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ABSTRACT

Time lapse inversion plays an important role in monitoring applictions. Conventional
approaches rely primarily on differencing strategies in either data or model space. The re-
sults of the model difference based approaches can be strongly influenced by the choice of
starting model for baseline and monitor inversions. Different choices can result in different
levels of mitigation of non-reproducible survey effects (for instance noise). We propose an
approach that substitutes the importance of the initial model choice with explicit naviga-
tion of the inversion nullspace. In this strategy, targeted nullspace shuttling is used to find
the baseline and monitor models that minimize the difference between models while pre-
serving a desired level of data-fitting. In synthetic examples, this approach demonstrates
a significant capacity to mitigate the effects or non-reproducible noise and changing ac-
quisition, and to identify when time-lapse differences fall below the confidence threshold
described by nullspace shuttling.

INTRODUCTION

Seismic time-lapse monitoring has significant applications, both in monitoring hydro-
carbon reservoirs, and in tracking containment at CO2 sequestration sites. One potentially
powerful approach to seismic time-lapse monitoring is to make use of full waveform inver-
sion (FWI). Many different time-lapse FWI methods have been developed, and a number
of them are summarized and tested by in a previous CREWES report: Fu and Innanen
(2021). Most time lapse inversion methods are fundamentally based on either 1) differenc-
ing a baseline and monitor inversion result, or 2) inverting a difference between baseline
and monitor data sets. Even the most naive of these approaches can be effective in simple
environments, but coping with more realistic data-sets in which non-reproducible effects,
such as noise or differing acquisition geometries, play a role can be very challenging. More
complex realizations of these time-lapse inversions often involve multiple inversions, mak-
ing use of designed differences in the initial model used for each. In this way, these ap-
proaches are engaging in nullspace exploration: by starting with a different initial model,
they attempt to find different solutions of approximately equal fitness with respect to the
FWI objective function. The challenge with this type of approach is that the methods are
designed based on the intial model, but their fitness as time-lapse inversion approaches is
determined by the resulting points in the nullspace interrogated by an inversion. In general,
as the objective function topography is unknown and costly to calculate, it can be very dif-
ficult to determine an appropriate set of starting models to achieve a meaningful difference,
as the corresponding nullspace locations are unknown at the start of the inversion.

In this report, we investigate a nullspace shuttling approach for time-lapse FWI. This
approach allows for targeted exploration of the baseline and monitor inversion nullspaces,
which may allow for a time-lapse difference best corresponding to a measure of optimality
to be determined.
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THEORY

In general, a seismic inversion result depends on both the true properties of the sub-
surface and the details of acquisition geometry, optimization strategy, noise, etc. An ideal
time-lapse inversion result would be one that identifies real time-dependent changes in the
subsurface without identifying any spurious changes, such as those that might arise from
non-repeatability in the seismic survey. In this way, time-lapse inversion can be thought
of as an optimization procedure at the design level: we aim to minimize the differences
recovered in the inversion that do not arise from real subsurface changes.

If the inversion problem for a given data-set had only one acceptable solution, the time-
lapse problem could be solved simply by differencing inversion results with baseline and
monitor data. In practice, noise and measurement errors mean that exact matching of the
data is not necessary or desired, and many possible models fit the data acceptably well. In
addition, the numerical optimization procedures used in FWI do not typically allow for an
exact minimum of the FWI problem to be determined. For these reasons, the FWI problem
generally has a set of solutions that all satisfy the inversion conditions equally well. This
set of possible models is the nullspace of the inversion problem.

Many time-lapse inversion strategies can be viewed as approaches for finding different
points in the nullspace of the monitor and baseline surveys that produce differences more
reflective of the true time-lapse change. Figure 1 illustrates, in two dimensions, several
common time-lapse FWI approaches. In this figure, the orange ellipse corresponds to the
null-space of the monitor inversion, and the green ellipse corresponds to the baseline inver-
sion, the grey dot corresponds to the intial model, and the orange and green dots correspond
to the monitor and baseline inversion results. In the parallel strategy (top left), both inver-
sions start from the same initial model. In the sequential and reverse-sequential strategies,
one inversion begins from the initial model, while the other begins from the result of the
first. In the common model strategy, the mean result of a parallel strategy result is used
as a new initial model for a second round of parallel strategy inversion. While the set of
strategies illustrated is not comprehensive, Figure 1 illustrates some common features of
time-lapse FWI approaches: first, that differences in the initial model for each inversion can
change the difference between inversion results, and so the time-lapse estimate, and sec-
ond, that these changes in the initial model translate into navigations about the nullspace of
the inversions. Figure 1 also shows that an attempt to assess the fitness of one time-lapse
approach over another must involve a choice of fitness with respect to the null-space dif-
ferences considered: without knowledge of the true models, the optimal approach must be
expressed in terms of optimal nullspace differences.

While changing the initial model used in the inversion can allow for a different point
in the nullspace of the inversion to be found, the relation between the change in the initial
model and that in the nullspace difference is very difficult to predict, effectively requiring
the solution of a full inversion problem. A more direct way to interrogate the nullspace in
time-lapse applications is through targeted nullspace shuttling of the type described in Keat-
ing and Innanen (2021). Through targeted shuttling, we can directly search the nullspace
for an optimal difference between baseline and monitor. Supposing that we define a metric
ψ that takes a small value for good time-lapse estimates and a large value for bad ones, we
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FIG. 1. Two dimensional illustration of some time-lapse inversion strategies, with the baseline in-
version nullspace in green and the monitor inversion nullspace in orange. Top left: Parallel strategy:
both inversions from the same staring model. Top right: Sequential strategy, with the monitor inver-
sion beginning from the baseline result. Bottom left: Reverse sequential strategy, with the baseline
inversion beginning from the monitor result. Bottom right: Common model strategy, an iterated
parallel strategy, with the new starting model being the average of the previous inversion results.
Note that the time-lapse estimate differs based on the choice of starting model.

can frame a shuttling problem for the optimal difference as follows:

∆mTL = (mM + δm∗
M) − (mB + δm∗

B), (1)

where ∆mTL is the optimal time-lapse difference, mB and mM are baseline and monitor
inversion results, and δm∗

B and δm∗
M are optimal shuttling updates given by

(δm∗
B, δm

∗
M) = argmin

δmB ,δmM

ψ(mB + δmB,mM + δmM),

subject to φB(mB + δmB) < εB, φM(mM + δmM) < εM , (2)

where φB and φM are the baseline and monitor FWI objective functions, and εB and εM are
objective function values defining the nullspace. So, given a shuttling objective ψ we can
solve equation 2 to find the best time-lapse difference by the metric ψ that satisfies our data
and FWI priors.
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Given that the true subsurface time-lapse change is not known, ψ needs to be chosen
in a way that does not require access to this information. The ideal time-lapse estimate
would contain only true subsurface changes and no differences arising from noise, acqui-
sition, wavelet or other discrepancies between surveys. If the time-lapse changes are well-
constrained by the data, then the constraints in equation 2 (which require that we minimize
the FWI objective sufficiently well) will act to ensure that any valid nullspace difference
includes the time-lapse change. In this case, an optimal difference would be one that min-
imized differences subject to the constraint of staying in the nullspaces. In other words, if
fitting both data sets requires that some minimum time-lapse difference be present, other
differences should be minimized (as these will correspond to unwanted differences be-
tween surveys). On the other hand, if fitting both data sets does not require a time-lapse
difference, this suggests that our data are consistent with no time-lapse change, suggesting
either no change or a change smaller than we can confidently detect. With this motivation,
we define ψ here as the L1 norm of the difference between baseline and monitor inversion
results.

We choose the L1 norm here because in the monitoring applications typical for time-
lapse analysis, changes are focused in space and (relatively) large, while small changes
throughout space are much less plausible. As L2 promotes the latter over the former, we
will focus on the L1 norm here.

Shuttling

The nullspace shuttling approach we use here is summarized below. It is described
in detail in Keating and Innanen (2021). In brief, we attempt to minimize the shuttling
objective ψ over possible updates that preserve the FWI objective φ:

mψ = argmin
m

ψ(m) subject to φ(m) < ε, (3)

where ψ is the shuttling objective, φ is the FWI objective, and ε is a tolerance defining the
nullspace of the inversion. As a global map of φ(m) is unavailable in FWI, we iteratively
solve equation 3 by solving for optimal updated directions based on local models of φ
constructed from the gradient (g) and Hessian-vector products (Hδm):

δm∗ = argmin
δm

ψ(m+ α
(
g(m), H(m)δm

)
δm), (4)

where α is the maximum step expected to satisfy φ(m+ δm) < ε, based on the gradient at
the current model and the Hessian-vector product for the current update direction estimate.
After solving for the optimal direction, we perform a line-search along δm∗ to find the true
maximal length of our nullspace step. This process is iterated to approximate a solution to
equation 3.

In the time-lapse formulation above (equation 2), there are two shuttling problems as
both the baseline and the monitor models are updated. The approach we adopt here to
accommodate this complication is to solve these shuttling sub-problems iteratively and
sequentially: first the baseline model is shuttled to minimize (in an L1 sense) the difference
from the monitor, then the monitor is shuttled to match the updated baseline, potentially
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iterating these steps several times. In this way, the time-lapse problem can be reduced to
a set of single-objective shuttling problems of the type discussed in Keating and Innanen
(2021).

In our numerical experiments, we define the shuttling objective ψ as the Huber norm
of the difference between the baseline and monitor models. This allows for the positive
aspects of the L1 norm (as described above) to dominate for large differences, but at small
differences transitions to an L2 norm with better convexity and optimization properties.

Hessian-vector product calculation

In order to perform the optimization problem in equation 4, Hessian-vector products of
the form Hδm need to be calculated. These products can be efficiently calculated at the
same computational cost as a gradient calculation, given that the gradient has already been
calculated at the same model-space location (e.g. Métivier et al., 2013), and this approach
was used extensively in Keating and Innanen (2021). Hessian-vector product calculation
codes can be cumbersome to write, however, and this can be an obstacle to quick im-
plementation of targeted nullspace shuttling approaches. To illustrate that this additional
programming work is not critical, we use a finite-difference implementation of our Hessian
vector product calculations in this report instead of the analytic calculators used in Keating
and Innanen (2021). The finite-difference approximation used is

H(m)δm ≈ g(m+ γδm) − g(m)

γ
, (5)

where g is the gradient and γ is a small number. While this approach has the same compu-
tational cost as the analytic approach, it is easy to program given a gradient calculator and,
in our testing, the change does not materially alter the shuttling results.

NUMERICAL EXAMPLES

In this section, we present numerical examples of the time-lapse shuttling approach.
In these examples, we consider a 2D, constant-density, acoustic, frequency-domain for-
ward modelling and inversion. The true baseline model, an unscaled model of time-lapse
changes, and the initial model used in the inversions, are shown in Figure 2. The true base-
line model is used for all of the examples in this section, while the true monitor is generated
by scaling the difference term and adding it to the baseline. In this way, we will investigate
the time-lapse shuttling approach for a range of different magnitudes of time-lapse change.
The models are discretized in 10 m cells, with 1 km depth and 2.75 km horizontal extent.
The seven source locations used for the baseline survey are shown by the green stars in
Figure 2, while receivers are densely distributed along the top of the model.

In each of our inversions in this section, we invert six frequency bands of six frequencies
each. Each band ranges from 1 Hz to a maximum frequency, which begins at 5 Hz for the
first band, and rises to 25 Hz for the final band. At each band, we perform 12 iterations of
BFGS optimization. With a frequency-domain implementation, the nullspace shuttling we
consider here must be performed with respect to the inversion on a specific frequency band,
and here we use 12 frequencies from 1 to 25 Hz. To ensure a good data-fit on this band, we
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FIG. 2. True baseline (top left), difference between monitor and baseline (top right) and prior model
(bottom left) for the synthetic tests. The true monitor model is generated by adding a scaled version
of the differences to the true baseline.

perform a final update of 20 iterations on the shuttling frequency band. The monitor and
baseline inversions were both initiated from the prior model in Figure 2.

As a first example, we consider the case where the time lapse contrasts are 300 m/s,
no noise is present, and the monitor survey geometry exactly reproduces the baseline sur-
vey. Figure 3 shows the baseline and monitor inversion results for this case, as well as
their difference. Given the high degree of repeatability in this case, a simple differencing
provides a good estimate of the time-lapse changes here. A much more challenging case
for time-lapse inversion arises when there are significant differences between the baseline
and monitor survey. To simulate challenges with repeatability, we repeat the same numer-
ical example, but with the sources in the monitor moved to the location of the red stars in
Figure 2, and a small noise term added to both monitor and baseline data-sets (different for
each). We choose the noise such that the data SNR is approximately 10, where we define
SNR as the ratio between the 2-norm of the data over the 2-norm of the noise. Figure 4
shows the baseline and monitor inversion results for this case. Here, interpretation of the
difference between inversion results is much more difficult to interpret. Large changes ex-
ist at the locations of the true anomalies, but also exist at many different locations in the
model. Without strong prior information, it would be very difficult to identify for which
specific regions the time-lapse estimates are accurate and for which they are not. In this
case, nullspace shuttling may be appropriate.

To obtain a better estimate of the time-lapse changes in the Figure 4 example, we apply
targeted nullspace shuttling to minimize the Huber norm of the difference between models.
Starting with the baseline, we shuttle each model in turn by performing 15 iterations of
L-BFGS optimization on to solve equation 4, followed by a line-search in the calculated
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FIG. 3. Baseline inversion (top left), monitor inversion (top right), and their difference (bottom left)
for the 300 m/s change case with zero noise and exactly repeated acquisition.

optimal direction. We shuttle the baseline and monitor each a total of three times. The
computational cost of the shuttling problem is about two wave-propagations per iteration,
similar to the calculation of the gradient in FWI, so our 90 total iterations have a cost
comparable to each of the two inversions themselves. The resulting time-lapse differences
from this procedure are shown in Figure 5: the left column shows the difference after
updating the baseline the first, second and third time, while the right column shows the
difference after updating the monitor. The bottom right panel of Figure 5 shows the final
result of shuttling. In this case, shuttling is able to largely remove model differences not
associated with the true time-lapse changes, and the remaining differences after shuttling
provide a much better estimate of the time-lapse changes than the initial difference does.

In Figures 6 to 9 we show the results of repeating the previous example with different
values for the magnitude of the true time-lapse change. In each figure the baseline and
monitor inversion results are shown on the top row, while the time-lapse differences before
and after shuttling are shown in the bottom row. Figures 6, 7, 8 and 9 show the results for
500, 300, 150, and 50 m/s differences, respectively. In the 500 m/s case (Figure 6), the
difference without shuttling is largely interpretable, though the shuttled result provides a
clearer identification of the true time-lapse changes. In the 300 m/s case (Figure 7, also Fig-
ure 5), the difference alone is quite difficult to accurately interpret, but the shuttled result
allows for clear identification of the anomalies. In the 150 m/s case (Figure 8), the non-
repeatability errors are sufficiently large to make identification of the time-lapse changes
from the inversion differences alone almost impossible. After shuttling, however, the shal-
lower anomaly is easy to spot and the deeper anomaly may or may not be interpretable.
In the 50 m/s case (Figure 9), the time-lapse differences do not allow for identification of
the anomalies, while the shuttled differences have negligible non-zero values throughout.
This suggests that the nullspaces of the inversion results overlap each other. In other words,
the data in this case are not sufficient to confidently identify a time-lapse change because
models exist that satisfy both data sets to within the noise level. In this case, the nullspace
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FIG. 4. Baseline inversion (top left), monitor inversion (top right), and their difference (bottom left)
for the 300 m/s change case with noise and inconsistent acquisition.

shuttling does identify the anomaly, but it does identify that any anomaly present is below
our detection threshold.

DISCUSSION

It is likely that each of the shuttled time-lapse estimates corresponds to the result that
would have been obtained by inverting the baseline and monitor data sets and differencing
the results, given the appropriate choice of starting models for each inversion. The appro-
priate choice of starting models, however, is not easy to determine, and the computational
cost of finding the appropriate starting models is likely dramatically more costly than the
approach we adopt here.

While the shuttling results we obtain here incur a cost of approximately one additional
FWI problem, this cost can likely be mitigated with intelligent optimization strategies.
Figure5 shows that most of the model noise is eliminated after a few iterations, and only
the larger residuals persist afterwards. This is likely a consequence of the Huber norm
objective we use in ψ, which prioritizes reducing all residuals above a certain size equally.
With better optimization strategies (e.g. a momentum term) or a better choice of objective
function, similar results could likely be achieved with significantly less computation.

CONCLUSIONS

Time-lapse FWI has significant potential for monitoring applications, but robustness
to non-repeatability in survey conditions is a significant limiting factor. The minimum
time-lapse change between two acceptable inversion results should be a relatively robust
measure of the time-lapse changes that the data confidently support. Finding this differ-
ence by changing the initial models used in the respective inversions could be extremely
challenging. A more direct approach is to use targeted nullspace shuttling to find the op-
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FIG. 5. Time-lapse estimate from Figure 4 after iterating targeted nullspace shuttling. Odd-number
iterates update the baseline, even iterates update the model. These plots are on the same color-
scale as Figure 4.
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FIG. 6. Baseline inversion (top left), monitor inversion (top right), their difference (bottom left),
and the shuttled difference (bottom right) for the 500 m/s change case with noise and inconsistent
acquisition.

FIG. 7. Baseline inversion (top left), monitor inversion (top right), their difference (bottom left),
and the shuttled difference (bottom right) for the 300 m/s change case with noise and inconsistent
acquisition.
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FIG. 8. Baseline inversion (top left), monitor inversion (top right), their difference (bottom left),
and the shuttled difference (bottom right) for the 150 m/s change case with noise and inconsistent
acquisition.

FIG. 9. Baseline inversion (top left), monitor inversion (top right), their difference (bottom left),
and the shuttled difference (bottom right) for the 50 m/s change case with noise and inconsistent
acquisition.
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timal difference. We apply a targeted nullspace shuttling time-lapse inversion approach
to noisy synthetic data with inconsistent acquisition geometries. In several cases, the null-
space shuttling approach is able to identify time-lapse changes much more accurately than a
naive parallel inversion strategy. In a case with very small contrasts, the shuttling inversion
approach suggest either no change or a change below the detection threshold.
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