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ABSTRACT

In seismic imaging, image resolution and accuracy are affected by migration approaches.
Deep learning has recently been considered an alternative and efficient way to improve im-
age quality. In this project, discrete wavelet transform (DWT) is applied with U-Net on
migration data containing multiple energy. The neural network approximates the inverse of
the Hessian to obtain high-quality reflectivity prediction. Results show that the DWT sub-
band helps the model learn smooth input, extract critical features from data, and enhance
image resolution. Multiple energy provides valuable information for subsurface structure
expanding prediction illumination.

INTRODUCTION

Seismic imaging is a process for estimating rock parameters from seismic data (Schus-
ter, 2020). Migration, is one way seismic imaging to detect and gain information from a
subsurface structure. It generates reflectivity maps locating seismic events and collapsing
energy to correct places (Gray et al., 2001). Compared with traditional depth migration
methods, reverse time migration (RTM) (Baysal et al., 1983; Whitmore, 1983; McMechan,
1983; Levin, 1984) can handle lateral velocity variations, such as steep geologic structures.
Least-squares reverse time migration (LSRTM) (Dong et al., 2012), as an advanced migra-
tion approach, can updates the reflectivity iteratively with improved accuracy. However,
RTM and LSRTM face two problems: limited aperture due to primary reflections and poor
image quality because of an insufficient source-receiver system. One alternative way to
expand the illumination aperture is using multiple energy in the RTM (Liu et al., 2011; Li
et al., 2017; Wang et al., 2017; Zhang et al., 2020). RTM with multiple energy (RTMM)
can also help refine image accuracy and resolution.

In recent years, a helpful approach to enhance image quality is deep learning. It can
learn features from the non-linear relationship between seismic data and rock parameters.
Many researchers have used deep learning applications in the RTM or LSRTM (Wu et al.,
2018; Kaur et al., 2020; Vamaraju et al., 2021; Torres and Sacchi, 2021, 2022; Zhang
et al., 2022). These methods mitigate artifacts and foster resolution by training a machine-
learning network. In other words, those networks have the stable architecture to deliver
a high-quality rock parameter recovery. Mentioning about the image recovery, discrete
wavelet transform combined with neural networks has been used as a tool for feature ex-
traction (Ghazali et al., 2007), de-noising (Wang et al., 2010; Suraj et al., 2014), super-
resolution in deep learning (Wu et al., 2022), and seismic data reconstruction in geophysics
(Liu et al., 2022). The process of obtaining reflectivity prediction from seismic imaging
results is similar to image recovery.

To mitigate the two problems we discussed above: limited aperture and poor image
quality; in this project, we apply the discrete wavelet transform in a convolutional neural
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network-based reverse time migration with multiple energy. RTM with multiple energy can
expand subsurface illumination and improve image accuracy. Discrete wavelet transform
in deep learning can learn features from migrated data and enhance image resolution.

THEORY

Discrete Wavelet Transform (DWT)

A discrete wavelet transform (DWT) is a wavelet transform that decomposes a sig-
nal into a set of basic wavelet functions of different frequencies. The DWT can perform
multi-resolution signal analysis, capturing both frequency and time location information
(Acharya and Ray, 2005). The result decomposed by wavelet transform from a digital
signal includes lower-frequency and higher-frequency subbands. Lower-frequency sub-
bands have finer frequency resolution and coarser time resolution compared to the higher-
frequency subbands.

DWT in one dimension

Based on Acharya and Ray (2005), the idea of multi-resolution analysis is to approxi-
mate a function f(t) at different levels of resolution. There are two functions in the multi-
resolution analysis: the mother wavelet ψ(t) and the scaling function φ(t). Wavelet func-
tions are dilated, translated and scaled versions of a common mother wavelet. The dilated
and translated versions of the scaling function are given by:

φm,n(t) = 2−m/2φ(2−mt− n) (1)

where m and n are integers. For fixed m, the set of scaling functions φm,n(t) are orthonor-
mal. By the linear combinations of the scaling function and its translations, we can generate
a set of functions

f(t) =
∑
n

αnφm,n(t) (2)

The multi-resolution analysis decomposes a signal into two parts-one approximation of
the original signal from finer to coarser resolution and the other detailed information that
was lost due to the approximation.

fm(t) =
∑
n

am+1,nφm+1,n +
∑
n

cm+1,nψm+1,n (3)

where fm(t) denotes the value of input function f(t) at resolution 2m, cm+1,n is the detail
information, and am+1,n is the coarser approximation of the signal at resolution 2m+1. The
functions φm+1,n and ψm+1,n, are the dilation and wavelet basis functions (orthonormal).

The decomposition of signals using the discrete wavelet transform can be expressed in
terms of finite impulse response (FIR) filters. The wavelet coefficients for the signal f(t)
then can be decided by {

cm,n(f) =
∑

k g2n−kam−1,k(f)

am,n(f) =
∑

k h2n−kam−1,k(f)
(4)
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where g and h are the high-pass and low-pass filters, The recursive algorithm to compute
DWT in different levels using equation 4 is called Mallat’s Pyramid Algorithm. Since the
synthesis filters h and g have been derived from the orthonormal basis functions φ and ψ,
these filters give exact reconstruction

am−1,i(f) =
∑
n

h2n−iam,n(f) +
∑
n

g2n−icm,n(f) (5)

Given the input discrete signal x(n), it will be filtered parallelly by a low-pass filter
(h) and a high-pass filter (g) at each transform level. The two output streams are then
subsampled by simply dropping the alternate output samples in each stream to produce the
low-pass subband yL and high-pass subband yH .{

yL(n) =
∑τL−1

i=0 h(i)x(2n− i)
yH(n) =

∑τH−1
i=0 g(i)x(2n− i)

(6)

where τL, and τH are the lengths of the low-pass (h) and high-pass (g) filters respectively.

DWT in two dimensions

The simple approach for 2D implementation of the DWT is to perform a standard 1D
DWT row-wise to produce an intermediate result and then perform the same 1D DWT
column-wise on this intermediate result to produce the final result. The two-dimensional
scaling functions can be expressed as separable functions, which are the product of two
one-dimensional scaling functions such as φ2(x, y) = φ1(x)φ1(y), which is the same for
the wavelet function ψ(x, y) as well.

If an image has M rows and N columns, applying the one-dimensional transform in
each row, two subbands are produced in each row with a size of M x N

2
. Then applying a

one-dimensional DWT column-wise on the subbands (intermediate result), four subbands
LL, LH, HL, and HH are obtained with the size of M

2
x N

2
, respectively. LH, HL and

HH contain the high-frequency information around discontinuities (edges in an image)
in the input signal. LL is a coarser version of the original input signal and provides an
input to the next decomposition level. The reconstruction is performed oppositely: first on
columns, then on rows. Thus, separable 2D DWT has three wavelet functions (m and n are
coordinates of the input image):

ψ1(m,n) = φ(m)ψ(n) LHwavelet (7)

ψ2(m,n) = ψ(m)φ(n) HLwavelet (8)

ψ3(m,n) = ψ(m)ψ(n) HHwavelet (9)

and one scale function:

φ2(m,n) = φ(m)φ(n) ApproximationLL (10)

Figure 1 shows a block diagram of a 2D DWT. An K level decomposition can be per-
formed, resulting in 3K + 1 different frequency bands: LL is low frequency or approxima-
tion coefficients, and the wavelet image coefficients LH, HL, and HH which correspond,
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respectively, to vertical high frequencies (horizontal edges), horizontal high frequencies
(vertical edges), and high frequencies in both directions (corners).

FIG. 1: Block diagram of DWT.

Neural network training strategy

In this project, we propose to use U-Net (Ronneberger et al., 2015) with additional skip
connection layers to learn patterns from migrated images and discrete wavelet transform
filtered images. The basic U-Net architecture is derived from our previous work (Huang and
Trad, 2021). We add another channel, the LL subband, different from the previous inputs,
into the neural network input. Figure 2 illustrates the DWT applied U-Net architecture. For
the encoder part, we now have three input channels: smooth background reflectivity, RTM
images with multiple energy and corresponding LL subband images. Then, the network
down-sampling the original images into small sizes to learn key features from residuals
and patterns in the data. After that, subsurface structure key features are up-sampled to
the original dimensions by transpose convolutions. Additional skip connections work as
identity mapping (He et al., 2016), and help to strengthen the training result with weak
constraints.

The network operator acts as an approximation of the inverse of the Hessian (Kaur
et al., 2020; Torres and Sacchi, 2022) to filter migrated data into a predicted reflectivity
model, but with more physical data constraints in the input channel. The solution can be
determined as:

mpred = Γunet(mrtmm,msmooth_refl,mrtmmDWT
, ), (11)

where mrtmm is the RTMM initial image, msmooth_refl denotes the smooth background re-
flectivity model, mrtmmDWT

means DWT subband on RTMM image, and mpred represents
the output reflectivity coefficient prediction.

Four neural networks are planned in the workflow: models R1, R2, R3 and R4. Figure
3 illustrates the relation between different models and workflows. Models R2 and R4 are
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FIG. 2: Architecture of DWT applied in the RTMM-CNN. The main structure is a U-Net
with more skip connection layers. The input layer includes three channels: background
reflectivity, RTMM image, and subband LL after using DWT of RTMM image. Predicted
reflection coefficient is the output.

treated as pre-trained models using true reflectivity and its RTMM image, and DWT sub-
band as the input. The pre-conditioned models R2 and R4 can minimize the appropriate
parameters range for the next steps of fine-tuning training. Then, models R1 and R3 are
fine-tuned based on R2 and R4’s parameters, respectively. Since we are concerned about
the results influenced by the DWT subband and multiple energy, in the next section, we
will mainly make a comparison between results from models R1, R3 and R4.

Measurements

Mean squared error (MSE)

The mean squared error (MSE) loss is applied to evaluate the model performance and
penalize the large prediction errors:

MSE =
1

n

n∑
i=1

(mi
pred −mi

true)
2, (12)

where n is the total number of samples, mpred is derived from equation 12 U-Net using
RTMM initial images, and mtrue denotes the true reflectivity models.

Peak signal-to-noise ratio (PSNR)

A peak signal-to-noise ratio (PSNR) is used to evaluate the model performance:

PSNR = 20 ∗ log10(
MAXI√

MSE
), (13)
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FIG. 3: Neural network model plan and workflows.

where MAXI denotes the maximum possible pixel value of the image, and MSE is the
mean squared error based on the equation 12.

NUMERICAL EXAMPLES

In this section, some numerical examples will be shown to illustrate the approach and
show refined predictions on reflectivity with this proposed method.

Train and test set

We’ve used Sigsbee2b, Amoco, Agbami, Pluto, BP2004 and Marmousi and our defined
model as the original input set. Eight meters is used as the spatial interval for each grid
point. The total record time is 7.2 seconds with 0.8 of milliseconds temporal sampling. The
shot and receiver intervals are 80 and 16 meters, respectively. A fourth-order finite different
method is used for the forward modeling. Model R1 in Figure 3 without multiple energy is
chosen as our baseline model. Before training, the whole RTM and RTMM images, and the
corresponding DWT subband were partly chosen and divided randomly into 1900 different
spatial windows with 256x256 points. We did not choose a more significant number of
windows because of computation efficiency. The train and test set ratio is 0.8: 0.2. Note
that we have not used all the pixels in the migration images, and the new windowing images
will be treated as the validation set. All the output predictions have normalized scaling.
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Add DWT in NN input as the third channel (LL)

The approximation image LL is considered to contribute to our neural network as the
third channel input (the first channel is the initial migration image, and the second channel
is smoothed background reflectivity), because it inherits major patterns from the initial
migration images and also contains some low-frequency information due to the low pass
filter. For example, Figure 4 shows different subbands after discrete wavelet transform
on the Pluto geology model. Subbands LL and LH can maintain much information on
geologic structures compared with HL and HH. Furthermore, low-frequency subband can
help to avoid neural networks having a strong dependency on other input channels, for
example, the background, reflectivity.

The proposed technique has been tested on the Foothills and Overthrust geology models
respectively. When windowing the inputs, to obtain a subband LL image with the same size
as input migration images, we applied a bicubic interpolation with factor 2 on the LL image.

Foothills

Figure 5 gives predictions on Foothills by models R1, R3 and R4, respectively. Model
R3 (5f) result, which contains multiple energy, has improved resolution and accurate re-
flector prediction than R1 (5e) or R4 (5g). Model R4 gives model R3 optimized pre-
conditioned parameters for R3 to fine-tune. Details of the results are shown in Figure 6
and 7. Two of three input channels are listed on the first row, including smooth background
reflectivity, RTM image and RTMM image. The second row in both figures from left to
right contains the true label, DWT input subband LL, and LL with multiples. So, LL with-
out multiples is the input of model R1, and LL with multiples is fed into R3. As subband
LL is extracted from initial migration images, it stays most key features of geologic events
with lower frequency. In this project, we smooth the background reflectivity with Gaussian
smoother. The predictions in both examples (Figure 6 and 7g) provides a pre-conditioning
effect and cannot give refined resolution. On the other hand, model R3, which contains
DWT subband LL input, can generate enhanced predictions (Figure 6 and 7i) and suppress
artifacts properly. Precisely, lateral velocity variation and fault details are recovered prop-
erly in model R3 prediction. Additionally, compared with model R1 predictions, which
also use an LL input channel, R3 gives better resolution and illumination on structures and
faults because of having useful multiple energy. The PSNR values in table 1 also prove R3
has the highest value and performance than other neural network models.

Overthrust

For the Overthrust example, Figure 8-10 indicate total and windowed predicted results
by models R1, R3 and R4. Similar to the previous example result, after combining the
DWT subband LL, model R3 with multiples can predict reflectivity with high resolution
and accuracy. For example, the thin layer structure in Figure 10 can be predicted with better
accuracy by model R3 (Figure 10f), where the amplitude near the fault on the top has clear
differences to indicate.

Please note that, in Figure 9, the model R1 PSNR value for Overthrust example 1 is a
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(a)

(b) (c)

(d) (e)

FIG. 4: Original image (a) was decomposed by Haar discrete wavelet transform and result
(b) LL (c) LH (d) HL (e) HH were obtained by filter banks with interpolation.

bit larger than that of model R3, even though the R3 result gives a more accurate prediction
on thrust structure. The possible reason could be that predictions by model R3 still have
some artifacts that are larger than model R1 prediction, although model R3 can give a better
image resolution.

Add DWT and var=0.02 noise in the NN input

To make the synthetic data more realistic and test the neural network generalization
ability, we add Gaussian noise on the migration images (RTM/RTMM) with a variance
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equal to 0.02. Please note that neural network models are new to Gaussian noise data,
which means we have not trained models with Gaussian noise added before.

Figures 11-13 give the comparison of Foothills example, and figures 14-16 show the
Overthrust example observation. After adding Gaussian noise, reflection events are even
hardly distinguished from noise in both examples. Precisely, in Figure 16, horizontal events
at deep depth are blurred and covered by noise. Since migration with multiples can provide
useful information about reflection events, RTMM input (For example, Figure 16c) has
higher signal amplitude. Even though the LL subband provides low-frequency information,
the model R3 prediction can still extract main events from migrated images with high
resolution. Similarly, for the rest of the windowed examples, the predictions by model R3
of Foothills and Overthrust are consistent with the noise-free results, which have more clear
predictions with boosted resolution and accuracy compared with the model R1 predictions.

DISCUSSION

Previously, we mentioned that this project’s neural network architecture is based on our
previous work (Huang and Trad, 2021). At that time, we trained our models with a small
smooth parameter (filter’s half width is 5-point). In this project, except for the 5-point
smoother, we amended the fine-tuned model with a larger smooth parameter - 9 points.
In this section, we will compare our previous models with models in this project with the
same 5-point smoother parameter used.

Figures 17-18 are the comparison of Foothills and Overthrust sampled windows. Origi-
nal RTMM-CNN denotes our previous model, and RTMM-CNN with DWT subband means
the model in this project. Please note that the models we compare here are model R3, us-
ing smooth background reflectivity and RTMM images as inputs. In this comparison, both
models are not fine-tuned with a 9-point half-width smoother.

RTMM-CNN with DWT subband has a better prediction on the Overthrust example
shown in Figure 18. For example, thin layer events can be recovered with high resolution
in Figure 18b. Noise can be suppressed properly in Figure 18d compared with c, which
the original RTMM-CNN generates. On the other hand, the original RTMM-CNN can
handle the Foothills example with enhanced image quality than the model using the DWT
channel. Tables 5 and 6 show that the PSNR of the original RTMM-CNN is larger in the
Foothills example, but smaller in the Overthrust example, compared with RTMM-CNN
with DWT subband. Thus, original RTMM-CNN can work with rapid lateral velocity
variation geology models; on the other hand, RTMM-CNN with DWT subband is capable
of thin-layered structures.

CONCLUSIONS

RTMM-CNN with a DWT subband channel can provide improved reflectivity coeffi-
cient prediction. DWT subband LL and pre-trained model let the fine-tuned model learn
to extract key features from low-frequency information and tolerate more artifacts from
smooth input. Multiple energy is a supplement tool providing additional subsurface illu-
mination, and helping neural network distinguish signals from noise. The neural network
operator acts as an approximation of the inverse of the Hessian, which can suppress image
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artifacts and improve the reflectivity resolution. The next step is to let the model learn how
to predict a geology model with rapid lateral velocity change and test it in the field data.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 5: Foothills model results. (a) Reflectivity from the background velocity, (b) true
band-limited reflectivity, (c) RTM image without multiple energy, (d) RTM image with
multiple energy, (e) model R1 result based on workflow 1, (f) model R3 result based on
workflow 3, (g) model R4 result based on workflow 4, and (h) true Foothills velocity.
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Table 1: PSNR (dB) comparison for Foothills example
Prediction Model R1 Model R3 Model R4

Total Foothills 21.94 23.28 18.08
Example 1 18.03 19.27 14.01
Example 2 16.75 17.18 13.81

Table 1: PSNR (dB) comparison for Foothills example.

Table 2: PSNR (dB) comparison for Overthrust example
Prediction Model R1 Model R3 Model R4

Total Overthrust 17.21 18.83 15.05
Example 1 17.90 16.80 14.03
Example 2 13.18 13.25 10.21

Table 2: PSNR (dB) comparison for Overthrust example.

Table 3: PSNR (dB) comparison for Foothills example with var=0.02 noise
Prediction Model R1 Model R3 Model R4

Total Foothills 21.89 23.27 18.08
Example 1 18.01 19.22 14.03
Example 2 16.77 16.88 13.99

Table 3: PSNR (dB) comparison for Foothills example with noise added.

Table 4: PSNR (dB) comparison for Overthrust example with var=0.02 noise
Prediction Model R1 Model R3 Model R4

Total Overthrust 17.23 18.82 15.09
Example 1 17.90 16.82 14.14
Example 2 13.16 13.20 10.25

Table 4: PSNR (dB) comparison for Overthrust example with noise added.

Table 5: PSNR (dB) Foothills comparison between two models
Prediction RTMM-CNN model R3 RTMM-CNN with DWT model R3

Total Foothills 21.39 20.51
Example 1 17.39 16.43
Example 2 13.50 12.67

Table 5: PSNR (dB) Foothills comparison between original RTMM-CNN and RTMM-
CNN with DWT, with noise added.

Table 6: PSNR (dB) Overthrust comparison between two models
Prediction RTMM-CNN model R3 RTMM-CNN with DWT model R3

Total Overthrust 16.47 17.84
Example 1 13.21 13.43
Example 2 16.34 17.35

Table 6: PSNR (dB) Overthrust comparison between original RTMM-CNN and RTMM-
CNN with DWT, with noise added.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

FIG. 6: Foothills example 1 results. (a) Reflectivity from the background velocity, (b) true
windowed band-limited reflectivity, (c) RTM image without multiple energy, (d) true label,
(e) DWT subband LL without multiple energy, (f) DWT subband LL with multiple energy,
(g) model R4 result based on workflow 4, (h) model R1 result based on workflow 1, (i)
model R3 result based on workflow 3, and (j) true windowed velocity.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

FIG. 7: Foothills example 2 results. (a) Reflectivity from the background velocity, (b) true
windowed band-limited reflectivity, (c) RTM image without multiple energy, (d) true label,
(e) DWT subband LL without multiple energy, (f) DWT subband LL with multiple energy,
(g) model R4 result based on workflow 4, (h) model R1 result based on workflow 1, (i)
model R3 result based on workflow 3, and (j) true windowed velocity.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 8: Overthrust model results. (a) Reflectivity from the background velocity, (b) true
band-limited reflectivity, (c) RTM image without multiple energy, (d) RTM image with
multiple energy, (e) model R1 result based on workflow 1, (f) model R3 result based on
workflow 3, (g) model R4 result based on workflow 4, and (h) true Overthrust velocity.
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FIG. 9: Overthrust example 1 results. (a) Reflectivity from the background velocity, (b)
true windowed band-limited reflectivity, (c) RTM image without multiple energy, (d) true
label, (e) DWT subband LL without multiple energy, (f) DWT subband LL with multiple
energy, (g) model R4 result based on workflow 4, (h) model R1 result based on workflow
1, (i) model R3 result based on workflow 3, and (j) true windowed velocity.
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FIG. 10: Overthrust example 2 results. (a) Reflectivity from the background velocity, (b)
true windowed band-limited reflectivity, (c) RTM image without multiple energy, (d) true
label, (e) DWT subband LL without multiple energy, (f) DWT subband LL with multiple
energy, (g) model R4 result based on workflow 4, (h) model R1 result based on workflow
1, (i) model R3 result based on workflow 3, and (j) true windowed velocity.
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FIG. 11: Foothills model results after adding noise. (a) Reflectivity from the background
velocity, (b) true band-limited reflectivity, (c) RTM image without multiple energy, (d)
RTM image with multiple energy, (e) model R1 result based on workflow 1, (f) model R3
result based on workflow 3, (g) model R4 result based on workflow 4, and (h) true Foothills
velocity.
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FIG. 12: Foothills example 1 results after adding noise. (a) Reflectivity from the back-
ground velocity, (b) true windowed band-limited reflectivity, (c) RTM image without multi-
ple energy, (d) true label, (e) DWT subband LL without multiple energy, (f) DWT subband
LL with multiple energy, (g) model R4 result based on workflow 4, (h) model R1 result
based on workflow 1, (i) model R3 result based on workflow 3, and (j) true windowed
velocity.

20 CREWES Research Report — Volume 34 (2022)



DWT application in RTMM-CNN

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

FIG. 13: Foothills example 2 results after adding noise. (a) Reflectivity from the back-
ground velocity, (b) true windowed band-limited reflectivity, (c) RTM image without multi-
ple energy, (d) true label, (e) DWT subband LL without multiple energy, (f) DWT subband
LL with multiple energy, (g) model R4 result based on workflow 4, (h) model R1 result
based on workflow 1, (i) model R3 result based on workflow 3, and (j) true windowed
velocity.
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FIG. 14: Overthrust model results after adding noise. (a) Reflectivity from the background
velocity, (b) true band-limited reflectivity, (c) RTM image without multiple energy, (d)
RTM image with multiple energy, (e) model R1 result based on workflow 1, (f) model
R3 result based on workflow 3, (g) model R4 result based on workflow 4, and (h) true
Overthrust velocity.
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FIG. 15: Overthrust example 1 results after adding noise. (a) Reflectivity from the back-
ground velocity, (b) true windowed band-limited reflectivity, (c) RTM image without multi-
ple energy, (d) true label, (e) DWT subband LL without multiple energy, (f) DWT subband
LL with multiple energy, (g) model R4 result based on workflow 4, (h) model R1 result
based on workflow 1, (i) model R3 result based on workflow 3, and (j) true windowed
velocity.
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FIG. 16: Overthrust example 2 results after adding noise. (a) Reflectivity from the back-
ground velocity, (b) true windowed band-limited reflectivity, (c) RTM image without multi-
ple energy, (d) true label, (e) DWT subband LL without multiple energy, (f) DWT subband
LL with multiple energy, (g) model R4 result based on workflow 4, (h) model R1 result
based on workflow 1, (i) model R3 result based on workflow 3, and (j) true windowed
velocity.
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FIG. 17: Foothills example results comparison between original RTMM-CNN and RTMM-
CNN with DWT subband. Original RTMM-CNN model R3 predictions on (a) example 1
and (c) example 2. DWT applied RTMM-CNN model R3 predictions on (b) example 1 and
(d) example 2.
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FIG. 18: Overthrust example results comparison between original RTMM-CNN and
RTMM-CNN with DWT subband. Original RTMM-CNN model R3 predictions on (a)
example 1 and (c) example 2. DWT applied RTMM-CNN model R3 predictions on (b)
example 1 and (d) example 2.
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