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ABSTRACT

Time-lapse (4D) seismic full-waveform inversion (FWI) can provide high-resolution
imaging of reservoir changes caused by the production of hydrocarbon (e.g., enhanced
oil recovery) and the unground storage of CO,. However, successful seismic monitor-
ing depends on good repeatability between baseline and monitor surveys. However, the
capacity of time-lapse FWI technology on solving the non-repeatability issue of seawa-
ter or near-surface velocity changes during baseline and monitor seismic surveys has not
been demonstrated. In this paper, we investigate the capability of the parallel strategy, the
double-difference strategy, the sequential strategy, and the common-model strategy in the
non-repeatability issue of seawater or near-surface velocity changes using synthetic time-
lapse marine streamer data, time-lapse OBN (ocean-bottom node) data, and time-lapse
surface land data. The investigation shows that when using marine streamer data, both the
double-difference strategy and the common-model strategy can adapt to relatively small
seawater changes, and only the common-model strategy can adapt to relatively big seawa-
ter changes; when using OBN data, the parallel strategy, the double-difference strategy, and
the common-model strategy all can adapt to relatively small seawater changes, and the best
result is given by the double-difference strategy, but none of them can adapt to relatively
big seawater changes; when using surface land data, the common-model strategy can adapt
to the random near-surface changes best.

INTRODUCTION

Applying time-lapse (4D) seismic methods for reservoir monitoring and characteri-
zation has developed for a long time since the mid-late 1980s (Greaves and Fulp, 1987;
Lumley, 2001; Landrg, 2001; Calvert, 2005; Hicks et al., 2016; Jack, 2017; Cho and Jun,
2021), which can be employed to monitor reservoir changes caused by the production of
hydrocarbon (e.g., enhanced oil recovery) and the unground storage of CO,. Especially,
due to the increasing demand for technologies to control greenhouse gas emissions, storing
CO;, in the subsurface has been being developing by many researchers, and 4D seismic
methods are used to monitor the CO- storages accordingly (Egorov et al., 2017; Cho and
Jun, 2021; Ajo-Franklin et al., 2013; Macquet et al., 2019). However, successful seismic
monitoring depends on the repeatability between baseline and monitor surveys that can be
affected by variations in weather conditions, source and receiver positions, environmental
noises, source wavelets, seawater or near-surface properties, etc.

The impact of the variations can be alleviated by good acquisition plans and/or proper
processing, e.g., repeatable acquisition geometries and data processing procedures. To
obtain good repeatable data to monitor the reservoir changes, the permanent OBC (ocean-
bottom-cable) installations are set at Foinhaven and Valhall fields (Calvert, 2005; Yang
et al., 2016). And at the Aneth oil field in Utah, the receivers are cemented in the moni-
tor well to acquire time-lapse VSP (vertical seismic profile) data (Cheng et al., 2010). In
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the CO2CRC Otway field experiment, Shulakova et al. (2015) improve the repeatability
of the land seismic data by burying the receivers which can lower the noises caused by
poor weather conditions, non-repeatable receiver positions, near-surface changes, and non-
repeatable survey environments. During the data processing, a cross-equalization method
is often applied to enhance the repeatability between baseline and monitor data (Rickett
and Lumley, 2001). Fu et al. (2020) propose a double-wavelet method to eliminate the
source wavelet non-repeatability which can also be reduced by designing a matching filter
(Fu and Innanen, 2022c). In past years, time-lapse seismic surveys based on a fiber-optic
distributed acoustic sensing (DAS) system becomes increasingly popular, since the down-
hole DAS array can be permanently installed, has lower monitoring cost, and is of finer
spatial sampling (Zwartjes et al., 2018; Byerley et al., 2018; Wilson et al., 2021).

As a powerful tool for 4D seismic data inversion to monitor subsurface reservoir changes
and/or CO, storages, full waveform inversion (FWI) (Lailly et al., 1983; Tarantola, 1984;
Virieux and Operto, 2009) has the ability of high-resolution imaging of physical proper-
ties for subsurface media, and it can solve the problem of non-repeatable receiver/source
positions in time-lapse seismic surveys (Zhou and Lumley, 2021b). In the past decade,
many time-lapse FWI methods have been developed. The most conventional time-lapse
FWI strategy is the parallel strategy (Lumley et al., 2003; Plessix et al., 2010), but its
result is prone to be affected by the convergence difference (Yang et al., 2015) and non-
repeatable receiver/source positions (Zhou and Lumley, 2021b; Fu and Innanen, 2022a)
between baseline and monitor inversion. Routh et al. (2012) present the sequential strat-
egy, using the inverted baseline model as a starting model for monitor inversion, which can
help to save computational cost and has been justified in a field VSP data case (Egorov
et al., 2017). However, this strategy often generates strong artifacts since it enhances
the convergence difference between twice FWles (Yang et al., 2015; Zhou and Lumley,
2021b). But a local-updating sequential strategy can efficiently reduce the artifacts and
perform well in both synthetic and field time-lapse data (Raknes and Arntsen, 2014; As-
naashari et al., 2015). Also, the local-updating method can be incorporated with the double-
difference strategy, which will be introduced later, to improve the time-lapse results (Zhang
and Huang, 2013; Li et al., 2021), alleviate the impact of taking an acoustic approximation
to elastic subsurface rocks (Willemsen et al., 2016), or implement Bayesian/Markov Chain
Monte Carlo formulation of time-lapse FWI (Fu and Innanen, 2022b). And the local-
solver-based local-updating method can significantly decrease the computational cost of
time-lapse FWI (Willemsen, 2017; Huang et al., 2018; Kotsi et al., 2020). Of course, the
local-updating method needs prior location information about reservoir change, which may
be difficult to be obtained in some cases of non-repeatable time-lapse surveys, such as the
ones in this study.

The double-difference strategy, directly minimizing residuals between synthetic differ-
ence data (synthetic monitor data minus synthetic baseline data) and observed difference
data (observed monitor data minus observed baseline data), applied in 4D FWI first by
Zheng et al. (2011), has been adopted by several researchers (Zhang and Huang, 2013;
Raknes and Arntsen, 2014; Yang et al., 2015; Willemsen et al., 2016; Fu and Innanen,
2021) including a real data case in Yang et al. (2016). It can focus on reservoir changes and
reduce artifacts outside the reservoir, hence, its result is not sensitive to the convergence de-
gree of the inverted baseline model. Nevertheless, the double-difference strategy requires
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well repeated time-lapse surveys. Fu et al. (2020) introduce a double-wavelet method to
handle the case of non-repeatable baseline and monitor source wavelets. But the double-
difference strategy is still vulnerable to the non-repeatability of receiver/source positions.
The common-model strategy, presented by Hicks et al. (2016), can also decay the artifacts
caused by the divergence difference between baseline and monitor inversions (Fu and In-
nanen, 2022a). Its philosophy is employing the same relatively well-converged starting
model for baseline and monitor FWles to guide them into the same local minimum, and it
has been applied in field cases in Hicks et al. (2016) and Bortoni et al. (2021). Moreover,
Maharramov et al. (2016) present a joint method in which baseline and monitor models are
simultaneously inverted; Zhou and Lumley (2021a) propose a central-difference strategy
containing two sequential strategies; and Fu and Innanen (2022a) build a stepsize-sharing
strategy by sharing stepsizes between baseline and monitor inversions, which can eliminate
the artifacts linked to the convergence difference and is suitable when the starting model
1s biased. However, in all the methods mentioned above, none has demonstrated that it
can solve the non-repeatability issue of seawater or near-surface velocity changes during
baseline and monitor seismic surveys.

In this paper, we will investigate some present time-lapse FWI strategies under the cases
of non-repeatable seawater or near-surface velocities during time-lapse seismic surveys,
and the purpose of our study is to find a solution for these non-repeatability issues. First,
we will review the FWI technology and some present time-lapse strategies. Then we will
use numerical examples to compare various strategies and conclude our observations. The
synthetic seismic data used to perform these investigations will include marine streamer
data, OBN (ocean-bottom node) data, and surface land data.

TIME-LAPSE FWI METHODS
Full-waveform inversion

A standard FWI (Lailly et al., 1983; Tarantola, 1984; Virieux and Operto, 2009) is
minimizing the L2 norm misfit function:

1
E(m) = o, — F(m)][3, (D)

where d; is the observed data or recorded wavefields, F(-) is a forward modeling operator
based on the wave equation, and m is the updating model (e.g., P-wave velocity).

By a linearized optimization (e,g, steepest descent method, conjugate gradient method,
etc.), the model is updated iteratively as:

m" = m"' + dm", (2)
where k is the iteration number, and

sm”* = pFg(m*, dlh), 3)

where
' = dope — F(m*), )

TES

CREWES Research Report — Volume 34 (2022) 3



Fu and Innanen

in which g(m*~1 d*_1) is the updating direction of model in iteration k, which depends

on the updated model m*~! and data residual d*_! in iteration k¥ — 1. For different op-
timizations, it has different calculations, for instance, in the steepest descent method, g
represents the gradient of the misfit function (equation 1) with respect to m, which is the
zero-lag cross-correlation between forward wavefileds and backward wavefields of data
residuals. For the first iteration, a starting model m" have to be prepared, which can be

obtained by velocity analysis or tomography.

In this study, we will typically use a time-domian constant-density acoustic finite-
difference method as the forward modeling operator, the steepest descent method as the
optimization, and the gradient is preconditioned with the diagonal approximation of the
Hessian matrix (Shin et al., 2001).

Tested time-lapse inversion strategies

In the introduction section, we have introduced the parallel strategy, the sequential
strategy, the double-difference strategy, the common-model strategy, the central-difference
strategy, the stepsize-sharing strategy, and the joint method. Exhaustively testing all the
methods is too resource-intensive. Hence, in this study, we only test the three typical strate-
gies (the parallel strategy, the sequential strategy, and the double-difference strategy), and
the common-model strategy that has been applied in a case with minor seawater velocity
changes in Hicks et al. (2016).

Parallel strategy

As the most conventional time-lapse inversion strategy, the parallel strategy, , with
workflow illustrated in Figure 1a, includes two independent FWI processes. One is for
baseline model inversion, and inputs are the baseline data and a starting model. Another
one is for monitor model inversion, and inputs are the monitor data and the same starting
model as that in the baseline model inversion. Then the inverted time-lapse model is the in-
verted monitor model subtract the inverted baseline model. Since FWI is highly non-linear
and is easy to be stuck in different minima, the two FWI processes mentioned above often
have different convergences and yield many artifacts on the final time-lapse inversion.

Sequential strategy

The sequential strategy, with workflow illustrated in Figure 1b, has the same baseline
model inversion as the PRS, using baseline data and a starting model to obtain the baseline
model. But the second time inversion, monitor model inversion, is different, in which the
inverted baseline model is sequentially employed as the starting model for the monitor
model inversion. Then the inverted monitor model minus the inverted baseline model is the
time-lapse model.
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Double-difference strategy

The double-difference strategy, with workflow illustrated in Figure lc, also contains
twice FWI processes. This first one is still the baseline model inversion, the same as that
in the parallel strategy or sequential strategy. In the second monitor model inversion, the
starting model is the inverted baseline model, same as the sequential strategy, but the input
monitor data are not the observed monitor data which are altered to the composited data:

dDD - F(mbas) + (dmon - dbas)y (5)

where F(my,;) is the synthetic data of inverted baseline model my,s, (d;n0n — dpas) is the
difference data (observed monitor data d,,,, subtract observed baseline data d,,;). Ac-
cordingly, the misfit function for monitor model inversion becomes:

1
Epp(Mimon) = 5lldpp — F(my0n)] 13, (6)

where F(m,,,,,,) is the synthetic data of inverted monitor model m,,,,.

Common-model strategy

The common-model strategy, with workflow illustrated in Figure 1d, can be seen as an
upgraded version of the strategy. Essentially, it contains twice parallel strategies. Firstly,
the baseline and monitor model inversions are performed independently with the same start-
ing model. Then a new starting model is taken from the average of baseline and monitor
models, with which the baseline and monitor model inversions are performed indepen-
dently again, still using the original data sets. And the final time-lapse change is obtained
from the difference of baseline and monitor models in the second-time parallel strategy.

Note that in the original version of the common-model strategy in Hicks et al. (2016),
the first-time parallel strategy only uses low-frequency seismic components, and only high-
frequency seismic components are employed in the second-time parallel strategy. It may
cause a low-frequency component lack in the final inverted time-lapse change. Hence, we
use all-frequency seismic components for every single FWI process to enhance the original
version.

NUMERICAL EXAMPLES
Marine streamer seismic data tests

To simulate marine streamer time-lapse seismic data, modified acoustic Marmousi
models (P-wave velocities) are used to build a time-lapse model in Figures 2a-c, which in-
cludes a baseline model (Figure 2a) and a monitor model (Figure 2b). Time-lapse changes,
equal monitor model minus baseline model, are plotted in Figure 2c. And the reservoir
velocity changes are located at the top of the bottom anticline of the model, which is con-
stantly 150m /s. And a 300 m seawater layer with a constant P-wave velocity of 1500 m/s
is on the top, which is an approximation to the real case. Model parameters for the baseline
model and monitor model are identical. The model spacing is 10m, and the model size is
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FIG. 1. Workflows of (a) the parallel strategy, (b) the sequential strategy, (c) the double-difference
strategy, and (d) the common-model strategy.

188-by-327. Ten sources are evenly spread on the top, and 327 receivers are also located
on each cell grid at the top. A 15H z Ricker wavelet is adopted as the source wavelet. And
baseline and monitor surveys are perfectly repeated, so we can make our study concentrate
on non-repeatable seawater velocities.

The case with no seawater velocity changes

In Figure 3a, a model smoothed from the true baseline model (Figure 2a) is plotted,
which is employed as the starting model for all strategies. The curve of data misfit versus
iteration number and the first inverted baseline model are plotted in Figures 3b and c, re-
spectively. The data misfit is completely converged, and the inverted baseline model is well
recovered and can nicely match the true model. Better convergences of baseline and mon-
itor inversions can provide better time-lapse change estimation. In Figures 4a-d, inverted
time-lapse changes of various strategies from marine streamer seismic data for the marine
time-lapse model with no seawater velocity changes (Figure 2a-b) are plotted. In Figure 4c,
artifacts are full in the result of the sequential strategy, and the time-lapse changes cannot
be recognized. The result of parallel strategy (Figure 4a) also contains many artifacts, es-
pecially in the high-velocity anomaly area which has lower convergence. The results of the
double-difference strategy (Figure 4b) and the common-model strategy (Figure 4d) both
can focus on the time-lapse change and have weak artifacts. The former values are closer
to the true reservoir changes, but the latter has fewer artifacts.

6 CREWES Research Report — Volume 34 (2022)



Time-lapse FWI

Distance (km)
C) 0 1 2 3 (ms)

o
o

Depth (km)
B

|

-100

-150

FIG. 2. The marine time-lapse model: (a) baseline model and (b) monitor model. (c) The time-lapse
change (150m/s). There is no seawater velocity change. Sources and receivers, located on the top
of the model, are denoted with red asterisks and black dot lines, respectively.

Cases with seawater velocity changes

The case in Figure 2a-c is that with no seawater velocity changes. But in a more realistic
case, seawater velocity changes often happen since the seawater velocity (vyqer) Varies
with water temperature(1), salinity(5), and depth(D), which can be different at different
times. Especially, water temperature is a key point for the changes according to Medwin
(1975) equation:

Vwater = 1449.2+4.6T — 0.055T° 4 0.000297° + (1.34 — 0.017) (S — 35) +0.016 D. (7)

Hence we add some seawater velocity changes to the monitor model (Figure 2). The cor-
responding time-lapse changes after adding the velocity changes are plotted in Figure 5a-c
respectively, in which the maximum velocity changes are, respectively, 10 m/s, 20 m/s,
and 50 m/s at depth zero. Their corresponding surface temperature changes are about
2°C,4°C, and 11 °C, respectively, if we assume the salinity and depth of seawater are
invariant. And the velocity changes linearly decrease with depth increase, the minimum
velocity changes at depth 300 m are only 4% of the maximum ones.

In Figures 6a-d, 7a-d, and 8a-d, inverted time-lapse changes of various strategies for the
marine time-lapse models with maximum seawater velocity changes of 10 m/s, 20 m/s,
and 50 m/s are plotted, respectively. The sequential strategy still does not work. From the
results in Figures 6-7, we observe even small seawater changes can cause strong artifacts in
the result of the parallel strategy; and in the results of the double-difference strategy and the
common-model strategy, which contain much fewer artifacts, the time-lapse changes can
be clearly distinguished, and the seawater changes can also be reflected in them. And in
Figure 8, the time-lapse change can only be recognized in the result of the common-model
strategy, but the result also comes with some artifacts. All in all, artifacts become more
serious with the increase of seawater velocity change, the double-difference strategy can
adapt to relatively small seawater changes, and the common-model strategy is suitable for
relatively strong seawater changes.

Ocean-bottom node seismic data tests

In this subsection, the time-lapse models utilized in the above subsection (Figure 2-8)
are also used. The only difference is in the acquisition geometry, and the one employed
in this subsection to generate OBN seismic data is illustrated in Figure 9. Ten sources are
evenly spread on the top, and 327 receivers are located on each cell grid at the seabed.The
curve of data misfit versus iteration number and the first inverted baseline model are plotted
in Figures 10b and c, respectively. The data misfit is completely converged, and the inverted
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FIG. 3. The first baseline inversion for surface marine seismic data. (a) The smooth starting model.
(b) The curve of data misfit versus iteration number during the baseline inversion. (c) The final
inverted baseline model. Data misfit has completely converged.
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FIG. 4. The inverted time-lapse changes of various strategies from surface marine seismic data
for the marine time-lapse model with no seawater velocity change. (a) the parallel strategy, (b) the
double-difference strategy, (c) the sequential strategy , and (d) the common-model strategy.
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FIG. 5. The time-lapse changes of three marine time-lapse models with different seawater velocity
changes. The time-lapse models are the same as those in Figure 2a-b, except for (a) 10m/s,
(b) 20m/s, and (c) 50m/s constant seawater velocity changes, respectively, added to the monitor
models.
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FIG. 6. The inverted time-lapse changes of various strategies from surface marine seismic data for
the marine time-lapse model with a 10m /s seawater velocity change. (a) the parallel strategy, (b)
the double-difference strategy, (c) the sequential strategy , and (d) the common-model strategy.
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FIG. 7. The inverted time-lapse changes of various strategies from surface marine seismic data for
the marine time-lapse model with a 20m /s seawater velocity change. (a) the parallel strategy, (b)
the double-difference strategy, (c) the sequential strategy , and (d) the common-model strategy.
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FIG. 8. The inverted time-lapse changes of various strategies from surface marine seismic data for
the marine time-lapse model with a 50m/s seawater velocity change. (a) the parallel strategy, (b)
the double-difference strategy, (c) the sequential strategy , and (d) the common-model strategy.

baseline model is well recovered.

The case with no seawater velocity changes

The inverted time-lapse changes of various strategies from OBN seismic data for the
marine time-lapse model with no seawater velocity changes are plotted in Figure 11a-d. We
observe, except for the sequential strategy, the performance of other strategies is similar,
all can generate good time-lapse estimates with few artifacts outside the reservoir area.
Comparison between Figures 4a and 11a illustrates that the parallel strategy performs better
in OBN data than the marine streamer data, and has much fewer artifacts caused by the
convergence difference between baseline and monitor inversions.

Cases with seawater velocity changes

The inverted time-lapse changes of various strategies from OBN seismic data for the
marine time-lapse models with 10 m/s, 20 m/s, and 50 m/s maximum seawater velocity
changes are, respectively, plotted in Figure 12, 13, and 14. In Figures 12 and13, we observe
except for the sequential strategy, all other strategies have successfully estimated time-lapse
changes including reservoir changes and seawater velocity changes. But in Figure 8, the
time-lapse change can only be recognized from the result of the double-difference strategy.
In total, artifacts become more serious with the increase of seawater velocity changes, both
the parallel strategy and the common-model strategy can adapt to relatively small seawater
changes, and only the double-difference strategy is suitable for relatively strong seawater
changes.
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FIG. 9. The baseline model and acquisition geometry of a marine time-lapse model in which base-
line model, monitor model, and source locations (red asterisks) are identical to those in Figure 2a-b.
But all receivers (the black dot line) are located on the seabed at a depth of 300m to obtain OBN

seismic data.
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FIG. 10. The baseline inversion result from OBN data. (a) The plot of data misfit versus itera-
tion number during the baseline inversion. (b) The final inverted baseline model. Data misfit has
completely converged.
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FIG. 11. The inverted time-lapse changes of various strategies from OBN seismic data for the
marine time-lapse model with no seawater velocity change. (a) the parallel strategy, (b) the double-
difference strategy, (c) the sequential strategy , and (d) the common-model strategy.

CREWES Research Report — Volume 34 (2022)

11



Fu and Innanen

a) o
EO.S
=3
= 1
53
o

1.5

c)

Depth (km)

FIG. 12. The inverted time-lapse changes of various strategies from OBN seismic data for the
marine time-lapse model with a 10m/s seawater velocity change. (a) the parallel strategy, (b) the
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double-difference strategy, (c) the sequential strategy, and (d) the common-model strategy.
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FIG. 13. The inverted time-lapse changes of various strategies from OBN seismic data for the
marine time-lapse model with a 20m/s seawater velocity change. (a) the parallel strategy, (b) the
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double-difference strategy, (c) the sequential strategy, and (d) the common-model strategy.
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FIG. 14. The inverted time-lapse changes of various strategies from OBN seismic data for the
marine time-lapse model with a 50m/s seawater velocity change. (a) the parallel strategy, (b) the
double-difference strategy, (c) the sequential strategy, and (d) the common-model strategy.

Surface land seismic data tests

In this subsection, surface land time-lapse seismic data are applied to test the strategies.
The model used is a land acoustic time-lapse model including a baseline model and a
monitor model plotted in Figure 15a and b. The model is free of near-surface changes, and
the corresponding time-lapse changes are plotted in Figure 15¢. The model and acquisition
parameters in Figure 15 are the same as that in Figure 2, except for the water layer being
removed in Figure 15 when compared with Figure 2. Again, the starting model, the curve
of data misfit versus iteration number, and the first inverted baseline model are plotted
in Figures 16a-c, respectively. The data misfit is completely converged, and the inverted
baseline model is well recovered.

The case with no near-surface velocity changes

The inverted time-lapse changes of various strategies from surface land seismic data for
the land time-lapse model with no near-surface velocity changes (Figure 15) are plotted in
Figure 17a-d. We observe results of the double-difference strategy and the common-model
strategy are very similar, which contain few artifacts outside the reservoir area, artifacts in
the result of the parallel strategy are much heavier, and the sequential strategy still does not
work.

The case with near-surface velocity changes

To test the cases with near-surface velocity changes, random near-surface velocity
changes plotted in Figure 18b are added to the near-surface part of the monitor model
(Figure 15b), and the corresponding time-lapse changes of the new time-lapse land model
are plotted in Figure 18a. And the inverted time-lapse changes of various strategies for
the land time-lapse model with random near-surface velocity changes are plotted in Figure
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FIG. 15. The land time-lapse model: (a) baseline model and (b) monitor model. (c) The time-lapse
change (150m/s). There is no near-surface velocity change. Sources and receivers, located on the
top of the model, are denoted with red asterisks and black dot lines, respectively.
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FIG. 16. Baseline inversion results for the land time-lapse model. (a) The smooth starting model.
(b) The plot of data misfit versus iteration number during the baseline inversion. (c) The final
inverted baseline model. Data misfit has completely converged.

19a-d. We observe that the best result is given by the common-model strategy, where the
reservoir changes are easy to be recognized but also with some artifacts; in the results of
the parallel strategy and the double-difference strategy, some artifacts are comparable to
the inverted reservoir changes, and they are difficult to be distinguished from each other;
again, the sequential strategy does not work.

DISCUSSION

In this study, we focus on the non-repeatability issue of seawater or near-surface ve-
locity changes, in practice more non-repeatability issues could be encountered, such as the
issues of non-repeatable noises, non-repeatable receiver/source positions, non-repeatable
source wavelets, and biased starting model. For more researches involving these issues,
readers can refer to Zhou and Lumley (2021b), Fu and Innanen (2022c), and Fu and Inna-
nen (2022a).

For OBN time-lapse data, the double-difference strategy performs better than others.
However, it is too sensitive to non-repeatabilities of receiver/source positions and source
wavelets (Fu et al., 2020; Zhou and Lumley, 2021b). Hence in more general cases, the par-
allel strategy or the common-model strategy is more adaptive. And more superior methods
should be developed to enhance the capability of time-lapse FWI technology, especially in
cases of big seawater velocity changes.

CONCLUSION

We have investigated the capability of the parallel strategy, the double-difference strat-
egy, the sequential strategy, and the common-model strategy in the non-repeatability issue
of seawater or near-surface velocity changes using synthetic marine streamer data, OBN
data, and surface land data. The investigation shows that when using marine streamer data,
both the double-difference strategy and the common-model strategy can adapt to relatively
small seawater changes, and only the common-model strategy can adapt to relatively big
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FIG. 17. The inverted time-lapse changes of various strategies from surface land seismic data for
the land time-lapse model with no near-surface velocity change. (a) the parallel strategy, (b) the
double-difference strategy, (c) the sequential strategy, and (d) the common-model strategy.
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seawater changes; when using OBN data, the parallel strategy, the double-difference strat-
egy, and the common-model strategy all can adapt to relatively small seawater changes,
and the best result is given by the double-difference strategy, but none of them can adapt to
relatively big seawater changes; when using surface land data, the common-model strategy
can adapt to the random near-surface changes best.
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