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ABSTRACT

Radon transform (RT) allows the mapping of multiple and primary reflection events
separately in the transformed domain. Hyperbolic Radon transform (HRT) is an example
of RT that maps nearly hyperbolic events in the data space to points in the HR space. A
methodology of multiple prediction is proposed based on U-Net, a convolutional neural
network (CNN) architecture. This network is often applied to image segmentation for clas-
sification problems, but the proposed workflow uses the U-Net to predict multiples using
HR panels. In this report, we performed predictions using one or two input channels, sparse
and nonsparse HR panels, with nonsparse HR panels of multiples as the label. These nu-
merical experiments show that a U-Net can be used to separate the primaries and multiples
in the Radon space and therefore predict multiples. This result was achieved using sim-
ple geologic models, but further work is required with more complex geologic models. A
challenging aspect of this problem is that the transform generates artifacts that are very
dependent on the geometry of the input (truncation and sampling artifacts). Because these
are very difficult to predict at inference time, they cause a decrease in generalization power.

INTRODUCTION

In the seismic reflection method, multiples can be defined as the seismic energy re-
flected more than once and recorded by the receivers on the surface. This energy that
bounces back and forth is a coherent noise and will remain in the stacked section unless ap-
propriately addressed. Multiples can lead to errors in interpretation that can be very costly;
therefore, separating multiple from primary reflections is an essential step of the seismic
processing workflow.

Multiples are periodic in the slowness (reciprocal of velocity) domain but not in the time
domain. Therefore, they have a larger moveout than primaries, which makes it possible
to separate them in this new domain. Using this observation, some authors have used
Radon transforms (RT) aiming multiple attenuation. Hampson (1986) showed that the
RT with parabolic basis functions is a convenient domain to filter out multiples. Foster
and Mosher (1992) discussed examples and extended multiple suppression using target-
oriented parabolic RT. Trad et al. (2003) demonstrated the relevance of high resolution
for multiple attenuation in different types of RT. Usually, the separation of primaries and
multiples in the RT panels is either done automatically, but with simple boundaries, or
manually with time-consuming picking from the user. In this last case, results depend
on the processor’s expertise and can be time-consuming. A machine learning approach
can provide a data-driven methodology that can help to speed the process. In classical
processing, the physics of the events is somewhat taken into account through the choice
of different basis functions. In machine learning approaches, an algorithm, for example, a
network, tries to find patterns and predict them based on the data used for training. Because
of its flexibility and black-box nature, this approach should be used with caution. In this
report, we perform tests to understand how a machine learning approach can be helpful to
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the seismic processing workflow.

The tests in this report were performed with synthetic data obtained with a convolu-
tional model from simple earth models. This provides some control over the types of
multiples present. We generate two data sets, 1) a data set with primaries and multiples
together, and 2) another data set with multiples only. Then, these data sets are transformed
into RT panels. Data set 1 serve as inputs, and the multiple-only panels (from data set 2)
serve as labels. These inputs and labels can be used to train the network to predict the
boundary between primaries and multiples. By applying inverse RT, we can then have the
RT panels with the predicted multiples and subtract them from the input data, having only
the primary reflections left.

THEORY

This section presents an introduction to Radon transforms and sparse Radon trans-
form, with the theoretical development, following the one shown by Thorson and Claerbout
(1985), Sacchi and Ulrych (1995a) and Trad (2001). There is also a review of some ma-
chine learning concepts to introduce convolutional neural networks and, more specifically,
the U-Net architecture.

Radon transform - RT

Similar to the 2-D Fourier transform, where the wavefield is decomposed into its plane-
wave components, each with a specific frequency and angle (Yilmaz, 2001), the Radon
transform (RT) is a mathematical tool that maps data into a transformed domain, commonly
known in geophysics as τ − p (τ being the transformed time and p the slowness, reciprocal
of velocity or ray parameter) or Radon domain. The advantage of this new domain in
seismic data is that the primaries and multiples can be distinguished due to the difference in
velocity and moveout. Consequently, the Radon domain can be conveniently manipulated
to filter out multiples and keep in primaries.

First introduced by Johann Radon (1917), the Radon transform has been widely ap-
plied in inversion (Thorson and Claerbout, 1985), multiple attenuation (Foster and Mosher,
1992), interpolation (Trad et al., 2002), among other exploration geophysics topics. In
seismic data processing, the RT is applied to map the events in the seismic gathers (usually
sorted by CMP) with line integrals that can follow curves such as hyperbolas and parabolas,
for example. A multidimensional generalized RT (Beylkin, 1987), can be represented as
the inverse problem:

m(v, τ) =

∫ +∞

−∞
d(x, t = fτ←t(τ, v, x))dx, (1)

where d(x, t) is the input data in the offset x and two-way travel time t domain, m(v, τ) is
the correspondent model in the Radon domain with v as the parameter related to the shape
of the curve and τ as the zero-offset two-way travel time. The relationship between data d
and model m spaces is defined by the integration pathway along the curve t = fτ←t(τ, v, x).
The map back from the Radon domain m(v, τ) to the original input d(x, t) can be done by
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inverting the forward operator:

d̃(x, t) =

∫ +∞

−∞
m(v, τ = ft←τ (t, v, x))dv, (2)

where d̃(x, t) is ideally the reconstructed data from the model m(v, τ). The symbol ∼
in Equation 2 means that the data is not fully restored. Therefore additional operations
need to be done to reduce the misfit between original and reconstructed data, for instance
by applying the weighted least-squares approach (Sacchi and Ulrych (1995b), Trad et al.
(2003)).

The forward operator (model to data space) has its adjoint (data to model space) as the
first approximation to the inverse operator (Claerbout, 2004); thus the adjoint of Equation
1 is given by Equation 2. Continuous functions are not used since seismic data are sampled
discretely in time and space. Hence it is necessary to discretize the integral (Equations 1
and 2) by replacing it with summation (Sacchi, 2002) and imposing finite limits (offset).

In general, RT can be classified by the curve used in the line integral paths. The most
used in seismic processing are straight line, parabola and hyperbola, representing the linear,
parabolic and hyperbolic Radon transform, respectively. The linear and parabolic RT are
time-invariant, meaning the different basis functions are parallel, so frequently, they are
calculated in the frequency domain. On the contrary, the hyperbolic RT is time-variant and
calculated in the time domain.

Hyperbolic Radon transform - HRT

The hyperbolic RT, also known as velocity stack (Thorson and Claerbout, 1985), is
the most suitable to map seismic gathers because on CMP gathers the reflection events
are described by hyperbolas. From a geometrical point of view, the HRT maps nearly
hyperbolic events in the CMP gathers (data space) to points in the hyperbolic Radon space
by using the hyperbolic moveout equation (Yilmaz, 2001):

t =

√
τ 2 +

x2

v2
, (3)

where v is the stacking velocity, having the slowness p ( 1
v
) as its reciprocal. Thus the HRT

can be calculated by summing the amplitudes over the hyperbolas (Trad, 2001). In the
discretized case, the inverse operator that maps to the hyperbolic Radon space, is given by:

m(v, τ) =
xmax∑
xmin

d(x, t =

√
τ 2 +

x2

v2
), (4)

where hmin and hmax represent the offset range. Then the forward operator maps back to
the data space will be:

d̃(x, t) =
∑
v

m(v, τ =

√
t2 − x2

v2
). (5)

CREWES Research Report — Volume 34 (2022) 3



Fontes et. al

Equations 4 and 5 can also be given in terms of slowness p instead of velocity v. Be-
cause hyperbolas are time-variant curves, the primaries and multiples will not be exactly
parallel in the Radon domain but will reproduce a similar trend.

Parabolic Radon transform - PRT

The parabolic Radon transform (Hampson, 1986) is done by taking the CMP gathers
and then applying NMO correction using the hyperbolic moveout (Equation 3) with the
stacking velocity v of the primaries. Consequently, the primary events are flattened and the
multiples still have an approximately parabolic moveout (Yilmaz, 2001). Thus applying
the line integral (Equation 1) will allow the summation along the parabola traveltime curve
to be represented in the discretized case by:

m(p, τ) =
xmax∑
xmin

d(x, t = τ + px2)dx, (6)

where the slowness p describes the curvature of the event, τ is the intersection with the
zero offset, and t is the time after NMO correction. While changing the value of p the
basis function will match with multiples also having a strong signature in the parabolic
Radon domain. Since those events have different curvatures, it is possible mapping them
separately. Low values of p allow the mapping of flattened events, for instance, reflections
in the CMP domain after NMO correction, whereas higher values would map multiples.

Sparse Radon transform

Different from the inverse Fourier transform that completely restores the data, the in-
verse RT has some restrictions. As seen in the limits of integration of Equation 1, the
ideal case would require unlimited data to obtain a completely invertible RT, which is not
the case for seismic data. These are truncated within maximum and minimum offset and
possibly missing traces, thus affecting the resolution of the RT. The concept of sparse RT
(Thorson and Claerbout (1985), Sacchi and Ulrych (1995a), Trad et al. (2003)) helps to
address the resolution. A smooth and sparse model will honour the data, but the gaps will
be treated differently (Trad, 2001).

The RT operator is not orthogonal; therefore, applying the forward and inverse opera-
tors without data loss is not trivial (Trad et al. (2003)). Unless the operator is orthogonal,
its adjoint is not the same as its inverse. "When the adjoint operator is not an adequate ap-
proximation to the inverse, then you apply the techniques of fitting and optimization which
require iterative use of the modelling operator and its adjoint" (Claerbout, 2004).

A forward Radon operator can be expressed in terms of matrices and vectors. Therefore
we can rewrite Equation 2 as follows:

d = Lm, (7)

where L is the forward Radon operator that maps the model m to the data space d. Simi-
larly, Equation 1 can be seen as:

ma = LHd, (8)

4 CREWES Research Report — Volume 34 (2022)



U-Net and Radon transform for multiple attenuation

where LH is the adjoint Radon operator that maps the data d to the model space ma,
though not recovering the original model m. The most suitable solution can be found
by minimizing the cost function using iterative re-weighted least squares (Thorson and
Claerbout, 1985). To find m, sparsity constraint should be used (weighting preconditioned
conjugate gradient (Sacchi and Ulrych, 1995a)). Also, a cost function should be defined
(Trad et al., 2003):

ϕ =
∥∥Wd(d− LW−1

m Wmm)
∥∥2

+ λ ∥Wmm∥2 , (9)

where Wd represents the matrix of data weights, Wm is the matrix of model weight (re-
lated to resolution and smoothness) and, λ is a trade-off parameter between data misfit and
model constraints. The most suitable solution can be found by minimizing the cost func-
tion (Equation 9) using interactively re-weighted least squares (Sacchi and Ulrych (1995a),
Trad et al. (2003)).

Convolutional neural network

Convolutional neural network (CNN) is a type of neural network model that started its
development from studies of the visual cortex and motivated the neocognitron (Fukushima,
1980). The CNNs have been used in semantic segmentation problems to classify each pixel
according to the class of the object it belongs to (Géron, 2019). It is a supervised learning
method usually applied to image segmentation. It uses labelled data to train the model
while running convolutional windows to extract and classify features from the image.

Two important building blocks for the CNNs are the convolutional and pooling layers.
2D convolutional layers perform convolution operations of a given input data with a weight
(also known as filter or kernel), outputting a feature map (Goodfellow et al., 2016). To
make this method more beneficial, it is possible to add more layers after the input layer,
each associated with different weights to be able to extract different features from the given
image (Albawi et al., 2017). During training, the convolutional layer will automatically
learn the most valuable weights for its task, and the layers above will learn to combine
them into more complex patterns. Consequently, a convolutional layer can apply multiple
trainable weights having as output multiple feature maps, one per weight. (Géron, 2019).

A pooling layer is similar to the convolutional layer but without the weights (just slide
windows). Their main goal is to shrink the input image to reduce memory use and introduce
invariance by aggregating the inputs (Géron, 2019). In order to preserve only the most
important features within a window, the Max Pooling (maximum aggregation function)
was used in the present work. Other types of layers, such as batch normalization, are used
to normalize their inputs.

An input image can also have layers (or channels). For example, Figure 1 shows an
RGB image with 3 channels as input. Similarly, we used more than one channel to constrain
the network’s training. Adding zeros around the input (zero padding) was also done to make
each layer with the same height and width (in the Radon domain case: Tau - τ and slowness
squared - p2 respectively) as its previous.

CNNs usually implement convolution operations but without flipping the weight rela-
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FIG. 1. Schematic representation of an RGB image with its three channels (or layers), convolutional
layers and feature maps (Géron, 2019).

tive to the input, therefore losing its commutative property (Goodfellow et al., 2016). So
from a computer vision perspective, what is perceived as a convolution in practice is the
mathematical operation of cross-correlation.

One of the most applied CNNs architectures is the U-Net (Ronneberger et al., 2015),
mainly used for image segmentation problems. It can be applied in different fields, such as
cell detection in microscope image (Falk et al., 2019) and salt interpretation in seismic data
(Zeng et al., 2019).

The U-Net structure can be described as an assembly of convolutional and pooling
layers within an encoder-decoder process. Figure 2 shows the U-net architecture used in
the present work. In the encoder part, the network uses four steps to down-sample the
input data into a smaller size while going deeper, increasing the number of feature maps
(having the possibility to use more than one channel). Each step sequentially contains a
2D convolutional layer (sized 3x3) with a rectified linear unit (ReLU) activation function,
batch normalization and a Max Pooling (sized 2x2) with stride 2. During the decoder
part, the network up-sampling its size while using four steps to down-sample the data by
decreasing the number of filters. It also updates the weights by concatenating them with
its corresponding encoder outputs, forming an interconnected U-shaped structure. Each
step in the decoder part sequentially contains a 2D transpose convolutional layer (sized
2x2) to up-sample with stride 2 and ReLU activation function, a batch normalization, a
concatenation with features from the encoder part, a 2D convolutional layer (sized 3x3)
with ReLU activation function and another batch normalization. And to finalize a 2D
convolutional layer (sized 1x1) and a hyperbolic tangent (TanH) activation function. The
labels are an important parameter in this method since is the information that the network
will use to learn how to identify a specific feature in an image.
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FIG. 2. Schematic representation of the U-Net architecture used in the numeric examples

The purpose of training a neural network is to learn the weights and biases and use the
backpropagation until the result is satisfactory for your needs, in our case, multiple pre-
diction. As previously mentioned, the U-Net is usually applied in classification problems.
However, in the present work, we modified that and used this network to perform regression
to predict the multiples in the Radon domain. The hyperparameters, such as the number
of filters, weights, widths, strides and padding type explained in the previous section, were
kept the same throughout all the example tests.

Another way to update the weights is by using inference. By starting with weights from
a previous train, the network will not start addressing the weights randomly. Instead, it will
take advantage of previous knowledge and try to deepen the understanding of the problem
towards improving the predictions. A cost function or loss is usually used to evaluate the
model performance, such as the mean square error – MSE. The loss will show the amount
of error the network has while predicting by measuring the distance between the prediction
and the target vector. It is formulated as (Géron, 2019):

MSE =
1

n

n∑
i=1

(x(i))− y(i))2, (10)

where x is the vector of predictions and y is the vector of the true model (label). Thus if the
MSE decreases during the training, then predictions will get as close to the label (model of
the true multiples) as possible.
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EXAMPLES AND DISCUSSION

To train the U-Net (Figure 2), we used Madagascar to generate (employing convo-
lutional model) 120 synthetic shot gathers (380 receivers, shot interval 10 meters, total
record time 4.5 seconds with 0.004 seconds of temporal sampling and 1125 samples per
trace) from each velocity model (Figures 3(a), 4(a) and 5(a)). Shot 98 from each model
can be seen in Figures 3(b), 4(b) and 5(b). Taking the example of 8 geological layers (Fig-
ure 5), first, it generates shots containing just the primary reflections and then, separately,
shots only with first-order multiples. Finally, they are concatenated in the shot domain to
simulate an acquisition that recorded primaries and their first-order multiples (Figure 5(b)).

Subsequently, we sorted them by CMP (Figures 3(c), 4(c) and 5(c)) with a total of 578
CMPs and the hyperbolic Radon transform (HRP) was applied (Figures 3(d), 4(d) and 5(d)).
In the HR panel, we can see the primaries and multiples separated, with primaries aligned to
the left and multiples to the right since they have higher travel times. We also generated the
HR panel of multiples only (Figures 9(e), 10(e) and 11(e)) to serve as labels for the training.
Then these HR domain images (1125 (τ ) x 200 (p2)) passed through data preparation steps
(normalization and scaling) and, by a windowing process, were compartmentalized into
smaller patches of 64x64. These are the data inputted into the U-Net (Figure 2).

The output of the network will be the 578 Radon domain images (1125x200) with the
predicted multiples. The last step of the workflow is to apply the HRT using Least Squares
to reconstitute the data from the Radon domain back to the CMP domain (and back to the
shot domain). Figures 7 and 8 summarize the workflows used in the following numerical
examples. Furthermore, since these workflows aim to predict only multiples, one last step
needs to be done to have the final attenuated data. It is done by taking the CMP domain
of the multiple prediction (Figures 7(g) and 8(g)) and subtracting it from the original CMP
input (Figures 7(a) and 8(a)) to have only primaries left.

It is important to note that some primaries and multiples are almost overlapping in the
shot domain and therefore they will be closer in the HR domain, which is something to
keep close attention to if the network will understand and map this difference.

To better understand how this U-Net works in multiple prediction, some tests were
carried out feeding the network with different HR panels. Initially, different geological
models were used to understand the process of inference:

• Train and predict with HR for 3 geological layers;

• Train with 3 geological layers and predict for 5 geological layers, both with HR;

• Train with 3 geological layers and predict for 8 geological layers, both with HR;

• Train with 3 and 5 geological layers and predict for 8 geological layers, both with
HR;

• Train with 3, 5, and 8 geological layers and predict for 8 geological layers, both with
HR.

8 CREWES Research Report — Volume 34 (2022)



U-Net and Radon transform for multiple attenuation

FIG. 3. (a) Velocity model using 3 geological layers with a thickness of 160 meters each. (b) Shot
98 with multiples and primaries and (c) after sorting it by CMP. (d) HR panel, after inverting the
forward HRT operator of the CMP.

FIG. 4. (a) Velocity model using 5 geological layers with a thickness of 96 meters each. (b) Shot 98
with multiples and primaries and (c) after sorting it by CMP. (d) HR panel, after inverting the forward
HRT operator of the CMP.
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FIG. 5. (a) Velocity model using 8 geological layers with a thickness of 60 meters each. (b) Shot 98
with multiples and primaries and (c) after sorting it by CMP. (d) HR panel, after inverting the forward
HRT operator of the CMP.

Then, to evaluate the benefits of using a higher-resolution HR tests were carried out
using sparse HR:

• Train with 3 geological layers and predict for 5 geological layers, both with sparse
HR;

• Train with 3, 5, and 8 geological layers and predict for 8 geological layers, both with
sparse HR.

Subsequently, the network was fed with two channels, sparse and nonsparse HR panels,
as an effort to constrain the training further and understand how the input labels influence
the training:

• Train with 3, 5, and 8 geological layers and predict for 8 geological layers using
sparse and nonsparse HR as input channels and nonsparse HR as the label;

• Train with 3, 5, and 8 geological layers and predict for 8 geological layers using
sparse and nonsparse HR as input channels and sparse HR as the label.

Test 1: Eight, five and three geological layers

This section will show the results when training the U-Net and saving its best-predicted
model to understand how the network carries the knowledge from one prediction to another.
The analysis done throughout the examples was mainly qualitative.
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FIG. 6. By using the velocity model of the eight geological layers example, we can generate syn-
thetic shot gathers using a convolutional model. (a) Shot 98 with primaries only, (b) with first-order
multiples only, and (c) with multiples and primaries.

First, we trained the network with a simple model having 3 geological layers (Figure
3(a)) using 120 shots. Figure 9(a) shows shot 98 and Figure 9(b) shows the same shot
with multiples only. Something to notice is that some multiples nearly overlap some of
the primary reflections (Figure 9(a)); therefore, the HRT helps to separate multiples and
primaries, being important for the network to learn that these represent different events.
The U-Net trained using the 3 geological layers HR models (Figures 9 (d) and (e)) and
made predictions for 3 geological layers case, with results shown in Figure 9(f), having the
two multiples mostly predicted.

The MSE between the first and last prediction throughout the 20 epochs was 0.042808
and 0.020448, respectively. As we can see in Figure 13(a) the validation error (in blue)
decreased throughout the prediction. In the validation portion (in orange) some increase
in error happened around epochs 5 and 15, but the general trend decreased, as expected.
This test shows that the network can predict a simple geological case, even though there
are some "outliers" during the validation prediction. This could be explained due to the
artifacts caused by the HRT (mostly on the right and left side of the HR panels) not being
coherent in certain patches of the data, making it difficult for the U-Net to learn and predict
this information. Since the HR panels pass through the windowing process, the MSE is not
necessarily the best way to evaluate the prediction quality in our method.

Then, using the 3 geological layers case training, we predicted the 5 geological layers
(Figure 4(a)) case. Figure 10(f) shows that the multiples were predicted in some areas of
the HR panel, demonstrating that with previous training of a simple model (Figures 9(d)
and 9(e)), the network can approximately predict multiples without training with the new
model (Figures 10(d) and 10(e)). Although it is important to note that there are many arti-
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HRT (inverse operator) 

HRT (forward operator)

windowing: 64x64

FIG. 7. Workflow of the 8 geological layers case using 1 channel. Synthetic shot gathers are
sorted by CMP resulting in the input data (a), with multiples and primaries and, the input label (b),
with multiples only. Then the HRT (inverse operator) is applied to generate the hyperbolic Radon
panels of the input (c) and labels (d) to feed the U-Net (e). The network then predicts, after training,
the hyperbolic Radon panels of only multiples (f). The inverse HRT (forward operator) using least
squares is then applied to return the data to the CMP domain (g).
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HRT (forward operator)

OR

HRT (inverse operator)HRT (inverse operator) sparse HRT (inverse operator)

windowing: 64x64

’

’

sparse HRT (inverse operator)

FIG. 8. Workflow of the 8 geological layers case using 2 channels. Synthetic shot gathers are sorted
by CMP resulting in the input data (a), with multiples and primaries and, the input label (b), with
multiples only. Then the HRT (inverse operator) is applied to generate the hyperbolic Radon panels
of the input (c) and labels (d). Also, the sparse HRT (2 external iterations) is applied to generate
the sparse HR panels of the sparse input (c)’ and sparse labels (d)’. The input data and one of the
labels will be fed into the U-Net (e). The network then predicts, after training, the hyperbolic Radon
panels of only multiples (f). The inverse HRT (forward operator) using least squares is then applied
to return the data to the CMP domain (g).
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FIG. 9. Three geological layers case: shot 98 with multiples and primaries (a), just with multiples
(b) and after the U-Net prediction using the 3 geological layers training, subsequent HRT (forward
operator) and sorting by shot. HR with multiples and primaries (d), just with multiples (e) and after
the network prediction using the 3 geological layers training (f).

facts on the HR panels, which result from poor sampling and limited aperture on the CMP
domain. They also need to be predicted by the network, not only the punctual informa-
tion (in this case localized in the center of the panel) representing the multiples. The HRT
needs this information to reconstruct the data when returning to the CMP (and then shot)
domain. And so, the U-Net did not fully predict these artifacts as they are not coherent
and, consequently have undesired information in the form of vertical linear features and
primary artifacts remained (Figure 10(f)). The windowing process can also be the one that
affects the prediction since the network is not fed by the whole HR panels but with its
correspondent of 64x64 patches.

To get an even better result, more information is needed. Another test was performed
(Figure 11) to see if the network could predict the 8 geological layers model just with
the learning from the training with 3 geological layers. In this example, we can notice
that some of the primary reflections nearly overlap some of the multiples (Figure 11(a))
in small offsets and overlap in far offsets. This can also be seen on the HR panel (Figure
11(d)) around τ = 1 and τ = 1.5, but we expect that the network will be able to differentiate
them. Figure 11(f) shows that some multiples were predicted, but some of its artifacts were
not. In the shot domain (Figure 11(c)) there is still some information from some of the
primaries, even though this is not necessarily seen in Figure 11(f), showing that the not
coherent artifacts are important for the prediction.

Looking for a better result, the network was trained with 3 and then 5 geological layers,
saving its weights and using it as a starting point to predict the 8 geological layers case.
The result of this prediction in the HR domain (Figure 12(e)) shows that all the multiples
were predicted, having some missing artifacts. The final result of the test can be seen
in the shot domain (Figure 12(b)) and compared with its input label (Figure 12(a)). We
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FIG. 10. Five geological layers case: shot 98 with multiples and primaries (a), just with multiples
(b) and after the U-Net prediction using the 3 geological layers training, subsequent HRT (forward
operator) and sorting by shot. HR with multiples and primaries (d), just with multiples (e) and after
the network prediction using the 3 geological layers training (f).

FIG. 11. Eight geological layers case: shot 98 with multiples and primaries (a), just with multiples
(b) and after the U-Net prediction using the 3 geological layers training, subsequent HRT (forward
operator) and sorting by shot. HR with multiples and primaries (d), just with multiples (e) and after
the network prediction using the 3 geological layers training (f).
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FIG. 12. Eight geological layers case: shot 98 just with multiples (a) and its HR panel (d). shot
98 after the U-Net prediction for the eight geological layers case using 3 and 5 geological layers
training and subsequent HRT (forward operator) (b) and its HR panel (e). shot 98 after the network
prediction for the eight geological layers case using the 3, 5, and 8 geological layers training and
subsequent HRT (forward operator) (c) and its HR panel (f).

can conclude that there are still some improvements that can be done in the prediction but
overall, the multiples were identified by the network, improving the result if compared with
the previous test.

The last test uses the training of 3, 5, and 8 geological layers and predicts the case of 8
geological layers. Figure 12(c) shows the result in the shot domain, with all the multiples
and a considerable portion of the artifacts being predicted. Comparing Figure 12(d) and
Figure 12(f) we can see that they are qualitatively similar. Figure 13(b) shows that the
MSE during the prediction (in blue) decreased in a similar trend from the case with less
training (Figure 13(a)). The validation portion presents a stable MSE (in orange), probably
because the weights saved by previous training were being used.

Something worth mentioning is the poor prediction for the long offsets. In order to per-
form a quantitative interpretation analysis, we should use a data set that is AVO-compliant.
However, the proposed methodology can harm the true amplitudes since these are not being
kept for long offsets. When using the RT is important to take into account that the data suf-
fer from aliasing artifacts when not regularly sampled in offset (Moore and Kostov, 2002).
Therefore it will not have a good Radon panel causing an increase in the amplitude of
aliased events that fall outside the p analysis window (Marfurt et al., 1996). In this regard,
the sparse RT (Thorson and Claerbout (1985), Sacchi and Ulrych (1995a), and Trad et al.
(2003)) tries to address that, having the chance to improve the multiple prediction. And so,
some tests were done to see if the network would take this higher-resolution information
and increase the prediction quality.

It is important to emphasize that since the network does not understand the experiment’s
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(a) (b)

FIG. 13. U-Net learning rates: mean square error (MSE) of the overall prediction (in blue) and the
validation portion of the data (in orange). (a) Case of training and predicting 3 geological layers, (b)
training with 3,5 and 8 geological layers and predicting the 8 geological layers case.

Physics. However, only the match between prediction and label patches of images, the
result is not usually increased by inputting a higher quality Radon, for example. That is
why the key is to perform tests to understand what can be a better input information for the
network.

Test 2: Two channels - Sparse and Nonsparse HRT

To further understand how the network learns the features using different input data and
labels, we performed some sparse and nonsparse HRT tests. The sparse HRT uses more
external iterations in the RT algorithm (Sacchi and Ulrych (1995a), Trad et al. (2003)) given
a higher-resolution HR panel.

A test was carried out by training the U-Net with 3 and 5 geological layers (Figure 4(a))
and predicting for the 8 geological layers case. Shot 98 is shown in Figure 14(a) as well
as only its multiples in Figure 14(b). Then the sparse HRT is applied to them, resulting in
Figures 14(d) and 14(e), respectively. The result of the prediction is shown in Figure 14(f)
with some multiples being attenuated but with remaining artifacts left. Analyzing the result
of the prediction for the higher-resolution Radon in the shot domain (Figure 14(c)) we can
still see primary reflections left (Figure 14(b)). Comparing this result with the nonsparse
prediction (Figure 12 (b)) we can conclude that the sparse HRT did not improve the final
results as expected. Furthermore, the long offset amplitudes are attenuated if compared
with the nonsparse prediction.

Since the prediction for the 8 geological layers using the training from the 3, 5, and 8
geological layers in the nonsparse HRT example predicted the multiples successfully (Fig-
ure 12(f)), we decided to do the same training but now using sparse HRT for comparison.
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FIG. 14. Eight geological layers case: shot 98 with primaries and multiples (a) and its sparse HR
panel (d). Shot 98 just with multiples only (b) and its sparse HR panel (e). Shot 98 after the U-Net
prediction for the 8 geological layers case using the training of the 3 and 5 geological layers and
HRT (forward operator) (c) and its 8 geological layers HR panel prediction (f).

The result can be seen in Figure 15(f). Comparing these two results is possible to see that
the nonsparse case predicts the multiples but has a lot of background noise since it used just
one external iteration in its RT algorithm. On the other hand, the HRT sparse prediction
does not have the background noise since it used 2 external iterations, increasing the reso-
lution. Therefore, another approach is proposed by using 2 channels, sparse and nonsparse,
instead of just one. We expect the network will have more information while using less
background noise and differentiating the near-overlapping events, consequently making a
better prediction of multiples.

Figure 16(c) shows the result using both HR panels of sparse and nonsparse (Figure
16(d)) as inputs and HR nonsparse (Figure 16(e)) as the label. Figure 17(c) shows the result
using both HR sparse and nonsparse as inputs and HR sparse as the label. Qualitatively
comparing the results in the HR panels (Figures 16(f) and 17(f)) we can see that the labels
have a large influence on the predictions. Using HRT sparse as the label does the job of
predicting the multiples but not as well as the one using a nonsparse label. Furthermore, as
shown in Figure 17(f) the long offsets of the sparse label prediction were attenuated in the
right side of the shot domain. Therefore, the prediction using the nonsparse HRT shows a
better multiple prediction.

CONCLUSIONS

The HRT is an important tool for separating multiple and primary reflection events.
The U-Net was able to partially predict multiples using inference. Although, when trying
to predict a more complex geologic model (8 geological layers) using the training from
a simpler model (3 geological layers), the network only predicted some of the multiples.
However, we suggest that various geologic models should be used during training to pro-
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FIG. 15. Eight geological layers case: shot 98 with primaries and multiples (a) and its sparse HR
panel (d). Shot 98 just with multiples only (b) and its sparse HR panel (e). Shot 98 after the U-Net
prediction for the 5 geological layers case using the training of the 3, 5, and 8 geological layers and
HRT (forward operator) (c) and its 8 geological layers HR panel prediction (f).

FIG. 16. Eight geological layers case using 2 channels and nonsparse HR as the label. Shot 98
with primaries and multiples (a), its sparse and nonsparse HR panel (2 channels) used as inputs
(d). Shot 98 just with multiples (b) and its nonsparse HR panel used as the label (e). Shot 98 after
the U-Net prediction for the 8 geological layers case using the 3, 5, and 8 geological layers training
(2 channels) and HRT (forward operator) (c) and its HR panel result from the prediction (f).
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FIG. 17. Eight geological layers case using 2 channels and sparse HR as the label. Shot 98 with
primaries and multiples (a), its sparse and nonsparse HR panel (2 channels) used as inputs (d).
Shot 98 just with multiples (b) and its sparse HR panel used as the label (e). Shot 98 after the
U-Net prediction for the 8 geological layers case using the 3, 5, and 8 geological layers training (2
channels) and HRT (forward operator) (c) and its HR panel result from the prediction (f).

duce a better prediction. Train with two channels, sparse and nonsparse HRT, and using
nonsparse HRT panels of the multiples as label resulted in better multiple predictions than
the one using sparse HRT. For future work, we will train the network with multiple chan-
nels using different features, such as the parabolic Radon transform, to further constrain
the multiples prediction.
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