges of nonzero model change, less
coherent model errors. And in Figure 5, we display the curves of L2 norm of the monitoring
data misfit of MCMC DDFWI versus sampling number for different starting models, which
shows that all chains converge well and a better starting model gives a lower data misfit
level.
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FIG. 2. Different starting models (Model 1, 2, 3, 4) for monitoring model inversion. (a) is the true
baseline model. (b) is the inverted baseline model of the DO FWI using (d) as the starting model,
(c) and (d) are models from the true baseline model after using a Gaussian filter with window size
50m and 100m, respectively. The models become worse from left to right.
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FIG. 3. Inverted time-lapse models of DO DDFWI and MCMC DDFWI from different starting models
in Figure 2. Row 1, 2, 3, and 4 are results, respectively, for model 1, 2, 3, and 4. The results in
column 1 are inverted from DO DDFWI, and that in column 2 are obtained by using a median filter
to results in column 1. The results in column 3 are inverted from MCMC DDFWI, and that in column
4 are obtained by using a median filter to results in column 3. The black dot line box is the edge of
the non-zero model change.
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FIG. 4. (a)-(p) are, respectively, absolute values of model errors of results in Figure 3a-p.
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FIG. 5. Curves of L2 norm of the monitoring data misfit of MCMC DDFWI versus sampling number
for different starting models.

Noisy data tests for MCMC DDFWI

In this subsection, we use data with different noise levels to test our method. The noises
we are adding are zero-mean Gaussian noise with standard deviations 2.5∗10−4, 2.5∗10−3,
and 5 ∗ 10−3, respectively, and the standard deviation of the noise-free difference data is
1.2∗ 10−3. The noisy difference data are displayed in Figure 6a-c. The data errors standard
deviations are estimated almost accurately from the pure noise parts in Figure 6a-c. The
starting model input is Model 2 (Figure 2b). Figure 7 displays curves of the data misfit
versus sampling number for eight chains, from which we can see that with the increase of
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noise, data misfit converges to higher values and fluctuates more intensely. In Figure 8, we
display the inverted time-lapse models including average models and the maximum poste-
rior probability (MAP) models, and the corresponding posterior model standard deviations.
With the increase of noise level, average models get worse but can still show the edges of
the nonzero area clearly, and they have a better quality than MAP models. The posterior
model standard deviations also rise up as the increase of noise level, which depend on not
only the value of time-lapse change but also the position in the model. Figure 9 displays
the posterior distributions of 6 parameters located at the black dots in Figure 8a, including
three with nonzero true time-lapse change and three with zero true time-lapse change. In
Figure 9a, since the model errors standard deviation is too small and the rejection rate is too
high, we do not obtain enough effective models to characterize a reasonable distribution for
some parameters. But in Figure 9b and c, they show that the inverted models can match
the standard Gaussian distribution well. In Figure 10 and 11, we display the predicted
noise-free difference data and the noises, both are very close to the true values.
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FIG. 6. The difference data with different noise levels. Noises confirm to zero-mean Gaussian
distributions with different standard deviations that are, respectively, 2.5 ∗ 10−4 for (a), 2.5 ∗ 10−3 for
(b), and 5 ∗ 10−3 for (c). The data above the black line in each panel is the pure noise part used to
estimate the data errors standard deviations.
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FIG. 7. Curves of L2 norm of the monitoring data misfit of MCMC DDFWI versus sample number
for different level noisy data. The red, blue, and black curves, respectively, correspond to the data in
Figure 6a, b, and c. All curves are displayed together in panel a and separately displayed in panel
b-d.

DISCUSSION

Using global stochastic optimization methods for FWI is still a time-consuming mis-
sion. In our work, we are using a small time-lapse acoustic 2D model, so the computing
time is acceptable. It takes near three hours on an ordinary desktop. But when considering
the whole 2D model, a 2D elastic model, a large 2D model, or even a 3D model, more
advanced strategies should be taken, such as more powerful global stochastic algorithms
(e.g., Hamiltonian Monte Carlo), high-performance computers (e.g., GPU ), faster wave
equation solvers, parameter dimension reducing.

CONCLUSIONS

In this study, we have proposed a time-lapse FWI based on an MH MCMC algorithm
and a new method to estimate the data error standard deviation for time-lapse data ac-
cording to the feature of difference data. To achieve the MCMC-based time-lapse FWI, we
have employed the inversion strategies including DDFWI, multisource data, local-updating
target-oriented inversion, calculating model covariance with the AM algorithm, and the
new data error standard deviation estimation. Synthetic data tests using a 2D acoustic
model have demonstrated the feasibility of both model inversion and uncertainty quality of
our method. We also have compared our method with the conventional DO DDFWI, which
shows that MCMC DDFWI can provide the results with clearer edges of the nonzero time-
lapse model change and fewer coherent errors.
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FIG. 8. Inverted time-lapse models and posterior model standard deviations of MCMC DDFWI
using Model 2 as the starting model and data with different noise levels. (a), (b), and (c) are average
models using data in Figure 6a, b and c, respectively. (d), (e), and (f) are MAP models using data
in Figure 6a, b and c, respectively. (g), (h), and (i) are posterior model standard deviations using
data in Figure 6a, b and c, respectively. The six black dots in (a) are the positions where we will
appraise the posterior distributions in Figure 9.
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FIG. 9. The posterior distributions of 6 parameters located at the black dots in Figure 8a, including
three with nonzero true time-lapse change and three with zero true time-lapse change. (a), (b), and
(c), respectively, correspond to the noisy data in Figure 6a, b, and c. Blue histograms denote all
samples excepting the burn-in ones abstracted from the eight chains. Green curves are standard
Gaussian probability density functions (PDFs) best fitting the histograms. Black dash lines and red
solid lines denote true values and means, respectively. The title above each panel denotes the
parameter location in the model.
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FIG. 10. The predicted noise-free difference data (a, c, e) and noises (b, d, f) using the inverted
average models in Figure 8a, b, and c, respectively. The predicted data in (a) and the predicted
noise in (b) correspond to the noisy data in Figure 6a. (c) and (d) correspond to the noisy data in
Figure 6b. And (e) and (f) correspond to the noisy data in Figure 6c.
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FIG. 11. Red curves in (a)-(f) are central traces of Figure 10a-f,respectively. Black dash curves are
the corresponding true values. The panels in the left column display the noise-free data, and that
in the right column display the noises.
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