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ABSTRACT 
Determination of seismic lithology, porosity and pore fluid requires detailed modelling 

of petrophysical logs to improve the correlation with a seismic AVO response. 
Unfortunately, acquiring a complete set of logs for all wells in a seismic survey is 
unpractical, and estimating sonic, shear and density using empirical relationships is the 
standard approach. While these empirical relationships have worked for recon analysis, 
they have generally not given the details needed for accurate geophysical analysis. Machine 
Learning has given us a new way of investigating these relationships. By analyzing over 
138 wells with DT, Vs & RHOB logs from the North Sea, Australia, and Canada, we could 
generate synthetic Vp, Vs, and RHOB using traditional and the XGBoost regressor, where 
the latter showed to work better in this data. 

INTRODUCTION 
A petrophysical log suite generally covers about 85% of a geological section, but 

complete log sets, including sonic (DT), shear (DTS) and density (RHOB), typically make 
up less than 25%. The top hole is the most significant data gap, but the increased use of 
logging while drilling (LWD) has worsened this problem, as DT logs are generally not 
acquired as part of an LWD program. 

The regression method (Faust, 1951; Faust, 1953; Gardner, Garner, & Greogory, 1974; 
Castagna, Batzle, & Eastwood, 1985) became the standard method for creating missing 
logs up and through the 1990s (Error! Reference source not found.). These empirical 
relationships worked well for post-stack interpretation (Tanner & Sheriff, 1977; Brown, 
1999) and inversion (Lindseth, 1976; Aki & Richards, 1980; Ostrander, 1984; Shuey, 1985; 
Russell & Hampson, 1991; Castagna, Batzle, & Kan, 1993). 

The adoption of AVO analysis (Russell B. , Hampson, Schuelke, & Quirein, 1997; 
Goodway, Chen, & Downton, 1997; Connolly, 1998; Castagna, Swan, & Foster, 1998; 
Hampson, Schuelke, & Quirein, 2001; Hampson, Russell, & Bankhead, 2005) as standard 
practice during the late '90s started to emphasize several shortcomings for these basic 
estimations. Applying rock physics standards (Mavko, Mukerji, & Dvorkin, 1998; Avseth 
& Odegaard, 2004; Emery & Steward, 2006; Lee, 2006; Russell & Lines, A Gassmann-
consistent rock physics template, 2013; Downton, Collet, P, & Colwell, 2020) has 
significantly improved geophysical interpretation, providing knowledge of lithology and 
fluid types are known before estimating missing velocity and density information. 

Machine Learning has recently become popular in petrophysics, with multiple 
publications outlining its uses in lithology prediction (Hall B. , 2016; Hall & Hall, 2017; 
Guarido, 2019; Emery D. J., Guarido, Trad, & Innanen, 2021). Regrettably, most of these 
solutions require complete log data. Machine Learning has also been used to improve log 
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prediction using support vector machines, or SVM (Aderiran & Aizeneokhai, 2019; 
Anemangely, Ramezanzaheh, Amiri, & Hoseinpour, 2019; Liu, 2021), neural networks 
(Iwuoha, Pedersen, Clarkson, & Gates, 2019), or combinations of multiple methods 
(Azadpour, Saberu, Javaherian, & Shabani; Zhang, Zhong, Wu, Zhou, & Ma, 2020). The 
results from these machine learning predictions have been impressive compared to 
estimates using older empirical relationships. However, the solutions have not been 
generalized, nor are they as understandable as those derived from rock physics. The 
primary Machine Learning difficulties consist of the ill-conditioning of well logs, uneven 
sampling, finding the correct features engineering solutions, the need to impute missing 
values and overfitting. 

 

FIG. 1. Algebraic Relationships (Mudrock left, Gardner center, Faust right) vs XGBoost Machine 
Learn Estimation (Bottom). 

In the first part of this report, we intend to share our observation following log 
normalization & depth trend removal on DT, RHOB & DTS estimation using XGBoost 
(Chen & Guestrin, 2016), one of the few Machine Learning solutions that do not require 
completed dataset. In the second part of this report, we will look at using these empirical 
relationships to evaluate mineralogy. In the final part of the report, we will share some of 
the observations of Vp, Vs and RHOB’s relationship with mineralogy.  

THEORY – ALGEBRAIC RELATIONSHIPS 
Empirical relationships have generally been used to estimate missing log information. 

Estimating DT from resistivity (RES) was proposed by Hacikoylu, Dyorkin, & Mavko 
(2006) after Faust (1953) using a combination of depth, geological age, and resistivity 
variation, and is written as: 
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𝑉 =  𝛾ሺ𝑍𝐹ሻଵ  𝑤ℎ𝑒𝑟𝑒  𝐹 = 𝑅௧ 𝑅௪ൗ        (1) 

where 𝛾 = 2.2888, 𝑉 is in km/s and 𝑍 in km. 𝐹, the formation factor, is defined as the 
formation resistivity (𝑅௧) over the background water resistivity (𝑅௪). 

When the density logs are missing or questionable, it is common to use Gardner's 
relationship to estimate density values from the sonic log. The Gardner relationship 
(Gardner, Garner, & Greogory, 1974) is generalized for clastic as: 𝜌 = 𝑐𝑉.ଶହ       (2) 

where 𝑐 = 1.741 if 𝑉 is in km/s and 𝜌 is in g/cm3. 

Shear (DTS) logs were not widely acquired until recently, and S-wave velocities are 
generally estimated from the P-wave sonic log. Several empirical Vp-Vs relationships have 
been proposed (Pickett, 1963; Tatham, 1982; Tosaya & Nur, 1982; Eastwood & Castagna, 
1983; Castagna, Batzle, & Eastwood, 1985; Castagna, Batzle, & Kan, 1993; Greenberg & 
Castagna, 1992; Mavko, Mukerji, & Dvorkin, 1998) with the Castagna et al. (1985) mud-
rock line being the most widely referenced relationship between P-wave and S-wave 
velocities. Castagna et al. (1985) proposed the Mudrock line as an approximation to relate 
P-wave to S-wave values: 𝑉ௌ = 0.8621 × 𝑉 − 1172       (3) 
 

All three relationships, while helpful, were derived for log, seismic and laboratory 
measurements for Gulf Coast clastics at reservoir depth and are a reasonable first-order 
approximation for brine-wet shales and sandstone formations in similar depositional 
environments. Several modifications, using different experimental data sets, of the 
mudrock line have been proposed (Tosaya & Nur, 1982; Castagna, Batzle, & Kan, 1993; 
Mavko, Mukerji, & Dvorkin, 1998), but again, all concentrate on standard reservoir depths. 

More recent proposed methods for estimating Vp, Vs and RHOB are based in physics-
based from rock lab-derived Modulus (Mavko 1988; Dvorkin & Nur 1996), Vp/Vs vs Ip 
(Avseth & Ødegaard, 2004; Avseth et al. 2009 & 2010) or from Lambda-Rho/Mu-Rho 
relationships (Goodway 1997 & 2001, Hoffe et al. 2008).   

Estimating Vp & Vs assuming an isotropic rock can be derived from the bulk modulus 
(K), shear modulus (μ) and density (ρ) using: 

To estimate Vp & Vs, the first one needs to determine the mineral values for K and ρ 
(see appendix) and then estimate the variation in values with porosity. This variation with 
porosity generally requires estimating using a combination of a soft (Reuss lower) or hard 
(Voigt upper) estimation.  

Reuss (soft lower bound) is the minimum possible moduli for a material by averaging 
parameters using the denominator: 

𝑉𝑝 = ටାସ ଷൗ ఓఘ      𝑎𝑛𝑑    𝑉𝑠 = ටఓఘ      (4)



Emery et al. 

4 CREWES Research Report — Volume 34 (2022)  

   ଵெೃ = ∑ 𝑓 ଵெ ேଵ        (5)  

and the Voigt or the upper bound (hard) represents a straight numerical averaging of moduli 
(maximum possible).  

𝑀 = 𝑓𝑀ே
       (6) 

where in equations 5 & 6, fi is the volume fraction of the ith component with a modulus Mi.   

Density (ρ) generally follows a Voigt averaging, while bulk (K) & shear moduli (μ) 
generally lie between the bounds.  Varies averaging technics such as Voigt-Reuss-Hill, 
Hashin-Shrikman, or Kuster-Toksoz, along with the more popular Gassmann’s 
formulation, have been proposed. Nur proposed (Mavko, 1998) a more physical basis for 
associating a rock’s mineralogy to its log properties by assuming that the bulk and shear 
modulus are equivalent to the mineral grains at extremely low porosities and the Reuss 
bound when the rock loses cohesion (Φc critical porosity).  This report is not intended to 
investigate the relative merits of these technics but to use the derived machine learning 
mineralogy to determine the associated petrophysical properties and, thus, potential match 
to rock lab-derived properties.  

The isotropic formulas for deriving moduli’s from Vp, Vs and density (ρ) are: 

Likewise, the Poisson’s ratio can be derived using Vp and Vs by: 

Another rock-physic model involves cross-plotting of Vp/Vs versus Ip, which is 
relatively straightforward using petrophysical logs.  The final common cross-plot we use 
for evaluating Vp, Vs and density is the Lambda-Rho (λρ) Mu-Rho (μρ) variation in 
lithology and fluids (Goodway 1997 & 2001, Hoffe et al. 2008). The formulas used for 
estimating Lambda-Rho (λ) and Mu-Rho (μ) are: 

As mentioned earlier, most of these empirical relationships, along with the rock physic 
formulation, are for siliciclastic rocks at reservoir depths, temperatures, and pressure.  As 
the petrophysical log used for the Machine Learning solution in this report vary from near 
the water bottom to over 5000 meters below the sea floor, some variation is expected. 
Fortunately, the input mineralogy is dominantly siliciclastic (88%), with shale making up 
72% of the overall, thus providing a reasonable background trend that we can use to 
normalize data between wells and derive mineralogical relationships. 

𝜆 = 𝜌(𝑉ଶ−2𝑉௦ ଶ) 𝜇 = 𝜌𝑉௦ ଶ        (9) 

𝐾 = 𝜌൫𝑉ଶ − 4 3ൗ 𝑉௦ଶ൯             𝜇 = 𝜌𝑉௦ଶ          (7) 
 

𝜎 = 𝑉ଶ − 2𝑉௦ଶ2൫𝑉ଶ − 2𝑉௦ଶ൯            (8) 
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The cross plot (Error! Reference source not found.) shows the input data using the 
derived bulk modulus (K) and the more common Lambda-Rho (λρ) Mu-Rho (μρ); the 
colouring is by data density and is dominated by the shale. The right-hand panel also 
contains labels for some of the trace mineralogy. Please see the appendix if you are 
interested in cross-plots of the various mineralogy.  

MACHINE LEARNING METHOD 
For this work, we selected gradient boosting (Friedman, 2001) as our machine learning 

engine since, as an ensemble method, it combines results from a series of decision trees, 
each solving for the residual error from the previous steps with different decision trees.  
The technique uses a logistic regression approach, producing a dichotomous outcome 
(yes/no). We use the implementation known as XGBoost (Chen & Guestrin, 2016), which 
conveniently adds to the handling of missing data and increases speed by parallel 
processing. In our test, this library outperformed other tools. 

As XGBoost builds multiple trees sequentially, each new tree corrects some errors made 
by a previous tree; the model can become computationally expensive for large datasets 
with many features. Hyperparameter optimization is a crucial step to improve machine 
learning metrics but can also result in overfitting the training data making the solution area-
specific (Emery, Guarido, & Trad, 2022). For example, a geological framework has been 
shown to dominate lithofacies and mineralogy classification (Emery D. J., Guarido, Trad, 
& Innanen, 2021; Emery, Guarido, & Trad, 2022). We have removed all location and 
formation interpretations to make the XGB regression more general for estimating missing 
log values. 

FEATURE ENGINEERING 
For this analysis, as training data, we used 118 North Sea wells made available by the 

Norwegian Petroleum Directorate for the FORCE 2020 competition.  For testing datasets, 
we used 12 wells from Jeanne d’Arc Basin in Canada (Emery & Steward, 2006) and 8 
wells in NW Australia (Naeine & Prindle, 2018). Three sub-datasets were generated from 
the 138 wells for DT, RHOB, & DTS to create 3 test and validation sets (118/20, 114/20, 

FIG. 2. Bulk Modulus (left) and Lambda-Rho/Mu-Rho (right) cross plots of input data. 
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46/20). All the wells were from offshore settings, and future work will incorporate Western 
Canada data.  

The logs used for the analysis are DEPTH, gamma ray (GR), deep resistivity (DRES), 
median resistivity (MRES), shallow resistivity (SRES), neutron porosity (NPHI), density 
(RHOB), slowness (DT), shear slowness (DTS), photoelectric absorption (PEF), 
spontaneous potential (SP), calliper (CAL), and borehole size (BS). As the training data 
was 88% siliciclastic and dominantly shale, and we aimed to create a general solution, we 
chose to estimate a single global trend and analyze the residuals (FIG 3). While a more 
detailed porosity relationship (Ehrenberg, Nadeau, & Steen, 2009) could be appropriate, 
for simplicity, we used a linear depth trend estimated for each log type. A local trend was 
used to create the residual for SP, where mud conditions dominate the response. 

 

FIG. 3. Trends estimated from input logs and statistics for the residuals. 

In addition, as compaction trends are referenced to burial depth (below seafloor), 
correcting for variation in water depth is essential. Again, for simplicity, the strategy used 
was to apply a bulk shift using the residual for an individual log from the background trend. 
This solution worked well except for the NW Australia data, which was more a carbonate 
system than siliciclastic, where we needed to reduce the bulk shift for the resistivity and 
slowness logs. 

Standard Petrophysical sub-products were also created: resistivity crossover (RDEP-
RMED), average resistivity (RDEP+RMED, RDEP only RMED not available), NPHI-
DPHI crossover, and the impedance (Vp x RHOB). To guarantee input independence for 
the XGBoost solution, testing was done using either the slowness (DT, DTS), the velocity 
(Vp, Vs), or the Vp & Vp/Vs ratio. 

intercept slope r2 Coverage Mode Mean STD

GR 63.16 -0.0028 0.0060 100% 0.0 0.157 25.891

RDEP 0.027 -0.000165 0.1530 99% 0.0 0.064 0.372

RMED 0.027 -0.000165 97% 0.0 0.054 0.316

NPHI 0.506 0.0000741 0.3190 67% 0.0 -0.005 0.092

RHOB 1.85 -0.00019 0.5480 87% 0.0 -0.015 0.155

DPHI 0.5 0.00011 0.5480 87% 0.0 -0.009 0.091

Vp 1550.3 -0.6252 0.5340 93% 0.0 68.717 488.260

Vs 797 -0.3202 0.3030 20% 0.0 20.678 313.334

PEF 4.13 -1.23E-05 0.0000 61% 0.0 0.160 0.753

SP nan nan nan 68% 0.0 0.026 2.892

NPHI-DPHI nan nan nan 67% -0.11 -0.100 0.102

Trend Removed Residual Statistics
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The Lithoclasses provided with the 118 wells from the FORCE 2020 competition were 
divided into Mineralogy (Emery, 2022). While each class had significant overlap, FIG 4 
contains a summary of the mean for each residual attribute. 

 

 

FIG. 4.  Mean values by mineralogy for residual following trend removal. 

RESULTS 
As DTS is the most under-sampled petrophysical log, we will cover its results first (FIG 

5). XGBoost models were built using the FORCE2020 dataset and evaluated against the 
Jeanne d’Arc and NW Australia data. A feature importance analysis (Error! Reference 
source not found. 6) for Vs estimation indicates the dominance of Vp followed by NPHI 
and RDEP. A surprising outcome was the relatively low importance of GR and RHOB. 

 

FIG. 5. Vs prediction versus Mudrock & measure log (left), Mudrock vs real value (center), XGB 
prediction vs real (right). 

Evaluation of RHOB indicates high importance (Error! Reference source not found. 
6, center panel) again for Vp but modifying the role of NPHI and, to a less extent, RDEP. 
Surprisingly, GR seemed to have low importance in the estimations. The RHOB estimation 
shows a more balanced feature importance, with Vp still being the most significant but a 
more balanced RDEP, NPHI, and GR. Minor importance was found in the PEF and 
RESdiff logs, and the lowest importance was found in the SP log. 
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In most circumstances, when DT needs to be estimated, RHOB and Vs would also be 
missing, and therefore the input log suite was reduced to GR, RDEP, RESdiff, NPHI, SP 
& PEF. The Faust approximation (Error! Reference source not found., upper right) 
showed a low correlation, and the result from XGBoost (Error! Reference source not 
found., lower right) showed a much higher correlation. The feature importance indicates 
that Vp can be estimated from NPHI and DRES (FIG 6) and to a lesser GR and RESdiff. 

 

FIG. 6. Feature Importance (normal – top, residual – bottom) for Vs (left), RHOB (center), Vp (right). 

OBSERVATIONS 
The evaluation against the wells (FIG 7) in the Jeanne d’Arc Basin & NW Australia 

showed a mixed response. Machine learning estimation of Vp over Faust was superior 
(note the higher correlation). RHOB over Gardner was good, but Vp over Castagna was 
only fair. The amount of available log data and the degree of feature importance had a 
relationship to the overall performance of machine learning. 

The Faust estimation of Vp has almost no correlation (𝑅ଶ = 0.05), while machine 
learning shows a significant correlation (𝑅ଶ = 0.76). The 𝑉 estimation using only RDEP 
and GR reduces 𝑅ଶ (0.71), but the regional trend dominates this. I am estimating changes 
from the residuals to show more of the difference in 𝑅ଶ (0.57 and 0.40 LWD) with an 
improved RMSE. 

Predicting RHOB with the addition of RDEP & NPHI again shows an improvement 
compared to Gardner’s (𝑅ଶ 0.76 from 0.60, RMSE 26217 compared to 51009). A baseline 
shift error appears still to exist, and additional work will be required. 

Vp dominates the Vs estimated through machine learning and, as such, only shows a 
moderate difference from the Castagna mudrock calculation (𝑅ଶ 0.61 from 0.53, RMSE 
53329 compared to 64406).  
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FIG. 7. Example blind estimation, blue real, green empirical relationship & red result from machine 
learning. 

The results are more striking when comparing the performance of estimating 
mineralogy using logs, empirical relationships, or machine learning estimation (FIG 8). 
The Machine Learning logs quickly improve the empirical relationship but still fall short 
of matching the results from using the actual logs.  Upon investigation, three significant 
problems were observed: 

• As expected, the Empirical Relationship performed the worst and tended not to 
add much additional information for the estimation of mineralogy as they 
predominately represent a rescaling of existing information. Likewise, the 
observed shift between the empirical relationship and the input data is believed 
to be the result of the various geological location (North Sea vs Gulf of Mexico) 
and the broad variation in burial depths (0-5500m).  

• The machine learning estimated logs were best when using the residual attributes 
but still tended to favour the larger classes and performed inadequately in areas 
with poor log coverage (FIG 9). 

• The solution for the Poseidon wells, which were in a predominately carbonate 
environment, had a reasonable log prediction for shape but tended to have a poor 
machine learning estimation of Mineralogy. Likely the result of the under-
sampling of carbonates in the learning data and errors in the log normalization.  
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FIG. 8. Mineralogy estimation using petrophysical logs (Log), machine learn estimated logs (ML) 
and empirical relationship (ER). 

 

FIG. 9. Comparison of Empirical Relationship with input shale mineralogy (left) and XGBoost 
estimation (right). The large scatter centred around Ip=5000 results from the shortage of shallow 
input data (under 2000m burial depth) coupled with the uncertainty in mineralogy. 
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FUTURE WORK - CROSS PLOT OBSERVATIONS  
We were fortunate to provide a petrophysical analysis for a learning dataset. However, 

the small sample size for the carbonates and trace mineralogy does cause significant 
difficulty in mineralogy classification and estimation of missing logs required for AVO.   
The ideal solution would be estimating logs using a more physic-informed approach, and 
contained in the appendix is the cross plot of the normalized input data, which we hope to 
use for future work in 2023. A preview of this analysis is contained in FIG 10, indicating 
the mineral within the data set. 

 

FIG. 10.  Vp vs RHOB with Gardner line (left) and Vp/Vs vs Ip (right). Lines represent the most 
common profile for selective mineralogizes. 

 

CONCLUSIONS 
Machine Learning analysis for the estimation of missing logs shows a significant 

improvement over previous approaches using empirical relationships. From the three 
relationships investigated, Faust, Gardner and Castagna, we found that the Castagna 
relationship was the closest to the machine learning results. While additional work is 
required, machine learning shows promise in estimating petrophysical logs and discovering 
new insights into the importance of the various parameters. 
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APPENDIX 
Petrophysical rock properties provide for your reference. The two tables are an 

amalgamation of published values from various sources compiled over the last 15 years. 
No weight has been applied, and a straight average is displayed where more than one value 
is available.  Values in red are estimates with questionable validity. 

The cross-plots after the tables are from the normalized 118 wells provided as part of 
the Norwegian Petroleum Directorate for the FORCE 2020 competition. The mineralogy 
is from lithoclasses redistribution to mineralogy, as discussed in Emery (2021). 

 

 

 

Petrophysical Log Properties
Information compiled from Schlumberger, 1989, 1990, 2003; Baker, 2002; Castagna, 1985, 1993; Mavko 1998,Crain2000)

Density VPma VSma DT DT DTS DTS Vp/Vs Ip Chemical
Minerals gm/cm3 m/sec m/sec (logs us/ft)(logs us/m)(logs us/ft)(logs us/m) Formula

Quartz 2.65 5779 3930 52.7 173 78 254 1.47 15.30 - 1.81 300-5x 10
3

0.40 SiO2

Calcite 2.71 6500 3372 47 154 90 297 1.93 17.62 - 5.08 5000- 10
7

0.70 CaCO3

Dolomite 2.87 7080 3909 43 141 78 256 1.81 20.28 - 3.14 500- 10
5

CaCO3MgCO3

Anhydrite 2.97 5640 3110 54 177 98 322 1.81 16.76 - 5.07 1000- 10
4

CaSO4

Halite 2.10 4620 2710 66 216 118 387 1.70 9.70 - 4.67 105- 10
7

NaCl

Gypsum 2.33 5880 2770 52 170 110 361 2.12 13.69 - 3.80 10-1.2x 10
2

CaSO4(H2O)2

Feldspars - Alkali 2.55 4420 2638 69 226 116 379 1.68 11.28 ~220 2.9 10 3 KAISi3O8

Feldspars - Average 2.62 4690 2390 65 213 128 418 1.96 12.29

F - Plagioclase (Albite) 2.60 6740 4110 45 148 85 279 1.64 17.51 ~200 1.7 10
3

NaAlSi3O8 (Albite)

F - Plagioclase (Anorthite) 2.76 7690 4925 40 130 62 203 1.56 21.19 ~200 3.1 10 3 CaAl2Si2O8 (Anorthite)

Kaolinite 2.30 3020 1410 101 331 216 709 2.14 6.93 80-130 1.6 10
1

0.60 Al4Si4O10(OH)8

Illite 2.67 4320 2540 71 231 120 394 1.70 11.52 250-300 3.0 10
1

0.60 K1-1.5AL4(Si7-6.5,AL1-1.5)O20(OH)4

Montmorillonite/Smectite 2.32 4330 2310 70 231 132 433 1.87 10.05 150-200 1.9 10
1

0.60 (Ca,Na)7(AL,Mg,Fe)4(Si,Al)8O20(OH)4(H2O

Chlorite 2.83 3400 1600 90 294 191 625 2.13 9.61 180-250 5.8 10
1

0.60 (Mg,Fe,AL)6(Si,AL)4O10(OH)8

Anthractice Coal 1.51 2900 1357 105 345 225 737 2.14 4.39 0.2 10- 10
3

CH.358N.009O.022

Bituminous Coal 1.30 2540 1184 120 394 257 845 2.15 3.29 0.2 CH.793N.015O.078

Lignite 1.16 2038 942 150 491 324 1062 2.16 2.36 0.2 9-2x 10
2

CH.849N.015O.211

Basalt 2.75 5950 2600 51 168 117 385 2.29 16.39 60.0 4.0 300- 10
3

Chalk 2.10 2600 1300 117 385 234 769 2.00 5.46 - 5.1 50- 10
2

CaCO3

Granite 2.56 6000 3300 51 167 92 303 1.82 15.36 220.0 3.0 1000- 10
6

SiO2(60-70%)  a little of Al2O3,CaO,MgO a

Mixed Rock Lithology
Clay (Average) 2.64 3400 1600 90 294 191 625 2.13 8.97 ~150 3.4 20- 10

2

Shale 1.8-2.7 2616 63-170 3.5 50- 10
3

0.60

Feldspars - Average 2.62 4690 2390 65 213 128 418 1.96 12.29 200 2.5 10
2

Unconsolidated Sandstone 2.65 5180 3730 58.8 193 13.73 10
2

Clean Sandstone (p10%) 2.57 5750 3730 53.0 174 82 268 1.54 14.78 15-30 1.7 50- 10
2

0.40

Dirty Sandstone (p10%) 2.55 5950 3870 51.2 168 79 258 1.54 15.15 2.7 10
3

Conglomerate 2.57 5950 3870 51 168 79 258 1.5 15.2 25.0 2.7 10
4

0.40
Limestone 2.63 6420 3400 47.5 156 90 294 1.89 16.85 10-20 5.0 5000- 10

5
0.70

Dolomite (P>5.5%) 2.77 7000 4000 43.5 143 76 250 1.75 19.36 8-15 3.14 500- 10
3

Dolomite (P<5.5%) 2.85 7000 4000 43.5 143 76 250 1.75 19.95 3.05 1000- 10
4

Fluids
Water 0.998 1450 0 210 690 1.45 0.36 10

1
H2O

Sea Water (100,000 ppm) 1.025 1460 0 209 685 1.50 0.73 10
-2

Sea Water (200,000 ppm) 1.146 1490 0 205 671 1.71 1.12 10
-3

Brine 1.0686 1470 0 207 680 1.57 10
-2

Oil 0.85 1450 0 210 690 1.23 0.12 10
4

Methane 0.0086 630 0 484 1587 0.01 0.09 10
8

PeGR Resistivity øcritical
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VPma VSma Density
Minerals m/sec m/sec kg/m3
Quartz 5779 3930 2647 37.0 0.08 44.4 6.6 6028 4097 1.48 1.47 33.9 0.07 40.9 43.8

Calcite 6500 3372 2710 71.8 0.31 30.6 52.9 6447 3361 1.92 1.93 73.4 0.32 30.8 30.5

Dolomite 7080 3909 2865 86.5 0.24 48.8 56.1 7272 4126 1.72 1.81 85.3 0.28 43.8 53.6

Anhydrite 5640 3110 2973 57.1 0.28 30.4 37.0 5730 3198 1.80 1.81 56.2 0.28 28.8 30.2

Halite 4620 2710 2100 24.8 0.25 14.9 14.0 4610 2664 1.73 1.70 24.3 0.24 15.4 14.9
Gypsum 5880 2770 2328 40.0 44.8 2.12 56.7 0.36 17.9

Feldspars - Alkali 4420 2638 2551 0.25 14.3 1.68 26.2 0.22 17.8

Feldspars - Average 4690 2390 2620 37.5 0.32 15.0 27.7 4685 2393 1.94 1.96 37.7 0.32 15.0 15.3
F - Plagioclase (Albite) 6740 4110 2598 66.0 0.28 26.3 30.2 6237 3182 1.80 1.64 59.5 0.20 43.9 34.9

F - Plagioclase (Anorthite) 7690 4925 2755 29.3 1.41 1.56 73.8 66.8

Kaolinite 3020 1410 2295 14.8 0.28 5.0 11.8 3059 1481 1.81 2.14 14.8 0.36 4.6 7.6

Illite 4320 2540 2666 32.4 0.24 14.0 15.4 4377 2292 1.71 1.70 26.8 0.24 17.2 20.4

Montmorillonite/Smectite 4330 2310 2320 29.0 0.21 7.9 18.7 4128 1845 1.65 1.87 27.0 0.30 12.4 20.9

Chlorite 3400 1600 2828 22.5 0.36 7.1 18.2 3362 1585 2.14 2.13 23.0 0.36 7.2 6.9

Anthractice Coal 2900 1357 1513 9.4 0.38 4.4 7.2 3177 1705 2.27 2.14 9.0 0.36 2.8

Bituminous Coal 2540 1184 1295 4.7 0.35 1.8 4.7 2337 1179 2.08 2.15 5.9 0.36 1.8

Lignite 2038 942 1160 2.5 0.38 0.9 2.8 1786 881 2.27 2.16 3.4 0.36 1.0

Basalt 5950 2600 2754 58.5 0.20 4.0 60.3 4814 1205 1.63 2.29 72.7 0.38 18.6 43.9
Chalk 2600 1300 2100 9.0 0.35 3.2 7.1 2513 1234 2.08 2.00 9.5 0.33 3.5 3.0

Granite 6000 3300 2560 91.0 0.31 28.0 7080 3307 1.91 1.82 55.0 0.28 27.9 39.6

Mixed Rock Lithology
Clay (Average) 3400 1600 2639 21.6 0.35 6.9 17.0 3418 1620 2.08 2.13 21.5 0.36 6.8 7.2

Shale

Unconsolidated Sandstone 5180 3730 2650 38.5 0.14 36.9 -2.6 5753 3732 1.55 1.39 21.9 -0.04 36.9

Clean Sandstone (p10%) 5750 3730 2570 38.5 0.14 36.9 13.5 5842 3789 1.55 1.54 37.3 0.14 35.8
Dirty Sandstone (p10%) 5950 3870 2547 40.9 0.13 39.7 13.9 6070 3948 1.53 1.54 39.3 0.13 38.1

Limestone 6420 3400 2625 70.0 0.31 31.3 47.5 6524 3453 1.91 1.89 67.7 0.31 30.3
Dolomite (P>5.5%) 7000 4000 2765 79.0 0.26 45.6 47.0 7111 4061 1.76 1.75 76.5 0.26 44.2

Dolomite (P<5.5%) 7000 4000 2850 79.0 0.26 45.6 48.5 7004 4000 1.76 1.75 78.9 0.26 45.6

Fluids
Water 1450 998 2.3195 0.5 0.0 1525 2.098 0.5

Sea Water (100,000 ppm) 1460 1025 2.401 0.5 0.0 1531 2.185 0.5
Sea Water (200,000 ppm) 1490 1146 0.5 2.544 0.5

Brine 1069 2.752 0.5 0.0 1605
Oil 1450 850 0.862 0.5 0.0 1007 1.787 0.5
Methane 630 9 0.001325 0.5 0.0 393 0.003 0.5

Poisson 
Ratio σ*

Shear 
modulus   
μ (Gpa)+

Rock Physic Properties Bulk 
modulus K 

(Gpa)

Poisson 
Ratio σ 

From Vp 
& Vs 

Lamb 
constant μ 
from K & 

σ 

Vp/Vs 
from Vel.

Lamb 
constant μ 
from Vp & 

Vs

Lamb 
constant μ 

(Vp,Vs)

Vp from 
K, μ, & ρ

Vs from   
μ, & ρ

Bulk 
modulus K 
from Vp & 

Vs 

Vp/Vs 
From 

Poisson 
Ratio
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FIG. A. Input data plotted against depth, strong discontinuity at -1800 m is assumed to be the 
location of smectite clay conversion into illite. 

 

FIG. B. Input data Vp, Vs, RHOB, and Vp/Vs plotted against each other. DPHI is the porosity 
estimated using limestone density (2.72). 
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FIG. C. Vp/Vs and Lambda-Rho/Mu-Rho plot using all the input data 

 

FIG. D. Rock-Physics Parameters of all input data (estimated from Vp, Vs and RHOB) plotted 
against DPHI estimate using Limestone density (2.72 gm/cc3). 
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FIG. E. Vp versus Depth for sandstone (upper-left), siliciclastic shales (upper-right), calc-shales 
(lower-right) and limestone (lower-left) mineralogy. The line is from the 100% data linear fit. 

 

FIG. F. Vs versus Depth for sandstone (upper-left), siliciclastic shales (upper-right), calc-shales 
(lower-right) and limestone (lower-left) mineralogy. The line is from the 100% data linear fit. 
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FIG. G. RHOB versus Depth for sandstone (upper-left), siliciclastic shales (upper-right), calc-shales 
(lower-right) and limestone (lower-left) mineralogy. The line is from the 100% data linear fit. 

 

FIG. H. Vp/Vs versus Depth for sandstone (upper-left), siliciclastic shales (upper-right), calc-shales 
(lower-right) and limestone (lower-left) mineralogy. The line is from the 100% data linear fit. 
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FIG. I. Vs versus Vp for sandstone (upper-left), siliciclastic shales (upper-right), calc-shales (lower-
right) and limestone (lower-left) mineralogy. The Grey curved line is from the Mudrock relationship, 
while the blue line is the fit to the 100% data. 

FIG. J. Vp versus RHOB for sandstone (upper-left), siliciclastic shales (upper-right), calc-shales 
(lower-right) and limestone (lower-left) mineralogy. The grey curved line is from the Gardner 
relationship, while the blue line is the fit to the 100% data. 
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FIG. K. Vp versus DPHI for sandstone (upper-left), siliciclastic shales (upper-right), calc-shales 
(lower-right) and limestone (lower-left) mineralogy. The blue line fits 100% data. 

FIG. L. Vs versus DPHI for sandstone (upper-left), siliciclastic shales (upper-right), calc-shales 
(lower-right) and limestone (lower-left) mineralogy. The blue line fits 100% data. 
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FIG. M. Vp/Vs versus DPHI for sandstone (upper-left), siliciclastic shales (upper-right), calc-shales 
(lower-right) and limestone (lower-left) mineralogy. Line fit to the 100% data. 

FIG. N. Vp/Vs versus Ip for sandstone (upper-left), siliciclastic shales (upper-right), calc-shales 
(lower-right) and limestone (lower-left) mineralogy. Line fit to the 100% data. 
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FIG. O. Lambda-Rho vs Mu-Rho for sandstone (upper-left), siliciclastic shales (upper-right), calc-
shales (lower-right) and limestone (lower-left) mineralogy. The Grey line from linear Vp, Vs & RHOB 
fits the 100% data and the blue line linear fit the 100% data. 

FIG .P. Bulk Modulus (K) vs DPHI (limestone) for sandstone (upper-left), siliciclastic shales (upper-
right), calc-shales (lower-right) and limestone (lower-left) mineralogy. Line linear fit to the 100% 
data. 



Emery et al. 

24 CREWES Research Report — Volume 34 (2022)  

FIG. Q. Shear Modulus (μ) vs DPHI (limestone) for sandstone (upper-left), siliciclastic shales 
(upper-right), calc-shales (lower-right) and limestone (lower-left) mineralogy. Line linear fit to the 
100% data. 

FIG. R. Poisson Ratio (ø) vs DPHI (limestone) for sandstone (upper-left), siliciclastic shales (upper-
right), calc-shales (lower-right) and limestone (lower-left) mineralogy. Line linear fit to the 100% 
data. 


