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ABSTRACT

Statistical decorrelation transforms map clusters of multivariate data to domains in
which they are uncorrelated. In 2020 an algorithm was introduced to decorrelate determin-
istic optimization problems. In the approach, a given model space is re-parameterized such
that a quadratic objective function defined on that space maps to one whose Hessian matrix
is the unit; this procedure is immediately applicable to statistical decorrelation problems.
The approach is essentially geometrical, in that involves designing the re-parameterization
as a coordinate transform involving oblique-rectilinear basis vectors. In this paper the ap-
proach, which is procedurally very different from other decorrelation approaches, is inves-
tigated to understand what relationship it bears to standard methods, which are generally
based on factorization algorithms. The results are suggestive that the geometric approach
and its various realizations are different from existing methods, they may represent a gen-
eralization of the ZCA approach. The algorithm meanwhile may have some advantages, in
that once one instance of the transform is constructed, alternate versions can be computed
with little additional calculation.

INTRODUCTION

Decorrelation (sometimes called sphering, or whitening) is a procedure whereby sets of
multiple random variables are examined in altered coordinate systems, within which they
are uncorrelated (e.g., Kessy et al., 2018). For problems of N dimensions (i.e., in which a
single datum is specified with a column vector x of length N ), the coordinate transforms
take the form ofN ×N matrices L designed to act on the datum x such that the new datum
is specified by y = Lx, whose covariance matrix is the unit.

Decorrelation has broad application in multivariate statistics, data processing, and ma-
chine learning (e.g., Li and Zhang, 1998; Ioffe and Szegedy, 2015; Santurkar et al., 2018),
but its impact is in fact broader than this. Optimization methods which involve locally
quadratic approximations of an objective function can benefit from decorrelation, after
which the Hessian matrix is the unit; this is currently being examined as a means to suppress
the phenomenon of cross-talk in seismic inversion (Lume et al., 2022). In Hamiltonian dy-
namics (both classical and quantum), in particular those involving harmonic oscillators,
decorrelation procedures can render equations of motion in coordinate systems in which
the energy of multiparticle systems is additive, simplifying analysis.

Innanen (2020) described an approach to decorrelation which emerged from an effort
to develop a geometrical approach to combating cross-talk, i.e., by transforming a Hessian
matrix to the unit. Because by substituting the covariance matrix for the Hessian this im-
mediately applies to multivariate statistical decorrelation, the question arises of how the
geometric approach relates to existing statistical decorrelation algorithms. In the concise
and clear review of Kessy et al. (2018), five main transforms are reviewed, and their rela-
tions are discussed. Each of the PCA, ZCA, PCA-cor, ZCA-cor, and Cholesky methods
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are set out and discussed in terms of the rotational ambiguity of the equations defining
decorrelation.

The purpose of this report is to take several of these standard methods, and investi-
gate how they relate to the geometrical approach. The approach taken is to examine the
behaviour of the transforms in a maximally simple situation, which in this case means bi-
variate data, clustering of which is easy to plot and qualitatively examine. The answers
arrived at are therefore also qualitative, of course, but that is what we were seeking — a
way of understanding the transformations.

DECORRELATION BY FACTORIZATION

Let N random variables be stored in an N × 1 column vector x = [x1, x2, ..., xN ]
T ,

where the elements xi are the components of x in a particular coordinate system. Let its
covariance values (determined through analysis of many realizations of x) be stored in the
symmetric, invertible N × N covariance matrix C, which is generally different from the
unit matrix if there are correlations amongst the N variables. The N × N transformation
matrix L is referred to as a “decorrelation transformation” if it satisfies

LCLT = I, (1)

that is, if it takes x over into a y = Lx whose N variables are uncorrelated. By pre-
and post-multiplying (1) by L−1 and

(
LT
)−1 respectively, this condition on L can be re-

expressed as

LTL = C−1, (2)

which shows that designing a decorrelation transformation is ultimately a problem of fac-
torization of C. Most decorrelations are based on eigen-decompositions. We set up two
eigen-systems,

C = UΣUT and P = GΘGT , (3)

where P is an auxiliary matrix satisfying C = V1/2PV1/2, where V is the diagonal matrix
containing the variances of x. Amongst other things, these decompositions give computa-
tional meaning to the idea of raising C and P to rational powers, through

Cα = UΣαUT , and Pβ = GΘβG. (4)

Standard decorrelation/whitening procedures may now be defined. Setting α = −1/2 in
(4) produces the symmetric matrix C−1/2 =

(
C−1/2

)T . Because C and all its powers are
symmetric, and because its powers commute*, we can construct

I = C−1C =
(
C−1/2C−1/2

)
C = C−1/2C

(
C−1/2

)T
. (5)

*This comes about by (4): any two operators with the same eigenvectors commute.
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Comparing (1) and (5), evidently

Lzca ≡ C−1/2 (6)

is a valid decorrelation transformation. Use of Lzca is called “zero-phase component anal-
ysis whitening”, or ZCA whitening for short. Next, we observe that if

Lpca ≡ Σ−1/2UT , (7)

then

LpcaCLT
pca = Σ−1/2UT

(
UΣUT

)
UΣ−1/2 = I, (8)

using the orthonormality of the eigenvectors which implies UTU = I, and also the fact
that diagonal matrices commute with all other matrices. Comparing (1) and (8), we again
see that (8) defines a valid decorrelation transform. Because Σ−1/2UT is a rotation into
the system of principal components, this is referred to as decorrelation based on principal
component analysis, or “PCA whitening”.

An alternative form of ZCA-whitening can be set up based on the auxiliary system P
instead of C, i.e., via

Lzca-cor ≡ P−1/2V−1/2, (9)

a process referred to as “correlation-adjusted” ZCA whitening, or ZCA-cor. Likewise,
PCA-whitening can be enacted on the P system by replacing P−1/2:

Lpca-cor ≡ Θ−1/2GTV−1/2, (10)

producing PCA-cor. The last whitening operation is based on Cholesky factorization as
opposed to an eigendecomposition. We compute the Cholesky factorization of the inverse
of C, i.e., HHT ≡ C−1. Setting

Lchol ≡ HT , (11)

such by using HT = H−1C−1 and LT
chol = H in

LcholCLT
chol = HTCH = H−1C−1CH = I, (12)

we observe by comparing the left-most and right-most sides of (12) that (11) is another
valid whitening operator. Summarizing, we have five standard decorrelation of whitening
transforms, Lzca, Lpca, Lzca-cor, Lpca-cor, and Lchol. The fact that at least a few different
transformation matrices exist, each of which produces a different uncorrelated set of data,
reflects the fact that for a symmetric covariance matrix C, LCLT = I only providesN(N+
1)/2 constraint equations. Kessy et al. (2018) discuss this in terms of rotational freedom.
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GEOMETRIC DECORRELATION

The whitening matrix L can be understood geometrically as carrying out a coordinate
transform — resolving the vector x in a new coordinate system, whose basis vectors are
given by the columns of LT . We will refer to any methodology motivated by this view (such
as the one to follow) as “geometric decorrelation”, in contrast to the essentially algebraic
“factorization decorrelation” discussed above.

The rotational ambiguity discussed above is based on the fact that decorrelation applies
only N(N + 1)/2 constraints onto N2 degrees of freedom. In principle, the ambiguity
can be resolved by supplying the remaining N(N − 1)/2 equations externally. In practice,
unfortunately, haphazardly supplying N(N + 1)/2 elements of L, and then calculating
the rest, does not make for a computable scheme. However, it has been shown (Innanen,
2020) that supplying the lower-triangular elements of T = LT , and then computing both
its diagonal and upper triangular elements, column-by-column and left-to-right, embodies
a stable and relatively efficient procedure.

To give a conceptual overview of the process, consider a 4×4 transformation matrix

T =


t11 t12 t13 t14
t∗21 t22 t23 t24
t∗31 t∗32 t33 t34
t∗41 t∗42 t∗43 t44

 . (13)

Given the t∗ij entries a priori, the constraint equations can be applied sequentially to the
columns. In this example, t11 is first solved for, followed by the 2 ti2 entries, then the 3 ti3
entries, and finally the 4 ti4 entries. The process propagates from left to right, i.e., the tij ,
j > J calculations depend on the tij , j ≤ J entries, but not vice versa.

GEOMETRIC VERSUS FACTORIZATION APPROACHES

The distinction between factorization approaches based on rotational freedom discussed
by Kessy et al. (2018) is quite general. It implies that any decorrelated output must be
interpretable as a scaled and rotated version of every other decorrelated output. A “new”
decorrelation scheme is one for which the scaling and/or rotation effect on a dataset is
dissimilar to that of all other approaches.

To observe this qualitatively, we next compare different transforms, using a non-Gaussian
dataset of low dimension. The low-dimensionality will make the effective rotation more ob-
vious, and clusters of imperfectly Gaussian data will tend to contain structures remaining
after decorrelation which make rotational changes apparent.

Well log data used in a previous CREWES machine learning project (Guarido and Trad,
2019) has many of the right features to test the approach. In Figure 1a, 10,816 well log data
point pairs, corresponding to s1 = porosity from density and s2 = neutron porosity, are
plotted. These particular data are useful for our purpose in that many of the points appear
to cluster in a somewhat Gaussian, but highly correlated fashion. That is, they appear
to be defining a roughly elliptical distribution, but one which is eccentric and misaligned
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with the s1 and s2 axes. However, outlying data points are also present which are clearly
non-Gaussian, giving the cluster a sort of star-shape.

FIG. 1. Example bi-variate, on Gaussian data. (a) Well log data corresponding to s1 = porosity
from density and s2 = neutron porosity. (b) Data after decorrelation. Qualitatively, “sphering” has
taken place, but the non-Gaussianity remains, characterizing the orientation of the cluster in the
transformed space.

From these data the corresponding 2×2 covariance matrix is computed:

C = 10−3

[
1.811 0.285
0.285 0.628

]
. (14)

The decorrelation transformation matrix is set up with the single fixed entry t∗21 = 0:

T =

[
t11 t12
t∗21 t22

]
=

[
t11 t12
0 t22

]
, (15)

and the algorithm described by Innanen (2020) is carried out, producing L = TT

L =

[
23.50 0.00
6.51 −41.40

]
. (16)

We take each pair of points in Figure 1a, arrange them in a 2×1 column vector, and apply
this L. The resulting pairs [r1, r2]T are plotted in Figure 1b. Qualitatively, the impact of
decorrelation is evident: the central cluster of the data points now looks largely “circular”.
The non-Gaussian points have been evidently rotated, but maintain the appearance of a
warped version of the input – still somewhat star-shaped.

Similar procedures can be applied to the data, using the standard decorrelation trans-
forms discussed earlier. Let us inspect ZCA, PCA, and Cholesky, as compared to the
geometric decorrelation method. The clusters after decorrelation with these three standard
methods are plotted in blue, khaki, and green, respectively in Figure 2. By inspection, we
observe essentially common structures amongst the three clusters.

In contrast, we plot the transformed clusters three times to represent the geometric
decorrelation approach. The cluster arising from setting t∗21 is plotted in red. Then, the
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transformation is carried out over a quasi continuous range of input t∗21 values, ranging from
-40 to 40. The first cluster, created by transforming with t∗21 = −40, and the last cluster,
created by transforming with t∗21 = +40, are plotted in black. Six representative points from
the cluster are tracked for each value of t∗21 in between, and the positions of these points
are plotted as continuous dashed black lines. These trajectories characterize the way in
which the geometric decorrelation resolves the rotational amibiguity: continuously varying
the pre-selected entry of the transformation matrix selects one “angle” in the r coordinate
system to map the cluster to. Individual cluster points sweep out circular trajectories in the
transformed space as the pre-selected entry of L varies continously.

FIG. 2. Comparing various decorrelation transforms. Colour scheme: khaki=PCA; blue=ZCA;
green=Cholesky; black = Geometric (for largest and smallest values of t∗21); red = Geometric (for
t∗21 = 0). Six points in the geometric clusters are tracked as t∗21 is continuously varied from -40 to 40,
describing circular trajectories in the transformed space (a dashed circle is plotted for reference).

Of all of the standard transformations, it appears most reasonable to refer to the geo-
metric approach as a version of ZCA. This is because while rigidly rotating the clusters
under geometric transformation (by subjecting t∗21 to continuous variations), it is possible,
by reflecting the cluster across the r2 axis, to produce a cluster which almost exactly repro-
duce the ZCA output (see Figure 3). It is not currently clear what the significance is of the
special value of t∗21 which brings this match about.
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FIG. 3. Clusters under transformations associated with ZCA (red circles) and geometric (black dots)
algorithms, in the latter case with t∗21 specially chosen to provide a close match.

DISCUSSION

The results in this report are qualitative (i.e., they are based on numerics rather than
algebraic demonstrations), but they are suggestive that

1. The “geometric” approach to decorrelation is different from most standard approaches,
in the sense of selecting generally different realizations within the rotational ambi-
guity inherent to the problem.

2. Although the approach defines a swath as opposed to a single transform, a continuous
range of the pre-selected entries of the transformation matrix maps each data point
to a circular arc in the transformed space; clusters generated by one choice of entries
are rigidly rotated versions of clusters generated by all others.

3. This implies that exploring the degrees of freedom within the geometric decorrelation
approach can be thought of as exploring different orientations of the cluster, which
may reveal very different information, especially in higher dimensional data.

4. The geometric approach “resembles” the ZCA decorrelation most closely, in the
sense that a value of the pre-selected transformation matrix entries can be found
which reproduces the ZCA cluster. The significance of this, in regards to a geometric
transform being capable of factorizing the covariance matrix in the style of ZCA, is
not currently known.

5. The left-to-right propagation of information in the geometric algorithm means that
re-computing certain alternative transformation matrices can occur with little addi-
tional computation. For instance, in equation (13), once the 16 entries of T are
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calculated, perturbing t∗43 can only impact the calculation of the remaining elements
of the 3rd column and the elements of the 4th column.

CONCLUSIONS

Statistical decorrelation transforms map clusters of multivariate data to domains in
which they are uncorrelated. In 2020 an algorithm was introduced to decorrelate determin-
istic optimization problems. In the approach, a given model space is re-parameterized such
that a quadratic objective function defined on that space maps to one whose Hessian matrix
is the unit; this procedure is immediately applicable to statistical decorrelation problems.
The approach is essentially geometrical, in that involves designing the re-parameterization
as a coordinate transform involving oblique-rectilinear basis vectors. In this paper the ap-
proach, which is procedurally very different from other decorrelation approaches, is inves-
tigated to understand what relationship it bears to standard methods, which are generally
based on factorization algorithms. The results are suggestive that the geometric approach
and its various realizations are different from existing methods, they may represent a gen-
eralization of the ZCA approach. The algorithm meanwhile may have some advantages, in
that once one instance of the transform is constructed, alternate versions can be computed
with little additional calculation.
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60, No. 1, 119–133.

Lume, M., Keating, S. D., and Innanen, K. A., 2022, Towards improving convergence and cross-talk suppres-
sion in multiparameter fwi by decorrelating parameter classes: CREWES Research Report, 34.

Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A., 2018, How does batch normalization help optimization?:
Proceedings of the 32nd International Conference on Neural Information Processing Systems (NeurIPS
2018), 32, 2488–2498.

8 CREWES Research Report — Volume 34 (2022)


