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ABSTRACT

In time-lapse seismic surveys, the effective seismic signals produced by property changes
of subsurface rocks are often ruined by non-repeatability noises. In this paper, starting
from the wave equation, base on the relationship between wavefields and Green’s func-
tions, we propose two frequency-domain matching filters to reduce source wavelet non-
repeatability for time-lapse shot gathers, one is the spectrum ratio of the baseline and mon-
itoring wavelets, the other one is the average spectrum ratio of the baseline and monitoring
traces. The former requires the wavelets information of baseline and monitoring data, and
the latter is source-independent. After reducing the source wavelet non-repeatability, we
employ time-shifts corrections by a fast local cross-correlations algorithm to further re-
duce non-repeatability errors in the difference data (monitoring data minus baseline data)
that caused by time shifts between monitoring and baseline data. And then, a reverse time
migration (RTM) in depth with a Poynting Vector imaging condition used to reduce the
remaining errors arising from the inaccuracy of the source-independent matching filter is
carried out. The feasibility of our methods is demonstrated by the synthetic noise-free and
noisy data tests. The spectrum ratio of the baseline and monitoring wavelets can effectively
solve the source wavelet non-repeatability issue. The source-independent filter also shows
good performance in these tests.

INTRODUCTION

Time-lapse or 4D seismic analysis as a crucial technology has been employed in reser-
voir monitoring (e.g., enhanced oil recovery and/or CO2 storage problems) and character-
ization for decades (Greaves and Fulp, 1987; Ross and Altan, 1997; Wang et al., 1998;
Barkved et al., 2003; Arts et al., 2003; Barkved et al., 2005; Chadwick et al., 2009; Kaze-
meini et al., 2010; Pevzner et al., 2017). It has begun to be incorporated into the develop-
ment plan of each reservoir (Jack, 2017). In 3D or single-time seismic data, the information
about the static geology and that about the dynamic fluid flow are interweaved, whereas,
the time-lapse seismic data, including two or more datasets obtained at different times,
can rid off the time-invariant signal corresponding to the geology part and directly reflects
time-variant fluid-flow changes (Lumley, 2001). Although time-lapse seismic technology
is of such good merit theoretically, it is often disturbed by many issues.

These issues can be categorized into three types. The first is the geology changing is-
sues. During the oil/gas production and/or fluid injection (water, gas, steam, CO2, etc.),
reservoir subsidence, compaction, porosity, or/and overburden pressure changes could hap-
pen. The second is the non-repeatability issues, including acquisition non-repeatability and
processing non-repeatability. The acquisitions carried out at different times can be different
in environment (noise conditions, near-surface properties, water table, seawater properties,
seal level, weather, etc.), geometry (source and receiver positions, etc.), receiver equip-
ment, and source wavelet. The processing non-repeatability can be caused by different
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processors, different processing parameters, and different workflows. The third is the issue
of intrinsic errors. Even for twice surveys (baseline and monitoring surveys) with the con-
stant geology and perfect acquisition and processing repeatability, errors still occur in time-
lapse imaging (monitoring imaging minus baseline imaging), since the subsurface property
change arises both travel time (kinetic) and amplitude (dynamic) differences in both reser-
voir and non-reservoir zones between baseline and monitoring seismic data. However, the
most we want is the seismic amplitude change in the reservoir zone, although time shifts
(travel time differences) between monitoring and baseline data can also provide some use-
ful information about the reservoir (Hatchell and Bourne, 2005).

Geology changing issues are reported in some places, for instance, the North Sea
case (Hicks et al., 2016) and the Valhall Field case (Hall et al., 2005). As for the non-
repeatability issues of the acquisition environment, they are hard to be solved, since they
are unrepeatable or out of our control. We can only decrease the impact of some, for exam-
ple, carrying out the acquisitions in the same season, installing the receivers on the sea bed
or permanently on land.

The most typical technique is the cross-equalization (Ross et al., 1996), a syntheti-
cal method reducing errors caused by nonrepeatable seismic acquisition and processing.
Tucker et al. (2000) use a time-domain least-squares or optimum Wiener matching fil-
ter to implement the cross-equalization. Al-Ismaili and Warner (2002) perform the cross-
equalization by artifactial neural networks. Gallop (2011) presents midpoint match filters
for time-lapse seismic data matching. Almutlaq and Margrave (2013) evaluate the concept
of surface-consistent matching filters to handle time-lapse seismic data with nonrepeatable
acquisition parameters. Bergmann et al. (2014) propose a static correction method to re-
duce differences in reflection travel times of time-lapse prestack seismic data. Hatchell and
Tatanova (2019) conclude that the spectral balancing filter has better anti-noise capacity
than the standard time-domain least-squares filter after the comparison between them.

Rickett and Lumley (2001) introduce warping as a residual migration operator to colo-
cate reflectors imaged at different positions to alleviate residual errors after doing cross-
equalization. Hale (2006, 2013) proposes two popular algorithms, fast local cross-correlations,
and dynamic warping, for seismic image registration. He also estimates three-component
apparent displacement vectors from time-lapse seismic images, using local phase correla-
tions and a cyclic sequence of searches for peaks of correlations (Hale, 2009). In Fomel
and Jin (2009), the local similarity attribute (Fomel, 2007) are applied for time-lapse seis-
mic image registration. Based on their work, an improved version is developed by Liu
et al. (2021). Other warping approchs you can see in Williamson et al. (2007), Phillips and
Fomel (2016), Karimi et al. (2016), and Dramsch et al. (2019).

In our work, we start from the wave equation, base on the relationship between wave-
fields and Green’s functions, propose two frequency-domain matching filters to reduce
source wavelet non-repeatability for time-lapse shot gathers. One requires the wavelets in-
formation of baseline and monitoring data, and the other one is source-independent. After
reducing the source wavelet non-repeatability, we employ a time-shifts correction by a fast
local cross-correlations algorithm (Hale, 2006) to further reduce non-repeatability errors
caused by the time shifts in the difference data. And then, a reverse time migration (RTM)
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in depth with a Poynting Vector imaging condition is used to reduce the remaining errors
arising from the inaccuracy of the source-independent matching filter.

THEORY

The main aim of time-lapse seismic processing is to eliminate the nonrepeatibility errors
between baseline and monitoring datasets. In this section, we propose two matching filters
to solve the source wavelet nonrepeatibility issue. One of them is source-independent.
Then we abstract local time shifts between two datasets by a fast local cross-correlations
algorithm. Finally, after decreasing the time shifts between two datasets, an RTM in depth
with a Poynting Vector imaging condition is applied to image the difference data.

Matching filters

According to the wave equation, for instance, a 2D constant-density acoustic wave
equation:

∂2P (x, z, t)

∂x2
+
∂2P (x, z, t)

∂z2
− 1

c2(x, z)

∂2P (x, z, t)

∂t2
= w(t)δ(x− x0)δ(z − z0), (1)

where P (x, z, t) is the wavefield depending on coodinates (x, z) and propagating time t,
c(x, z) is the P-wave velocity field depending on (x, z), and w(t) is the time-dependent
source wavelet at location (x0, z0). Then, the seismic data (the wavefields recorded by
seismic receivers) can be expressed as convolutions of the Green’s functions and the source
wavelets:

di,j(t) = wi(t) ∗ gi,j(t), (2)

where ∗ denotes the convolution operator; subscripts i and j are shot number and receiver
number, respectively; di,j(t) is the observed seismic trace of shot i at receiver j, and gi,j(t)
is the corresponding Green’s function; wi(t) is the source wavelet of shot i, which is the
same for all traces in the same shot; all parameters depend on sampling time t. For a time-
lapse survey, we use subscripts 1 and 2 for baseline and monitoring surveys, respectively,
then we have the baseline seismic trace:

d1i,j(t) = w1i(t) ∗ g1i,j(t), (3)

and the monitoring seismic trace:

d2i,j(t) = w2i(t) ∗ g2i,j(t). (4)

In the case of baseline wavelet w1i(t) equals to monitoring wavelet w2i, differencese be-
tween baseline and monitoring datasets are only generated by differences of the Green’s
functions that are related to the subsurface physical property change. But when w1i(t) is
different from w2i, the difference data are linked to both the source wavelet nonrepeati-
bility and the property change. A solution for the source wavelet nonrepeatibility issue is
the double-wavelet method presented by Fu et al. (2020), constructing a common wavelet,
w1i(t)∗w2i(t), by convolving baseline wavelet with monitoring trace and convolving mon-
itoring wavelet with baseline trace. Hereon, we formulate a new method to eliminate the
source wavelet nonrepeatibility.
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The new method is formulated in frequency domain. First, we convert equation 3 and
4 into frequency domain by the Fourier transfer, then we have baseline seismic trace:

d̂1i,j(ω) = ŵ1i(ω)ĝ1i,j(ω), (5)

and monitoring seismic trace:

d̂2i,j(ω) = ŵ2i(ω)ĝ2i,j(ω), (6)

where ω is frequency and the "ˆ" denotes the Fourier transform. The convolution in time do-
main corresponds to multiplication in frequency domain. We eliminate the source wavelet
nonrepeatibility by multiplying a frequency-domain matching filter,

fw(ω) = ŵ1i(ω)/ŵ2i(ω), (7)

with d̂2i,j(ω), then the filtered monitoring trace becomes:

d̂
′

2i,j(ω) = fw(ω)d̂2i,j(ω) = ŵ1i(ω)ĝ2i,j(ω), (8)

where it has the same wavelet as the baseline trace. However, constructing the double
waveletw1i(t)∗w2i(t) and the matching filter fw(ω) both require that baseline and monitor-
ing wavelets are known. In this study, we think further and formulate a source-independent
matching filter to reduce the source wavelet nonrepeatibility.

The source-independent matching filter, fs(ω), is calculated from the average spectrum
ratio of the baseline and monitoring traces, expressed as:

fs(ω) =
1

N

ns∑
i=1

nr∑
j=1

d̂1i,j(ω)

d̂2i,j(ω)
, (9)

where N = ns × nr is the total trace number of all shots in each dataset (baseline or
monitoring), and ns and nr is the numbers of shots and receivers, respectively. Note, here
we assume all shots in the same dataset have the same source wavelet, for the case that have
different source waveltes, fs(ω) should be calculated shot by shot. Considering the shots
in each dataset have the same source wavelet, we replace the subscript pair (i, j) as k and
cancel the subscripts of source wavelets representing shot numbers, then re-write equation
9 as:

fs(ω) =
1

N

N∑
k=1

d̂1k(ω)

d̂2k(ω)
=

1

N

N∑
k=1

ŵ1(ω)ĝ1k(ω)

ŵ2(ω)ĝ2k(ω)
, (10)

To illustrate fs(ω) is a qulified matching filter to reduce the source wavelet nonrepeat-
ibility, we will prove fs(ω) ≈ fw(ω) next. Setting δĝk = ĝ1k − ĝ2k associated with the
subsurface property change, then equation 10 can be re-written as:

fs(ω) =
1

N

N∑
k=1

ŵ1(ω)(ĝ2k(ω) + δĝk(ω))

ŵ2(ω)ĝ2k(ω)
. (11)
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After some algebraic operations, we have:

fs(ω) =
w1(ω)

w2(ω)
(1 +

1

N

N∑
k=1

δĝk(ω)

ĝ2k(ω)
), (12)

where δĝk(ω) is the Green’s function difference, δĝk(ω)
ĝ2k(ω)

is the relative Green’s function

difference, and 1
N

∑N
k=1

δĝk(ω)
ĝ2k(ω)

is the average of relative Green’s function differences. We
assume that the average of relative Green’s function differences is much smaller than 1 and
can be omitted, then we have proved that:

fs(ω) ≈ w1(ω)

w2(ω)
= fw(ω). (13)

To demonstrate the reasonability of our assumption, a numerical example is employed.
In Figure 1, the monitoring Green’s function (ĝ2k(ω)), the Green’s function difference, the
relative Green’s function difference, and the average of relative Green’s function differ-
ences are plotted. Models and acquisition parameters used are the same as that in Figure
2 and 4. We observe in Figure 1c and d (or d and h), the relative Green’s function differ-
ence cannot be ignored for a single trace, its amplitudes are even over 1 sometimes, but the
average values of relative Green’s function differences in Figure 1d and h are significantly
smaller and close to zero (much smaller than 1). Since the relative Green’s function differ-
ences in different traces can be both negative and positive, they can cancel each other out
after averaging. Thus, it is reasonable to omit the average term in equation 12.

The new monitoring data is obtained by multiplying fs(ω) with d̂2k(ω), frequency by
frequency, trace by trace. The filter is the same for all traces, but varies with frequency.
Note that we are treating baseline data as the reference data which can also be the mon-
itoring data, it depends on the frequency bandwidth of them. The data with a narrower
frequency bandwidth should be used as the reference data to avoid errors arising from fre-
quency expansion. Note that, during the calculation of the filter, a damp factor should be
designed to avoid the zero-denominator situation. Finally, we convert the new or filtered
monitoring data back to time domain by inverse Fourier transfer.

Fast local cross-correlations and time-shifts correction

After reducing the source wavelet non-repeatability, we still need to eliminate errors
resulting from time shifts between baseline and monitoring data. Even if the two surveys
have perfect repeatability, time-shifts correction is essential, since they often cause coher-
ent errors in the final time-lapse imaging. In this subsection, local cross-correlations are
calculated to abstract the time shift for each sample.

The cross-correlation between time-domain baseline trace d1k(t) and new monitoring
trace d′

2k(t) for an integer lag l is defined as follows:

ck[l] =
Nt∑
i=1

d1k[i]d
′

2k[i+ l] (14)
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FIG. 1. The real parts of the monitoring Green’s function (a), the Green’s function difference (b),
the relative Green’s function difference (c), and the average of relative Green’s function differences
(the black line in d). Correspondingly, the imaginary parts are plotted in e, f, g, and h. The gray
lines in d and h are abstracted from c and g, respectively, at the distance of 2km.

where d1k[i] = d1k((i− 1)∆t) and d′

2k[i+ l] = d
′

2k((i+ l − 1)∆t) represents two discrete
sequences, Nt and ∆t are, respectively, the number of samples of each trace and time
sampling interval.

By exploiting Gaussian windows to the sequences, Hale (2006) proposes to calculate
the local cross-correlation for each sample, which can be expressed as:

Ck[i, l] =

i+Nw/2∑
j=i−Nw/2

d1k[j]f(j − i)d′

2k[j + l]f(j − i+ l) (15)

Where f(x) ≡ e−x
2/2σ2 is a Gaussian function with standard deviation σ, and Nw de-

notes the number of non-zero samples in a truncated Gaussian window, i.e., the size of the
Gaussian window. Also, Hale (2006) develops a fast algorithm for local cross-correlations
calculation, which will be adopted in our work to save computational cost, and it is dis-
played in ˜Algorithm1. For more details on this algorithm, please refer to Hale (2006).
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Algorithm 1: Fast local cross-correlations (Hale, 2006)
1: for k ← 1, 2, . . . , N do
2: for l← −Nl/2, . . . , Nl/2 do /* Nl is the number of lags */
3: for i← 1, 2, . . . , Nt do
4: h[i]← d1k[i]× d

′

2k[i+ l]
5: end
6: for i← 1, 2, . . . , Nt do /* begin shift */

7: h̃[i]← h[i− l/2] /* interpolate for odd l */
8: end /* end shift */
9: for i← 1, 2, . . . , Nt do /* begin Gaussian filter */

10: Ck[i; l]← 0

11: for j ← i−Nv/2, . . . , i+Nv/2 do /* Nv ≈ Nw/
√

2 */

12: Ck[i; l]← Ck[i; l] + h̃[j]× f(j − i− l/2)× f(j − i+ l/2)
13: end /* end Gaussian filter */

14: end
15: end
16: end

After obtain local cross-correlations for each sample in each trace, we abstract the max-
imum local cross-correlation in each sample, via:

Cmax[i, k] = max
l∈[−Nl/2 Nl/2]

Ck[i, l], (16)

and pick the corresponding lag lmax. Nl in equation 16 is the number of lags. Finally, the
new monitoring trace after time-shift correction can be obtained by:

d
′′

2k[i] = d
′

2k[i+ lmax]. (17)

Reverse time migration with a Poynting Vector imaging condition

To display the processed time-lapse data intuitively, we use an RTM to map the shot
gathers into reflector imaging in depth. RTM is one of the most used technologies in
geophysics, the basic imaging condition used in it is the crosscorrelation imaging condition
(Claerbout, 1971; Kaelin and Guitton, 2006):

image(x, z) =
∑
t

Pf (x, z, t)Pb(x, z, t), (18)

where x and z are horizontal and depth coordinations,respectively; Pf (x, z, t) is a forward-
propagating wavefield in time from the source location; Pb(x, z, t) is a backward-propagating
wavefield in reverse time from receiver locations. For time-lapse imaging, we use the dif-
ference data to generate the backward-propagated wavefield.

But equation 18 can not realy represent refletion coefficients of subsurface reflectors, an
improvement is normalizing it by the square of the source illumination energy (Claerbout,
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1971; Lee et al., 1991; Kaelin and Guitton, 2006), then we have:

image(x, z) =

∑
t Pf (x, z, t)Pb(x, z, t)∑
t Pf (x, z, t)Pf (x, z, t)

. (19)

The source-normalized crosscorrelation imaging condition has the same (dimensionless)
unit, scaling, and sign as the reflection coefficient (Chattopadhyay and McMechan, 2008).

However, RTM suffers from the imaging of refracted waves, direct waves, and back-
scattered waves, which often produce strong artifacts. Although for time-lapse surveys with
perfect repeatability, these waves can be eliminated in the difference data, non-repeatability
issue is an internal topic. The non-repeatability can cause badly destruction in time-lapse
imaging. Especially, small relative errors to strong events (e.g., refracted waves and direct
waves) would lead to comparable relative errors to the effective time-lapse signal produced
by property changes of the subsurface rock, and make strong coherent errors in time-lapse
imaging. We mitigate this problem by using a Poynting Vector imaging condition (Yoon
and Marfurt, 2006):

image(x, z) =

∑
t Pf (x, z, t)Pb(x, z, t)W (cos θ(x, z, t))∑

t Pf (x, z, t)Pf (x, z, t)
, (20)

where

cos θ(x, z, t) =
vfPf (x, z, t) · vbPb(x, z, t)
|vfPf (x, z, t)||vbPb(x, z, t)|

, (21)

where
vf = −(

∂Pf
∂x

,
∂Pf
∂z

)
∂Pf
∂t

, vb = −(
∂Pb
∂x

,
∂Pb
∂z

)
∂Pb
∂t

, (22)

vfPf and vbPb are Poynting Vectors of forward- and backward- propagating wavefields,
respectively; θ(x, z, t) is the opening angle (twice of the incident angle); W (cos θ(x, z, t))
is a weighting factor to rid off values of image over a certain angle range. For example, if
we want to keep the values whose incient angle less than 50 degrees (100 degrees opening
angle), the W (cos θ(x, z, t)) may be set to 1 where cos θ(x, z, t) less than cos(100), and
0 elsewhere. Note that in equation 21 and 22, we use the baseline or monitoring data to
obtain the backward-propagating wavefield instead of the difference data used for equations
18, 19 and 20, since the difference data have much lower SNR (signal-to-noise ratio) than
baseline or monitoring data, which will lower the quality of calculated incident angles.

NUMERICAL EXAMPLES

In this section, a modified P-wave Marmousi model and a 2D constant-density acoustic
wave equation solved by a finite difference method are used to test our method. A perfectly
matched layer (PML) is employed on each side of the model, except the top side on which a
free surface is set up. In Figure 2, the baseline model, time-lapse model (monitoring model
minus baseline model), smoothing migrated velocity, and geometry are plotted. The model
size is 257-by-502, with a 10m grid spacing, 25 sources evenly spread at the top with a
30m depth, and 502 receivers are located at the grids on the surface. A time-lapse velocity
change, 4% of the corresponding reservoir velocity, is placed at the center in the baseline
model.
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FIG. 2. (a) Baseline model (P-wave velocity); (b) time-lapse model; (c) smoothing migrated velocity
model. The dash lines and asterisks in (a) are locations of receivers and sources, respectively.
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FIG. 3. Two time-domian wavelets (a) and their frequency spectrums (b). (c) Normalized frequency
spectrums of a certain baseline and monitoring traces. (d) Calculated frequency-domain filters,
fw(ω) and fs(ω).

A single-shot gather example

The single-shot gathers are excited at the central source location in Figure 2a. For the
case of identical baseline and monitoring wavelets, we use wavelet 1 for both baseline
and monitoring surveys, and for the case of different wavelets, we use wavelet 1 for the
baseline survey but wavelet 2 for the monitoring survey. And the two wavelets are plotted
in Figure 3a-b in both time and frequency domains. Wavelet 1 is a minimum-phase wavelet
with a 15Hz peak frequency, and wavelet 2 is a minimum-phase wavelet with a 13Hz peak
frequency after amplifying twice and taking a -90-degree phase rotation. Two wavelets are
different in peak frequency, maximum amplitude, and phase.

Normalized frequency spectrums of a certain baseline and monitoring traces are plotted
in Figure 3c. The normalized-spectrum discrepancy between baseline and monitoring data
in the same wavelet case is much smaller than that caused by the wavelet difference. And
the filters fw(ω), the spectrum ratio of wavelet 1 to wavelet 2, and fs(ω) calculated by
equation 9 are plotted in Figure 3d. They are close to each other, except when the frequency
is smaller than about 3Hz. This is because the average term in equation 12 cannot be
ignored at the range of so low frequency, which can also be observed in Figure 1d and h.
But this low-frequency error impacts little to the accuracy of fs(ω), since the frequency
components lower than 3Hz in seismic data are often very weak or lack.

In Figure 4, the difference data are plotted. In Figure 5 and 6, the traces at the dis-
tance of 3km in each panel of Figure 4 are plotted. It is observed that fw(ω) can almost
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FIG. 4. The difference data before (a,b,c,d) and after (e, f, g, h) implementing the time-shifts cor-
rection. (a) Baseline and monitoring wavelets (wavelet 1) are identical. (b) Baseline and monitoring
wavelets are different (wavelet 1 for baseline data, wavelet 2 for monitoring data), and there is no
processing to both datasets. (c) Baseline and monitoring wavelets are different, but the monitoring
data are filtered by fw(ω). (d) Baseline and monitoring wavelets are different, but the monitor-
ing data are filtered by fs(ω). (e)-(h) are the same as (a)-(d) but having implemented time-shift
corrections to monitoring data. All panels are clipped identically.
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FIG. 5. Traces abstracted from Figure 4a-d at the distance of 3km. All solid lines are identical,
which are abstracted from Figure 4a. The dash lines in the first to the third panels are, respectively,
abstracted from Figure 4b, c, and d.
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panels are, respectively, abstracted from Figure 4e-h.

perfectly eliminate the difference caused by the difference between baseline and moni-
toring wavelets, and fs(ω) also has a fantastic performance on reducing the wavelet non-
repeatability. The time-shifts correction based on fast local cross-correlations can effec-
tively attenuate errors resulting from the time shifts between baseline and monitoring data,
but it is not really helpful to solve the wavelets non-repeatability issue.The same conclu-
sions can also be observed in Figure 7 and 8 where the difference data in Figure 4a-h are
imaged by a RTM.

Furthermore, in Figure 7 and 8, we observe using fw(ω) can produce imaging almost
the same as that with perfect wavelet repeatability. And using fs(ω) still has some remain
coherent errors mainly above the time-lapse change, which can also be observed in Figure
4d and the third panel of Figure 5. Using the Poynting Vector imaging condition (Figure
7e) can effectively decrease these errors. The RTM imagings after time-shifts corrections
are plotted in Figure 8, in which we observe that time-shifts corrections can reduce arti-
facts, especially, that closely beneath the events representing the time-lapse change. This
is significant to mitigate incorrect interpretation of the time-lapse change.

However, we can still see errors outside the time-lapse area in 8c and e. They come at
least from the following aspects: (1) the remaining time shifts; (2) the amplitude changes
of waves caused by the sencond or higher-order scattering of time-lapse change; (3) the
inaccurate velocity using for RTM imaging; (4) the inaccuracy of fs(ω) for Figure 8e.
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FIG. 7. The RTM imagings of the difference data before time-shifts correction in Figure 4a-d. (a)-(d)
are, respectively, imagings of Figure 4a-d with the source-normalized imaging condition (equation
19). (e) is the imaging of Figure 4d with the Poynting Vector imaging condition (equation 20), and
the incident angles are limited within 50 degrees.
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FIG. 8. The RTM imagings of the difference data after time-shifts correction in Figure 4e-h. (a)-(d)
are, respectively, imagings of Figure 4e-h with the source-normalized imaging condition (equation
19). (e) is the imaging of Figure 4h with the Poynting Vector imaging condition (equation 20), and
the incident angles are limited within 50 degrees.
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wavelets spectrums and the latter is calculated from the single-shot gathers. The dot line is fs(ω)
calculated from all shots.

Multi-shot gathers examples

Here, we use all shots, including 25 baseline shots and 25 monitoring shots, to test
our methods, and all shots are excited one by one with wavelet 1 for baseline survey and
wavelet 2 for monitoring survey.

Noise-free data tests

In Figure 9, the source-independent matching filters fs(ω), calculated from the central
shots and all shots of noise-free datasets, and fw(ω) are plotted. It is observed that fs(ω)
calculated from all shots has similar accuracy to that calculated from the central shots, both
of them are close to fw(ω) but with a bias when the frequency is lower than about 3Hz.

In Figure 10 and 11, the RTM imagings of the difference data before (Figure 10) and
after (Figure 11) time-shifts corrections using all shots with the source-normalized imaging
condition and the Poynting Vector imaging condition are plotted. Similarly to that in Figure
7 and 8, we can see a significant improvement after using fw(ω) or fs(ω). Also, we observe
that time-shifts corrections calibrate the three events (two dark ones and a bright one) to
two events (a dark one and a bright one) in the time-lapse area that is more accurate. And
the Poynting Vector imaging condition can reduce the artifacts above the time-lapse area,
especially, in the shallow part.

Noisy data tests

We test our method using data with SNR (signal-to-noise ratio) equals to 2 and 1. The
same-level but non-repeatable Gaussian random noises are added to noise-free baseline and
monitoring data separately. The central noisy baseline shots and corresponding difference
data are displayed in Figure 12 where a sharp SNR decrease in the difference data can be
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FIG. 10. The RTM imagings of the difference data before time-shifts corrections using all 25 shots
with (a)-(d) the source-normalized imaging condition or (e) the Poynting Vector imaging condition in
which the incident angles are limited within 50 degrees. (a) Baseline and monitoring wavelets are
identical. (b) Baseline and monitoring wavelets are different, and monitor data are not processed.
(c) Baseline and monitoring wavelets are different, and monitor data are filtered by fw. (d) and (e)
Baseline and monitoring wavelets are different, and monitor data are filtered by fs.
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FIG. 11. The RTM imagings of the difference data after time-shifts corrections using all 25 shots
with (a)-(d) the source-normalized imaging condition or (e) the Poynting Vector imaging condition in
which the incident angles are limited within 50 degrees. (a) Baseline and monitoring wavelets are
identical. (b) Baseline and monitoring wavelets are different, and monitor data are not processed.
(c) Baseline and monitoring wavelets are different, and monitor data are filtered by fw. (d) and (e)
Baseline and monitoring wavelets are different, and monitor data are filtered by fs.
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FIG. 12. The central shots of baseline data with SNR=2 (a) and SNR=1 (b). The difference data of
the central shots with SNR=2 (c) and SNR=1 (d).
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FIG. 13. (a) Average frequency spectrums of the central shot of noise-free and noisy baseline
data.(b) Calculated matching filters for noise-free and noisy data.

observed.

In Figure 14, Average frequency spectrums of the central shot of noise-free and noisy
baseline data are plotted, as well as the calculated matching filters (fw(ω) and fs(ω))
for noise-free and noisy data. We observe, with the noise level increasing, the source-
independent matching filter (fs(ω)) becomes worse, and the most accurate segment occurs
near the peak frequency (from about 10Hz to 20Hz) since these frequencies are less de-
stroyed by noises.

The RTM imagings of the noisy difference data, including all 25 shots after time-shifts
correction, using the source-normalized imaging condition (equation 19) and the Poynting
Vector imaging condition (equation 20) are plotted in Figure 14 and 15. For the data with
SNR=2, we can still clearly recognize the time-lapse area from the imagings using fs(ω),
but for the data with SNR=1, fs(ω) does not work well. And the performs of fw(ω) are
very stable for data with different noise levels. Additionally, fw(ω) can function as de-
creasing the random noise since it is a band-pass filter essentially. The Poynting Vector
imaging condition can significantly suppress the shallow-part coherent errors in noisy data
imagings.

CONCLUSIONS

We have developed two frequency-domain matching filters to reduce source wavelet
non-repeatability, one is the spectrum ratio of the baseline and monitoring wavelets, the
other is the average spectrum ratio of the baseline and monitoring traces. The former
requires the wavelets information of baseline and monitoring data, and the latter is source-
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FIG. 14. The RTM imagings of the difference data (SNR=2) after time-shifts corrections using all
25 shots with (a)-(d) the source-normalized imaging condition or (e) the Poynting Vector imaging
condition in which the incident angles are limited within 50 degrees. (a) Baseline and monitoring
wavelets are identical. (b) Baseline and monitoring wavelets are different, and monitor data are not
processed. (c) Baseline and monitoring wavelets are different, and monitor data are filtered by fw.
(d) and (e) Baseline and monitoring wavelets are different, and monitor data are filtered by fs.
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FIG. 15. The RTM imagings of the difference data (SNR=1) after time-shifts corrections using all
25 shots with (a)-(d) the source-normalized imaging condition or (e) the Poynting Vector imaging
condition in which the incident angles are limited within 50 degrees. (a) Baseline and monitoring
wavelets are identical. (b) Baseline and monitoring wavelets are different, and monitor data are not
processed. (c) Baseline and monitoring wavelets are different, and monitor data are filtered by fw.
(d) and (e) Baseline and monitoring wavelets are different, and monitor data are filtered by fs.
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independent.

After reducing the source wavelet non-repeatability, we have employed a time-shifts
correction by a fast local cross-correlations algorithm to further reduce the non-repeatability
caused by time shifts in the difference data. And an RTM in depth with a Poynting Vector
imaging condition has been used to reduce the remaining errors arising from the inaccuracy
of the source-independent matching filter.

The feasibility of our methods has been demonstrated by the synthetic noise-free and
noisy data tests. The spectrum ratio of the baseline and monitoring wavelets have shown
fantastic performances during these tests. The source-independent filter, with a certain anti-
noise ability, can also effectively solve the problem of non-repeatability of source wavelets.
But high-quality shot gathers are still the guarantee of the success of the source-independent
method.

DISCUSSION

In cross-equalization Rickett and Lumley (2001), processing for solving source wavelet
non-repeatability issue is also included, it comprises steps: (1) Picking a window above the
reservoir zone where the time-lapse change; (2) calculating the spectral balancing filter or
the time-domain least-squares filter using the data in the window for each trace; (3) apply-
ing each filter to the corresponding trace as a whole. This processing can be employed in
both shot gathers and CDP (common depth point) data. But positioning the reservoir in
shot gathers is not an easy thing and the first arrivals could also take the information about
the reservoir. Also, since wavelets in CDP data are variable vertically (temporally) and
horizontally (spacially), after performing the cross-equalization the eliminating remaining
wavelet non-repeatability errors are still challenging (Rickett and Lumley, 2001). Further-
more, performing the filtering trace-by-trace is not good for anti-noise.

In our work, we focus on the source wavelet non-repeatability issue. In practice, more
non-repeatability issues should be considered, for example, before using the matching fil-
ters in this paper, the baseline and monitoring shot gathers should be interpolated and re-
sampled into the same grids, and denoising and low-pass filtering can also be used, which
do not change the relationship in equation 2. Additionally, we have assumed that the source
locations are identical in the two surveys. We believe our methods are also applicable
for elastic shot gathers that can also be expressed as convolutions between wavelets and
Green’s functions, and they can also be used in 4D (or time-lapse) full-waveform inversion
where the raw shot gathers are used.
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