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ABSTRACT

The estimation of CO2 saturation and pore pressure from time-lapse seismic data re-
quires a physical model relating the variations in reservoir properties to the changes in seis-
mic attributes. We propose a complete rock physics workflow combing Macbeth’s model
and Gassmann’s equations to predict elastic properties as a function of porosity, miner-
alogy, saturation and pressure. We validate this workflow using a published dataset. In
particular, we demonstrate the advantages of Macbeth’s model in predicting the effect of
pressure changes. Furthermore, we propose a full waveform inversion (FWI) algorithm in-
corporating the proposed model for the prediction of the time-evolution of CO2 saturation
and pore pressure. This approach allows for direct updating of reservoir properties from
seismic data. We derive static rock properties, such as porosity and clay content, from
baseline data and use them as input to predict dynamic reservoir properties (saturation and
pressure) from monitor data. We illustrate the potential of the approach using a synthetic
time-lapse dataset.

INTRODUCTION

An important technology supporting reduction of greenhouse gas emissions is the geo-
logical storage of carbon dioxide (Davis et al., 2019; Ringrose, 2020; Pörtner et al., 2022);
for instance, deep saline aquifers have been identified as promising sites for CO2 storage.
Time-lapse seismic surveys provide a monitoring mode in which migration and distribu-
tion of the injected CO2 can be tracked, and leakage problems if any can be identified
(Arts et al., 2003; Chadwick et al., 2005). Ideally, for reliable conformance verification,
quantitative estimates/maps of CO2 saturation would be produced by such technology, to
be compared against reservoir modeling predictions (Dupuy et al., 2021).

The estimation of saturation and pressure from seismic data requires a physical model
relating the variations in reservoir properties to the changes in seismic response. The satura-
tion effect can be generally described by Gassmann’s equation combined with the density
equation (Mavko et al., 2020; Grana et al., 2021). Typically, if CO2 replaces water, the
P-wave velocity and density of the saturated rock decrease, whereas the S-wave velocity
increases. The pressure dependence of velocities has been described by several empirical
equations (Han, 1987; Eberhart-Phillips et al., 1989; Landrø, 2001; Jones, 1995; Sayers,
2006). Generally, if effective pressure increases, both P- and S-wave velocities of the rock
increase, whereas the pressure effect on density is often negligible unless the rock expe-
riences a severe compaction. The increase in velocity is more significant at low effective
pressure than high effective pressure. Indeed, many models are based on exponential rela-
tions that tend to an asymptotic value at high pressure.

MacBeth (2004) proposed an analogous equation to link dry-rock elastic moduli to ef-
fective pressure with an exponential equation by fitting a set of lab measurements conducted
on sand and shaly-sand dry samples. The pressure dependence of dry-rock properties in-

CREWES Research Report — Volume 34 (2022) 1



Hu and Innanen

cluding porosity and lithology effects have also be reported (Saul and Lumley, 2013; Grana,
2016). These relations can be directly integrated in rock physics models used in reservoir
characterization to describe dry-rock elastic moduli as a function of effective pressure, the
effect of fluid being then modeled by Gassmann’s equation.

The rock physics model can be combined with full waveform inversion, which has the
capacity to produce high-resolution elastic parameter models (e.g., velocity, density, and
modulus), for quantitative characterization and monitoring of reservoir properties. This
is generally implemented using a two-step inversion algorithm, in which an elastic FWI
prediction of elastic properties is followed by rock physics inversion (Bosch et al., 2010;
Queißer and Singh, 2013; Dupuy et al., 2021). Hu et al. (2021) formulated a direct pro-
cedure for updating rock and fluid properties within elastic FWI. They achieve this by re-
parameterizing the inversion in terms of rock physics properties using the chain rule. The
main advantages of this approach are: 1) it allows examination of any rock physics property
that has a well-defined relationship with elastic parameters; 2) it shares the same numerical
structure as the conventional FWI, and 3) with a suitable initial model, the method exhibits
higher prediction accuracy than conventional two-step approaches. Hu et al. (2022) ex-
tended the approach to predict CO2 saturation from time-lapse seismic data. However, this
approach is only applicable to the cases where the effect of pressure changes on elastic
properties is negligible.

In this work, we first review MacBeth (2004) pressure model and its variant which
includes porosity and lithology effects (Grana, 2016), introduce the complete rock physics
workflow for modeling saturation-pressure changes, and describe how to incoporate this
model into the time-lapse FWI framework of Hu et al. (2022). We then systematically
examine the response of the inversion to a synthetic time-lapse dataset.

METHODOLOGY

Considerations for the rock physics model

In order to estimate variations in dynamic properties (e.g., CO2 saturation and pore
pressure) from time-lapse seismic data, a physical relation between saturation and pressure
and elastic properties must be established. With the fluid effect at seismic frequency be-
ing well described by Gassmann’s equations, the main challenge lies in the description of
pressure within the rock physics model.

We first introduce the definitions about the different pressures considered in this work.
Pore pressure Pp, also known as formation pressure, is the in-situ pressure of the fluids in
the pores. When the pore pressure is hydrostatic, we have

Pp = ρwgz, (1)

where z is the depth, g is the acceleration of gravity, and ρw is the density of water. The
confining or overburden pressure Pc results from the weight of overlying sediments and is
generally obtained by integrating the density log:

Pc = g

∫ z

0

ρ(z′)dz′, (2)
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where ρ is the bulk density of the rock. The effective pressure Pe is defined as the difference
between overburden pressure and pore pressure:

Pe = Pc − ηPp, (3)

where 0 ≤ η ≤ 1 is the effective stress coefficient. In the following, we assume for
simplicity that η is equal to 1.

The effective pressure dependence of velocity has been extensively studied by geo-
physicists because of the direct and visible impact of effective pressure on rock frame
properties, whereas pore pressure is a very important parameter with respect to reservoir
engineering. In this work, we assume the overburden pressure to be known, so the effective
pressure and pore pressure are interchangeable.

MacBeth’s pressure model

MacBeth (2004) proposed an analogous equation to link dry-rock bulk modulus to ef-
fective pressure using an exponential relation:

Kdry(Pe) =
K∞

1 + AKe
− Pe
PK

, (4)

where K∞, AK , and PK are empirical parameters: K∞ represents the asymptotic value
as effective pressure increases, whereas AK and PK are related to the curvature. Grana
(2004) illustrated that K∞ and AK are not independent if the dry-rock modulus K0 at a
given effective pressure P0 is known, and modified Equation 1 to include dependence on
porosity φ and clay content Vclay:

Kdry(Pe) =
K∞

1 + K∞−K0

K0
e
−Peff−P0

PK

; (5)

K∞ = λ1(φ+ aVclay) + λ2, (6)

where a, λ1, and λ2 are empirical parameters that must be fitted using lab measurements.
Datasets from literature or from nearby fields could be used to integrate the available core
samples, as long as the observed pressure effect on elastic properties has the same behavior.
Similar results have been obtained for the shear modulus:

µdry(Peff) =
µ∞

1 + µ∞−µ0

µ0
e
−Pe−P0

Pµ

; (7)

µ∞ = λ3(φ+ aVclay) + λ4, (8)

where µ0 is the dry-rock shear modulus at effective pressure P0; λ3 and λ4 are empirical
parameters.

The MacBeth’s relations focus on the effect of pressure on elastic properties and are
lack of physics to account for the effect of rock properties, such as porosity and lithology.
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By contrast, the conventional Hertz-Mindlin based models, although have a pressure term
in their expressions, are classically used to predict static rock properties rather than pressure
changes. To combine the advantages of both, we calculate the initial/baseline dry-rock
moduli, namely K0 and µ0, using the Hertz-Mindlin equations, then apply the pressure
effect in the monitor stage using the modified MacBeth’s equation (Equations 5-8).

Complete rock physics workflow

We calculate the saturated-rock elastic moduli by combining the dry-rock elastic mod-
uli, the elastic moduli of the solid and fluid phases, and the measured porosity and by
applying Gassmann’s equation, according to the insitu reservoir conditions. The equations
are given here with underlined dependencies to pore pressure Pp and CO2 saturation Sco2 :

Ksat(Sco2 , Pp) = Kdry(Pp) +
[1−Kdry(Pp)/Km]

2

φ/Kf (Sco2 , Pp) + (1− φ)/Km −Kdry(Pp)/K2
m

, (9)

µsat(Pp) = µdry(Pp), (10)

ρsat(Sco2 , Pp) = (1− φ)ρm + φρf (Sco2 , Pp), (11)

where the subscripts m, f, dry, sat indicate solid matrix, fluid phase, dry rock, and satu-
rated rock, respectively.

The elastic moduli of the solid matrix are computed using Voigt-Reuss-Hill average for
a mixture of quartz and clay. The elastic properties of the fluid components (water and
CO2) depend on reservoir conditions, such as temperature and pore pressure, as well as on
the fluid composition and characteristics. We first compute the density and bulk modulus
of each fluid component using the Batzle and Wang (1992) equations, then compute the
bulk modulus of the fluid mixture using the Brie et al. (1995) equation, assuming patchy
saturation. In Figure 1, the complete rock physics workflow is summarized.

FIG. 1. The complete rock physics workflow we propose to link static rock properties (porosity
and lithology) and dynamic reservoir properties (CO2 saturation and pore pressure) to seismic
attributes.
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Model calibration

Here we take three core samples from Han’s dataset to illustrate how to calibrate our
rock physics model in practical applications. Our goal is to calibrate the model so that it can
accurately predict velocity as a function of porosity, clay content, and effective pressure.
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FIG. 2. Calibration of rock physics model using Han’s dataset (subset of 3 samples). The Hertz-
Mindlin model is combined with Gassmann’s equations to predict saturated-rock velocity as a func-
tion of effective pressure including porosity and mineralogy effects. The model is calibrated using
baseline data with pressure 10 MPa, then automatically predicts the data at 5,20,30,40 MPa.
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FIG. 3. Macbeth’s relation combined with Gassmann’s equations to predict saturated-rock velocity
as a function of effective pressure including porosity and mineralogy effects. The predicted data
with Hertz-Mindlin equations at pressure 10 MPa are used as input in Macbeth’s model.
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We assume that the initial or baseline pressure is 10 MPa, and that the data at other
pressures correspond to the monitor survey. We first examine the model which uses the
Hertz-Mindlin equation only. This means once we calibrate the model at the initial pres-
sure, the model automatically predicts the value at future pressures. Figure 2 shows that
the Hertz-Mindlin equation, which has a cubic root of effective pressure in its expression,
does not correctly approximate the nonlinear behavior of velocity due to pressure changes.
The main advantages of the proposed model, which combines the Hertz-Mindlin and the
Macbeth’s equations, are the exponential trend and the inclusion of empirical parameters
that we can calibrate to match the observations. Indeed, we observe a close match between
the predicted data and the true ones using the proposed model (Figure 3).

Time-lapse FWI strategy

We propose to combine the proposed rock physics model with the FWI algorithm set
out by Hu et al. (2021) to achieve a direct and joint estimation of CO2 saturation and pore
pressure from time-lapse seismic data.

First, we apply the rock physics FWI approach to the baseline (pre-injection) data for
the estimation of static rock properties, e.g., porosity and clay content; then, we use the
same inverse method and use the inverted baseline models as prior knowledge (fixed val-
ues) to estimate the dynamic properties from monitor (post-injection) data. The objective
function for baseline model reconstruction is expressed as

Eb =
∥∥dobs_b(φ

t, V t
clay)− dsyn_b(φ, Vclay)

∥∥2
, (12)

where dobs_b and dsyn_b denote the observed and synthetic baseline data, respectively. φt

and V t
clay denote the true porosity and clay content models. The baseline CO2 saturation

and pressure condition are assumed to be know. The goal is to recover the φ and Vclay

models by iteratively minimizing the difference between dobs_b and dsyn_b.

The objective function for monitor model reconstruction is

Em =
∥∥dobs_m(φ

t, V t
clay, S

t
co2, Pp

t)− dsyn_m(φ
b, V b

clay, Sco2, Pp)
∥∥2
, (13)

where dobs_m and dsyn_m are the observed and synthetic monitor data, respectively. φb and
V b

clay are the inverted porosity and clay content models from the baseline survey. They are
not updated in the monitor stage. The goal is to recover the saturation model Sco2 and
pressure model Pp by iteratively minimizing the difference between dobs_m and dsyn_m.

NUMERICAL EXAMPLE

We apply the proposed approach to a synthetic model as shown in Figure 4. The initial
CO2 saturation is 0 everywhere and the initial pore pressure is hydrostatic. The two models
then changes locally due to the injection of CO2 at 500 m depth and 500 m position. In this
simulation, we neglect the uncertainty associated with the baseline model reconstruction,
namely, we consider two model unknowns only: the monitor model of CO2 saturation and
pore pressure. Figure 5 illustrates the details of the pressure model, in which we consider
a clear pressure build-up due to the injection.
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FIG. 4. True baseline, monitor, and time-lapse models of CO2 saturation and pore pressure. The
black line indicates the location of the injection well.

FIG. 5. Details of the pressure model.

In Figure 6, we compute the theoretical curves of velocities and density as a function of
CO2 saturation and pore pressure based on the rock physics model, according to the param-
eter values of the synthetic model. The results are consistent with existing studies: if CO2

saturation increases, the P-wave velocity and density decrease, whereas the S-wave ve-
locity slightly increases; both P- and S-wave velocities decrease as pore pressure increases,
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whereas the pressure effect on density is negligible. We note that there are two factors lead-
ing to the significant velocity changes: 1) by adopting the proposed rock physics model, we
assume weakly consolidated rocks; 2) the depth range we use corresponds to low pressure
values, as compared to many studies where the reservoir is located at a deeper location.
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FIG. 6. Theoretical curves of the proposed rock physics model: P-wave velocity, S-wave velocity,
and density versus (a) CO2 saturation and (b) pore pressure.

In Figure 7, we plot the velocity and density models corresponding to the rock property
model. The time-lapse elastic changes are consistent with the analysis in Figure 6. Con-
sequently, we observe clear time-lapse events in the noise-free synthetic data (Figure 8).
For the inversion test, we apply the 2D frequency-domain rock-physics FWI algorithm (Hu
et al., 2021), using a multiscale approach (Bunks et al., 1995; Brossier et al., 2009; Keating
and Innanen, 2019) by successively inverting slightly overlapping frequency groups. The
truncated Gauss-Newton optimization method (Métivier et al., 2017) is used.

The recovered monitor model of CO2 saturation and pore pressure shows a good agree-
ment with the true one (Figure 9). The parameter crosstalk is weak. We attribute this to
the fact that the two properties have very different sensitivities with respect to the P- and
S-wave velocities (Figure 6). In Figure 10, the convergence properties of the inversion are
summarized. We start iterations at low frequencies to prevent convergence of the objective
function toward local minima, then slowly introduce higher frequencies to image fine struc-
tures. The objective function has a sudden increase when entering into a next frequency
group, but decreases efficiently after model updating. The solutions are examined via the
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relative model error. We observe the convergence characteristics of a reliable inversion.
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FIG. 7. True baseline, monitor, and time-lapse models of P-wave velocity, S-wave velocity, and
density.
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computed for the true model. Ricker wavelet source with a central frequency of 15 Hz is used.
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FIG. 9. Recovered monitor model of CO2 saturation and pore pressure.

CONCLUSIONS

We have proposed a complete rock physics workflow for modeling saturation-pressure
changes. A critical step in this workflow is the use of Macbeth’s model to account for the
pressure effect on dry-rock elastic moduli. We then propose an FWI algorithm incorpo-
rating the proposed rock physics model for the quantitative prediction of CO2 saturation
and pore pressure from time-lapse seismic data. We demonstrate the effectiveness of this
approach using a synthetic time-lapse dataset. Examination of complex geological mod-
els and uncertainties associated with the rock phsyics model, the observed data, and the
baseline inversion result are important steps in moving this research forward.
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