
VEFWI on C++

Instruction for C++ package of visco-elastic multiparameter
FWI in the frequency domain

Jinji Li, Scott Keating, Daniel Trad, and Kris Innanen

ABSTRACT

The frequency domain full-waveform inversion (FWI) is a nonlinear optimization prob-
lem where large matrices such as the Helmholtz matrix and many derivatives are saved and
utilized. In many inversion tests involving multiple variables and larger-scale models, the
computational cost and consumption of computer resources should be considered. Matlab
is presumably the best platform for solving large linear systems, manipulating matrices,
and intuitively analyzing the intermediate results. However, its massive memory occupa-
tion and limited computational effectiveness can hamper going to 3-D problems or some
larger 2-D FWI. Motivated by this, we developed a C++ version of the current 2-D fre-
quency domain multi-parameter visco-elastic FWI, which can be carried out on relatively
larger models. The reduced cost also allows us to go to the 3-dimensional inverse problems
or the probabilistic approaches. Essential tools and concepts for working within the C++
ecosystem are covered in this instructive report, with examples of how to use this package.

INTRODUCTION

Full-waveform inversion (FWI) recovers the realistically heterogeneous models of the
interior earth by minimizing the discrepancies between measured and synthetic data mod-
eled by the numerical solution of the equations of motion (Tarantola, 1984; Virieux and
Operto, 2009; Fichtner et al., 2009). The nonlinearity of the FWI can be mitigated via
hierarchical multiscale inversion strategies, which first exploit longer, gradually shorter
wavelength components of the models. Thus a macro model that provides the kinematic
information can be acquired in the early stages of the inversion to improve the conver-
gence. (Bunks et al., 1995; Brossier et al., 2009; Virieux and Operto, 2009; Keating and
Innanen, 2020). The frequency domain FWI, which models the wavefields into several
discrete frequencies, is more naturally fitting and favored due to its flexibility in speci-
fying multiple ingredients in the data space and the ability to include frequency-sensitive
parameters. The current Fourier domain modeling approach embeds directly solving linear
systems with a prerequisite of building the large impedance matrix (Pratt, 1990; Brossier
et al., 2010). Even though previous studies have exploited the computational resources dis-
cussing parallelism for better factorization (Brossier et al., 2009; Sourbier et al., 2009a,b),
the memory-expensive nature of the frequency domain FWI is still conspicuous in larger
problems since many matrices with considerable dimensionalities, such as the impedance
and the Helmholtz matrices, should be saved throughout the process.

The current powerful, versatile, and intuitive CREWES frequency domain FWI MAT-
LAB package (Keating and Innanen, 2022) is widely used by many researchers. This pack-
age, fitting perfectly with MATLAB’s user-friendly ecosystems, has provided an ideal labo-
ratory for prototyping, testing, and implementing the FWI algorithms. With symbolic com-
putation quickly done, it performs extensive data analysis and visualization. The drawback
of it comes along with the MATLAB nature. First, MATLAB is endogenously slower as an

CREWES Research Report — Volume 34 (2022) 1



Li, Keating, Trad, and lnnanen

interpreted language than lower-level ones such as Fortran, C, or C++. It generally takes
more time to execute than other compiled languages. It is also hard to develop real-time
applications with it in the industry. Additionally, fast computers with sufficient memory
are always required while programming. This demand becomes more intensive when the
frequency domain FWI is conducted on larger models because many immense dense and
sparse matrices with double precision are kept. Indeed, users can identify memory require-
ments and apply techniques more efficiently (as optimized by Keating and Innanen (2022))
if memory usage is an issue. Still, it is treating the symptoms rather than the root cause.
Another disadvantage, however, is usually ignored in academics, is the comparatively high
financial cost of MATLAB.

C++ is known as a general-purpose programming language, which is widely used nowa-
days for competitive programming. It is one of the oldest and most effective languages and
continues to dominate programming. The programs coded by this language can be com-
piled and run on many platforms, such as Linux, Windows, and Mactonish. As a lower-level
language, it allows users to manipulate memory usage to enhance performance, which is
imperative for coding up the frequency domain FWI more efficiently. Motivated by this,
we have developed a C++ package of visco-elastic multiparameter FWI in the frequency
domain. While being able to deal with larger problems where the matrices are heavier, the
comparative run time is shortened.

This report introduces the fundamental ideas for this package, including the demand
for larger models in the FWI, the primary programming structure, and the dependencies
we used in building the matrix-based codes. We design the form of this report in an engi-
neering and instruction-like style so that individual who uses this package can quickly get
familiar with it and carry out inversion problems either on the local machine or the clusters.
Further optimization and iterative update are still needed to make it more user-friendly and
effective.

COMPUTATIONAL CONSIDERATIONS ON MATRIX VIEW

To form a major part of our motivation, we analyze the size and approximated memory
consumption of the heaviest matrices throughout the modeling and inversion process. We
start by introducing the notations for the forward modeling problem that discretizes the
wavefield onto the designed grids, namely the 2-D frequency domain elastic wave equation:ω2ρux +

∂
∂x

[
λ̃
(
∂ux

∂x
+ ∂uz

∂z

)
+ 2µ̃∂ux

∂x

]
+ ∂

∂z
µ̃
(
∂uz

∂x
+ ∂ux

∂z

)
+ fx = 0,

ω2ρuz +
∂
∂z

[
λ̃
(
∂ux

∂x
+ ∂uz

∂z

)
+ 2µ̃∂uz

∂z

]
+ ∂

∂x
µ̃
(
∂uz

∂x
+ ∂ux

∂z

)
+ fz = 0,

(1)

where ω is the angular frequency, ρ is the density, ux and uz are displacement components,
and fx and fz are the source terms in the horizontal and vertical directions, respectively; λ̃
and µ̃ are complex Lamé parameters, and are frequency-dependent and related to quality
factors Qp and Qs. The matrix multiplications can represent this wave equation, thus mak-
ing it an implicit finite-difference approach denoted by a system of linear equations shown
in equation (2) (Marfurt, 1984; Hustedt et al., 2004; Operto et al., 2007).

S (ω)u (ω) = f (ω) , (2)

2 CREWES Research Report — Volume 34 (2022)



VEFWI on C++

where S is the impedance matrix, u is the meshed displacement field, and the right-hand
side denotes the source term.

The shape and volume of matrix S should be taken into consideration while evaluating
the computational cost, as the forward-modeling-like actions are conducted many times in
the frequency domain FWI. In the 2-D space, S consists of a block tridiagonal central band,
and two block tridiagonal side bands; each element within one band is a 2 by 2 submatrix
used to operate on the displacement vector ui,j (Pratt, 1990). Despite the boundary width,
assuming the model has nx and nz nodal points in the horizontal and vertical directions,
respectively, the dimensionality of S will be 2× nx× nz by 2× nx× nz, and the nonzero
values are 9× nx× nz.

The resolution of an extensive sparse system of linear equations, however, remains to be
very costly for large multi-parameter problems (Sourbier et al., 2007; Operto et al., 2007).
First, the impedance matrix is complex: attenuation introduces complex coefficients for
the visco-elastic wave equation, and boundary conditions bring the imaginary part in the
elastic cases. Being complex and large makes its storage expensive. Direct solvers like
the LU decomposition are used to get the multi-source data efficiently, but the factorization
of the matrix requires a considerable amount of computer memory. The default datatype
for numbers in MATLAB is double, which corresponds exactly to IEEE 754 Double Pre-
cision. Those are 8-byte numbers; this size is doubled when complex numbers are stored.
If individuals intend to perform complicated math such as linear algebra, they must use a
floating-point class such as a double or single. The single class requires only 4 bytes for
one number, but some operations limitations suggest a risk when using single precision
while doing complicated math. For example, to speculate 1 discrete frequency of the data
generated by 1 double-component source on a 2-D model with the size of 100 × 200, the
computer will have to allocate approximately 0.23 Gigabytes to store the double and com-
plex factors while operating on MATLAB. Second, although the multi-resolution provided
by individual frequency components helps to mitigate the nonlinearity, the large bulk of u
is always a problem. The dimensionality of the non-sparse u is 2× nx× nz by ns by nf ,
where ns and nf are source and frequency numbers. Additionally, this FWI uses the ad-
joint state method that backpropagates the data residual to form an updating direction and
the L-BFGS method to iteratively approximate the inverse of the Hessian matrix, meaning
that the similar linear system in equation (2) will be solved many times (see Keating and
Innanen (2020); Keating and Shor (2022) for details). Even though such operations are
highly optimized in MATLAB, all of the abovementioned points echo the demand for a
more judicious design of data types and a more inherently faster programming language.

C++ PACKAGE OF FREQUENCY DOMAIN VISCO-ELASTIC FWI

The leading information about our C++ package is contained in this section. We start
by introducing the dependencies for matrix manipulation and multi-threading. The basic
structure of our code is then presented. We took advantage of the object-oriented feature
by using classes to improve the code reusability, scalability, and efficiency.

CREWES Research Report — Volume 34 (2022) 3



Li, Keating, Trad, and lnnanen

Prerequisites

Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers,
and related algorithms. It is a versatile tool that supports all matrix sizes and numeric types.
Decompositions can also be achieved efficiently via Eigen so that complex linear systems
can be resolved with reliable results. The Eigen API is clean and expressive. Thus, it is
recommended if users are looking to work on C++ platforms with a Matlab style. It is
also an option for programmers to create their own matrix object in C++ with operator
overloading. However, this is far from optimal for writing individual matrix libraries in a
production environment because it is time-wasting and awkward unless significant time is
spent on optimizing it. The above considerations are the reasons for us to choose the Eigen
library. It is actively developed and releases new versions frequently. More information
and the latest release can be found on the official website: https://eigen.tuxfamily.
org/index.php?title=Main_Page. The compiler supports up to version 3.4, standard
C++03, and will be C++14 following this version.

Here are some links for a good starting example: https://eigen.tuxfamily.org/
dox/GettingStarted.html. Eigen is easy to install as it does not need to be linked to
any external library. Instead, the header files are included in the code for your program.
With GCC, it is necessary to use the -I flag for the compiler to find the Eigen header files.

Another helpful link is the translation between Eigen and MATLAB https://eigen.
tuxfamily.org/dox/AsciiQuickReference.txt, where MATLAB coders can find the
reference with Eigen.

There are several data types we can use in this package: Matrix for dynamic dense
matrices; RowV ector for 1-dimensional vectors; Array for 1-D arrays. Users can define
them with integer, float, and double precisions. The SparseMatrix class also provides
many functions to facilitate the usage in memory-intensive applications. A specialized
representation storing only the nonzero coefficients can reduce memory consumption with
increased performance. Eigen also has feasible solvers that can be used in solving the
linear equation system, for example, ConjugateGradient for matrix-free context, and
SparseLU for direct resolution. Many third-party modules are also supported by Eigen,
such as UmfPack, SuperLU , and PardisoLU . We would like to emphasize that Eigen
is unlikely to beat MATLAB for directly solving systems of linear equations because the
latter will directly call Intel’s Math Kernel Library (MKL), which is heavily optimized and
multi-threaded. Individuals can also configure Eigen to fall back to MKL for a similar
performance. In our package, however, we applied the built-in SparseLU for solving
linear equations because we would like to reduce the redundancy of the dependencies.

We performed the factorization and most of the resolution phases in single precision.
However, for some more extensive memory-intensive applications’ usage, a specialized
representation storing only the nonzero coefficients can reduce memory consumption vec-
tor product in the truncated Gauss-Newton method (also see (Keating and Innanen, 2020;
Keating and Shor, 2022)) to guarantee the accuracy and then cast the matrix back to float
to minimize the memory usage.

4 CREWES Research Report — Volume 34 (2022)

https://eigen.tuxfamily.org/index.php?title=Main_Page
https://eigen.tuxfamily.org/index.php?title=Main_Page
https://eigen.tuxfamily.org/dox/GettingStarted.html
https://eigen.tuxfamily.org/dox/GettingStarted.html
https://eigen.tuxfamily.org/dox/AsciiQuickReference.txt
https://eigen.tuxfamily.org/dox/AsciiQuickReference.txt


VEFWI on C++

The parallel implementation of the frequency domain FWI is different from the time
domain: frequency-wise for the former, while shot-wise for the latter. Parallelism should
be based on a domain decomposition of the computational domain, meaning one thread
should compute a subdomain of the wavefields for all sources. The ideal number of threads
in the forward modeling should equal the number of frequency components. However, in
the multiscale approach, updating the model within each frequency band depends on the
result in the subsequent bands. Accordingly, we designate the inversion to be sequential
throughout frequency bands while parallelized with subfrequencies within each band. We
use OpenMP for parallelization because it is relatively easy to implement in C++. Detailed
information can be found on the official website: https://www.openmp.org. Other de-
pendencies include the Basic Linear Algebra Subprograms (BLAS) and the Linear Algebra
package (LAPACK). The BLAS are routines that provide standard building blocks for per-
forming basic vector and matrix operations. The LAPACK improves the linear algebra per-
formance as much as possible by calling the BLAS. The following links are the user guide
and latest releases: https://netlib.org/blas/, https://netlib.org/lapack/.

Basic structure

Following the classical workflow of the frequency domain FWI, we have divided the
project into three major parts: set-up, modeling, and inversion. Accordingly, we designed
three classes named Setup_par_V E, Forward_V E, and Inversion_V E. The schematic
structure of our package is shown in Figure (1). General/ contains several declarations of
external dependencies, mainly the std functions, the Eigen libraries, the OpenMP headers,
and other general functions used multiple times for slicing and indexing the matrices.

Additionally, Main/ is where the main function test_Inv.cpp is located. There are
just a few lines in the main function because most computations are done within the three
classes, but the choreography of these three classes is clear: reading parameters, modeling,
and inversion.

The first class reads and sets all the parameters, including the geometries, the frequency
information, and the models. All the settable parameters are stored in parameter.txt in
the directory data/; users can modify this file with specific preferences. The full list of in
parameter.txt is as below:

While creating the objects of the Setup_par_V E class, several internal instances are
automatically called to settle the parameters and read the models. The true and initial mod-
els should also be saved in data/ with the binary format. The models should be organized
in one-vector form and ordered by ρ − VP − 1/QP − VS − 1/QS . For example, if the
geometry is 50 × 50, the input model vector should be (50 × 50 × 5) × 1. Every time the
models are changed, users should specify the new names in parameter.txt, with changing
the nx and nz accordingly. All the source codes for this class are saved in src/Setup/.

The second class, Forward_V E, is designated for modeling the wavefield. Objects
from the class Setup_par_V E should be granted when initializing the modeling objects,
such that it can use the parameters defined in the previous phase. Users can call the public
instance Get_D() to compute the wave propagation in the synthetic model, and the result is

CREWES Research Report — Volume 34 (2022) 5

https://www.openmp.org
https://netlib.org/blas/
https://netlib.org/lapack/


Li, Keating, Trad, and lnnanen

Visco-elastic FWI in

frequency domain

General

dependencies

OpenMP

headers

Major classes Setup

Inversion

Forward

Universally used

self-defined

functions

Eigen header

files

Modeling the wavefield

Reading model parameters

Initialization

Holding objects of Setup class

Conducting the FWI

Holding objects of Setup and Forward

class

Reading inversion parameters

Main function
Building the workflow

with classes

FIG. 1. Basic structure of the VEFWI package.

FIG. 2. Main function.

reachable as it is a public attribute called D. If users prefer to use real data, a new function
has to be added to fulfill it. Figure (4) shows the pseudo-code describing the logic of the
modeling phase. We currently use the ideal Dirac wavelet throughout the inversion process
by defining a unique energy spectrum. Modifications on fwave are necessary if a more
realistic wavelet is required. All the source codes are saved in /src/Forward/.

The objects in the Inversion_V E class are initialized with objects in the previous
two classes. It should hold all the model parameters and the synthetic data. However,
some parameters, such as the iteration numbers, should be pre-assigned. The inversion

6 CREWES Research Report — Volume 34 (2022)



VEFWI on C++

FIG. 3. List of parameters.

parameters in the file inv_par.txt within data/, as listed in Figure (5): This and the model
parameter list are saved in the directory data/ with the suffix "info." As indicated above,
this package implements the truncated Gauss-Newton method, and the inversion workflow
is shown below: The inversion-related codes are saved in src/Inversion/.

The objectives (.o files) and dependence (.d files which Windows needs) are saved in
the subdirectories under obj/ with the same name as source codes. An incremental com-
piling style is applied, which means only the modified and related dependencies will be
re-compiled after the first time compilation.

CREWES Research Report — Volume 34 (2022) 7



Li, Keating, Trad, and lnnanen

FIG. 4. Pseudo-code of the modeling phase.

FIG. 5. List of inversion parameters.

FIG. 6. Pseudo-code of the inversion phase.

8 CREWES Research Report — Volume 34 (2022)



VEFWI on C++

As mentioned in previous sections, the environment requirements of this FWI package
are relatively simple. We use g++ to compile it on the Ubuntu platform. The compile op-
tions and commands are already integrated with the Makefile inside the obj/ folder, and
users will need to run the "make" command inside this directory. After the compiling, a
currently named executive file test_Inv.o will appear in the obj/ folder (the same loca-
tion where Makefile is in), and users will run the inversion program with the command
"./test_Inv.o". The name of this objective file can be changed in the Makefile, but users
must maintain the naming coincidence between the main function and this compiling target.

EXAMPLE

This part will elaborate on how this package is used in FWI experiments. We will go
through the whole project, from compiling to running and show the critical codes with
supplementary explanations in each step. As a quick guide for users, this part will mainly
focus on the elaboration of how to successfully set the parameters and inputs such that this
package can be directly applied without redundant edits.

Compilation

The package has been tested on the Ubuntu Linux platform. For creating the exe-
cutable, we use the utility make, which gets the instructions from a text file called, by
default, Makefile. This utility invokes a compiler, a linker, and other dependencies, mak-
ing an executable file. Re-compilation is needed every time for different computer archi-
tectures or source code changes. The main folder contains the Makefile and the other
subdirectories. The executables can be created by typing make on the terminal or using an
integrated development environment (IDE).

Before compiling, it is necessary to double-check if all the libraries are installed and
linked. The Makefile in this package is configurated for a standard Linux setup, but some
changes may be needed. For example, the -I flag in line 19 should indicate the location of
the Eigen library. The CCFLAGS and LDFLAGS are compiling options. Generally,
they don’t need to be changed if the OpenMP , LAPACK, and BLAS packages are
installed correctly. Some compiling flags may vary in different systems. The first time
make is run, it takes the longest, about 2 minutes in our system, because all the functions
need to be compiled and linked. This building step does not need to be rerun unless the
source codes are modified. Below we see the information displayed during the building in
our system: The name of the executable binary file is test_Inv. Users can run the tests just
by typing ./test_Inv.

Inversion test

Figure (8) illustrates the parameters used on the default inversion test. The list in Figure
(3) can be referred to while changing this parameter.txt file. Figure (9) shows the acquisi-
tion geometry on the synthetic model. The model size is 300 by 150 grid points in x and z
directions, with a 20-meter interval. To simultaneously estimate the P-wave velocities and
densities during the inversion, the parameter nP is set to 2 (see Figure (3), also Figure (8)).
Figure (10) shows the true and initial models. The starting models result from smoothing

CREWES Research Report — Volume 34 (2022) 9



Li, Keating, Trad, and lnnanen

FIG. 7. Information while compiling.

the true models by a Gaussian filter.

FIG. 8. Parameter setting in the inversion test.

1 2 3 4 5 6

Position (km)

1

2

3

D
e
p
th

 (
k
m

)

FIG. 9. Acquisition system in the inversion test. The dark-blue hexagrams are seismic sources,
and the red triangles are receivers.

10 CREWES Research Report — Volume 34 (2022)



VEFWI on C++

(a)

1 2 3 4 5 6

1

2

3

D
e
p
th

 (
k
m

)

2600

3000

3400
V

P
 (m/s) (b)

1 2 3 4 5 6

1

2

3 1600

1950

2300
 (kg/m3)

(c)

1 2 3 4 5 6

Position (km)

1

2

3

D
e
p
th

 (
k
m

)

2600

3000

3400
V

P
 (m/s) (d)

1 2 3 4 5 6

Position (km)

1

2

3 1600

1950

2300
 (kg/m3)

FIG. 10. True and initial models in the inversion test. (a), (c) true and initial P-wave velocity models.
(b), (d) true and initial density models.

Usually, only line 2 and line 3 in inv_par.txt (Figure (5)) would be changed to set
different inversion preferences. For example, in this test, we use 1 outer iteration and 20
inner iterations for the truncated Gauss-Newton method.

While running this code, the expected messages can be printed as Figure (11).

Once the FWI run completes, the output models are saved in files with the names
invmodel.dat in the data/ directory in ascii − float format. They can be visualized
using standard scientific plotting tools or seismic display tools, such as Seismic Unix or
Madagascar. In this report, we use MATLAB to read and sketch the results. The saved
vector’s length will depend on the inversion variables specified by nP . For example, if nP
is set to 2 as in the example, the output vector size will be (nx× nz× 2)× 1, with the first
nx × nz elements being ρ, and the rest nx × nz bulk being VP values. For the example
used in the validation, the models show a good definition of the subsurface structure, even
though each band was updated only once.

CREWES Research Report — Volume 34 (2022) 11



Li, Keating, Trad, and lnnanen

FIG. 11. Information while running.

12 CREWES Research Report — Volume 34 (2022)



VEFWI on C++

(a)

1 2 3 4 5 6

Position (km)

1

2

3

D
e
p
th

 (
k
m

)

2600

3000

3400
V

P
 (m/s)

(b)

1 2 3 4 5 6

Position (km)

1

2

3 1600

1950

2300
 (kg/m

3
)

FIG. 12. Estimated models. (a) P-wave velocity. (b) Density.

COMPUTATIONAL EFFORT ANALYSIS

In this section, we examine the computational effort of the C++ visco-elastic FWI. We
run multiple tests with different grid dimensions but the same physical properties, using an
Intel(R) Core(TM) i7-7800X CPU @ 3.50GHz with 12 threads. The runtime and memory
consumption are shown in the two tables below.

Table 1: runtime measurement

Model size Synthetic modeling 1 band inversion Total runtime
50 × 50 6.23 s 58.1 s 581.3 s
100 × 50 15.31 s 162.93 s 1589.14 s
100 × 100 28.5 s 308.97 s 2097.9 s
150 × 100 57.59 s 655.6 s 6322.1 s
200 × 100 98.23 s 979.6 s 9701.43 s
250 × 100 143.76 s 1649 s 16351.6 s
300 × 100 215.45 s 1649 s 16351.6 s
300 × 150 371.71 s 3813.3 s 37017.1 s

Table 2: memory consumption

Model size Synthetic modeling Inversion
50 × 50 0.59 GB 1.47 GB
100 × 50 1.36 GB 2.52 GB
100 × 100 2.35 GB 4.51 GB
150 × 100 3.81 GB 8.25 GB
200 × 100 6.23 GB 11.9 GB
250 × 100 8.85 GB 15.1 GB
300 × 100 10.2 GB 20.8 GB
300 × 150 15.4 GB 26.2 GB

CREWES Research Report — Volume 34 (2022) 13



Li, Keating, Trad, and lnnanen

Our primary concern at this stage is the RAM usage and the speed, so we do not compare
the numerical effect caused by different grid sizes. The total time in Table 1 is approxi-
mately the runtime for one band inversion multiplied by the overall frequency bands. The
seconds for calculation are roughly doubled as the grid size enlarges by 50 in one dimen-
sion. As the grid dimension is gradually enlarged, the running time and memory consump-
tion increase accordingly. Extending the grid horizontally not only magnifies the size of
the impedance matrix but also extends the number of sources, both factors having a signif-
icant influence on the computational cost. Larger impedance matrices also demand larger
RAM because more LU factors need to be stored while resolving equations. As previ-
ously mentioned, the inversion is carried out sequentially through frequency subsets while
concurrently on individual components. For the parallelization, each thread holds a por-
tion of the system of equations, including the blocky impedance matrix, to eliminate race
conditions among tasks. However, there is a considerable overhead because of duplicated
information, increasing the requirements for computer resources.

0 1 2 3 4

Grid cells 10
5

0

2

4

6

8

L
U

 f
a
c
to

rs

10
7

FIG. 13. Amount of LU factors as a function of the grid cell number.

CONCLUSIONS AND PERSPECTIVES

In this report, we presented a new implementation in C++ of a frequency domain visco-
elastic FWI. The goal was to provide a memory-efficient and optimized performance that
may be used for solving problems in large grids. When the model size increases, the high
computational demand may prevent us from using the existing Matlab implementation.
This report presents the first attempt to conduct efficient frequency domain FWI, which
requires modeling a limited number of frequencies and hundreds to thousands of sources
depending on the acquisition design. A simple text interface allows users to change param-
eters as needed. We provided an example to show how to operate the package and illustrate
FWI results obtained with minimum configuration. More work is yet needed to make the
program more productive and flexible.

In the present version, entire threads can only be exploited in the modeling phase be-
cause no communication is required across different frequencies. However, a more meticu-
lous design is needed in the inversion process, as the subsequent results are always prereq-
uisites at the beginning of each update. In such a situation, there are usually free workers

14 CREWES Research Report — Volume 34 (2022)



VEFWI on C++

as long as the tasks within the current frequency band are fewer than the threads, indicating
a possibility to optimize our program by creating inter-thread communications.

SparseLU , the built-in direct solver in the Eigen library, works reasonably well through-
out our prototyping and the numerical tests in this report. However, there is room for im-
provement by using more efficient solvers, such as MUltifrontal Massively Parallel sparse
direct Solver (MUMPS) and the Intel MKL. An alternative for solving the forward prob-
lem is using hybrid direct/iterative methods relying on domain decomposition methods,
although stability considerations require more research.

This C++ package was developed and tested on the VMware virtual system, which
might affect performance since virtual function calls can slow down performance-critical
applications. A virtual function call first needs to load the vtable pointer from the object
and then load the function pointer from the vtable. These two steps can result in double
data cache misses, dramatically reducing the performance in a tight loop.

As 3-D surveys become widely applied, corresponding 3-D techniques are required,
which may be challenging because of their large amount of computation. The implemen-
tation in C++ we provided focuses on reducing the memory imprint, becoming a potential
candidate for 3-D FWI problems.

A clumsy feature of this package is the lack of freedom for designing wavelet spectrum,
and we plan to add such functions in further releases. The current version is available on
GitHub (https://github.com/JinjjLi/Multi-parameter_VEFWI_freq.git), and the
first author can be reached at li.jinji@ucalgary.ca. Any collaboration is more than
welcome.

ACKNOWLEDGEMENTS

We thank the sponsors of CREWES for continued support. This work was funded
by CREWES industrial sponsors and NSERC (Natural Science and Engineering Research
Council of Canada) through the grant CRDPJ 543578-19.

CREWES Research Report — Volume 34 (2022) 15

https://github.com/JinjjLi/Multi-parameter_VEFWI_freq.git
li.jinji@ucalgary.ca


Li, Keating, Trad, and lnnanen

REFERENCES

Brossier, R., Etienne, V., Operto, S., and Virieux, J., 2010, Frequency-Domain Numerical Modelling of
Visco-Acoustic Waves Based on Finite-Difference and Finite-Element Discontinuous Galerkin Methods.

Brossier, R., Operto, S., and Virieux, J., 2009, Seismic imaging of complex structures by 2d elastic frequency-
domain full-waveform inversion: Geophysics, 74.

Bunks, C., Saleck, F. M., Zaleski, S., and Chavent, G., 1995, Multiscale seismic waveform inversion: GEO-
PHYSICS, 60, No. 5, 1457–1473, https://doi.org/10.1190/1.1443880.
URL https://doi.org/10.1190/1.1443880

Fichtner, A., Kennett, B. L. N., Igel, H., and Bunge, H.-P., 2009, Full seismic waveform tomography for
upper-mantle structure in the australasian region using adjoint methods: Geophysical Journal International,
179, No. 3, 1703–1725.

Hustedt, B., Operto, S., and Virieux, J., 2004, Mixed-grid and staggered-grid finite-difference methods for
frequency-domain acoustic wave modelling: Geophysical Journal International, 157, No. 3, 1269–1296,
https://academic.oup.com/gji/article-pdf/157/3/1269/6056859/157-3-1269.pdf.
URL https://doi.org/10.1111/j.1365-246X.2004.02289.x

Keating, I. K. A. H., S., and Shor, R., 2022, Simultaneous waveform inversion of SWD data for P-wave
velocity, density, and source parameters, CREWES Research Report, 34, 36.

Keating, S., and Innanen, K. A. H., 2020, Simultaneous recovery of source locations, moment tensors and
subsurface models in 2D FWI, CREWES Research Report, 32, 33, 14.

Keating, S., and Innanen, K. A. H., 2022, User guide for the CREWES frequency domain FWI codes,
CREWES Research Report, 34, 33.

Marfurt, K. J., 1984, Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave
equations: GEOPHYSICS, 49, No. 5, 533–549.

Operto, S., Virieux, J., Amestoy, P., L’Excellent, J.-Y., Giraud, L., and Ali, H. B. H., 2007, 3d finite-difference
frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: A
feasibility study: GEOPHYSICS, 72, No. 5, SM195–SM211, https://doi.org/10.1190/1.2759835.
URL https://doi.org/10.1190/1.2759835

Pratt, R. G., 1990, Frequency-domain elastic wave modeling by finite differences: A tool for crosshole
seismic imaging: GEOPHYSICS, 55, No. 5, 626–632.

Sourbier, F., Operto, S., Virieux, J., Amestoy, P., and L’Excellent, J., 2007, A massively parallel frequen-
cyâCdomain fullâCwaveform inversion algorithm for imaging acoustic media: Application to a dense
OBS data set, 1893–1897, https://library.seg.org/doi/pdf/10.1190/1.2792860.
URL https://library.seg.org/doi/abs/10.1190/1.2792860

Sourbier, F., Operto, S., Virieux, J., Amestoy, P., and L’Excellent, J.-Y., 2009a, Fwt2d: A massively parallel
program for frequency-domain full-waveform tomography of wide-aperture seismic data - part 1: Algo-
rithm: Computers Geosciences, 35, No. 3, 487–495.
URL https://www.sciencedirect.com/science/article/pii/S0098300408002689

Sourbier, F., Operto, S., Virieux, J., Amestoy, P., and L’Excellent, J.-Y., 2009b, Fwt2d: A massively parallel
program for frequency-domain full-waveform tomography of wide-aperture seismic data - part 2: Numer-
ical examples and scalability analysis: Computers Geosciences, 35, No. 3, 496–514.
URL https://www.sciencedirect.com/science/article/pii/S0098300408002677

Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: GEOPHYSICS, 49,
No. 8, 1259–1266.

Virieux, J., and Operto, S., 2009, An overview of full-waveform inversion in exploration geophysics: GEO-
PHYSICS, 74, No. 6, WCC1–WCC26.

16 CREWES Research Report — Volume 34 (2022)

https://doi.org/10.1190/1.1443880
https://doi.org/10.1190/1.1443880
https://academic.oup.com/gji/article-pdf/157/3/1269/6056859/157-3-1269.pdf
https://doi.org/10.1111/j.1365-246X.2004.02289.x
https://doi.org/10.1190/1.2759835
https://doi.org/10.1190/1.2759835
https://library.seg.org/doi/pdf/10.1190/1.2792860
https://library.seg.org/doi/abs/10.1190/1.2792860
https://www.sciencedirect.com/science/article/pii/S0098300408002689
https://www.sciencedirect.com/science/article/pii/S0098300408002677

	abstract
	Introduction
	Computational considerations on matrix view
	C++ package of frequency domain visco-elastic FWI
	Prerequisites
	Basic structure

	Example
	Compilation
	Inversion test

	Computational effort analysis
	Conclusions and perspectives
	Acknowledgements

