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ABSTRACT

Analysis of radiation patterns is the most common method to evaluate crosstalk between
parameters in Full Waveform Inversion problems. Typically, these are constructed from an-
alytic expressions subject to not so realistic assumptions, such as the use of homogeneous
reference media. This study focuses on introducing a workflow to extract the empirical
radiation patterns from simulated scattered wavefields and on making use of it to assess
the VP , VS and ρ scattering patterns generated from wavefields produced under different
heterogeneous backgrounds. To achieve this, radius dependent masks to isolate displace-
ments of interest and sweeps of angles were used. The proposed workflow is beneficial
since it allows to extract highly accurate empirical patterns and demonstrates that, under
heterogeneous scenarios, the shape of the radiation patterns has certain changes from what
is theoretically expected, and that slightly different crosstalk regions from those indicated
by the analytic expressions might occur, as well as sensitivity variations.

INTRODUCTION

Multiparameter Full Waveform Inversion (FWI) is a challenging problem because, de-
pending on the parameterization, inter-parameter coupled effects or crosstalk can be in-
troduced to the seismic response in a selected propagation regime, producing slow con-
vergence and poor estimations. Crosstalk is a phenomenon that occurs when parameters
of different classes are confused in the inversion. The most common strategy to mitigate
these effects is to analyze the radiation patterns associated to a diffractor point in the model
grid and choose a suitable parameterization that still describes the earth, but also produces
their minimal overlap over the scattering angles (Operto et al. (2013); Keating and Innanen
(2019)).

Radiation patterns provide information about the variations of amplitudes that the par-
tial derivatives of the predicted data (used within the gradient in local optimization algo-
rithms) experience with scattering angles (Operto et al., 2013). Moreover, when the scat-
tering patterns of two parameter classes are similar, also are their gradient updates, being
difficult to properly differentiate them during the inversion (Métivier et al., 2015).

Typically, analytic expressions of radiation patterns are calculated to perform crosstalk
analysis for a particular parameterization and acquisition geometry. Generally, these ex-
pressions have been derived and published for different set of known parameters and/or
wave equations (e.g., scalar acoustic, elastic, viscoelastic, among others) using a point
scatterer model of a localized heterogeneity embedded in a homogeneous medium, assum-
ing plane waves and working of the basis of the Born approximation to find the solution of
the scattered wavefields (Sato (1984); Wu and Aki (1985); Sato et al. (2012); Kamath and
Tsvankin (2016); Moradi and Innanen (2019)).

Therefore, the main objective of this study was to introduce a workflow that allows to
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extract the empirical radiation patterns from simulated scattered P-P and P-S wavefields
generated from a virtual source or scatter point of individual model perturbations, regard-
less the parameterization selected and if its analytic expressions are known or not. The
workflow was tested by comparing the empirical and analytic scattering patterns produced
by perturbations of P-wave velocity (VP ), S-wave velocity (VS) and density (ρ) and the
independence from analytic expressions was exploited by studying the radiation patterns
upon scenarios of heterogeneous reference media in order to understand how the patterns
change from the theoretic expectations and how crosstalk might vary in more realistic con-
figurations that are not commonly addressed with analytic equations.

ANALYTIC RADIATION PATTERNS IN VP , VS AND ρ MODEL SPACE

The scattering theory explains that the actual medium that represents the subsurface and
where a wave propagates results from the sum of a homogeneous background (reference
medium) and small perturbations in model properties (Moradi and Innanen, 2015). For
an isotropic elastic scenario, characterized by the density and Lamé coefficients (λ and µ)
contained in a stress tensor Cij , the following relationships hold:

λ(x) = λ0 + δλ(x) = λ0 [1 + ξ(x)] (1)

µ(x) = µ0 + δµ(x) = µ0 [1 + χ(x)] (2)

ρ(x) = ρ0 + δρ(x) = ρ0 [1 + υ(x)] (3)

where λ0, µ0, ρ0 are the background model properties and λ, µ, ρ are the actual model
properties. Additionally, the fractional fluctuations correspond to a localized heterogeneity
(Figure 1) and must meet |ξ|, |χ|, |υ| � 1.

FIG. 1. Representation of a localized inhomogeneity of size L from which the scattered wavefield is
generated. r, ψ, and ζ are spherical coordinates and er, eψ and eζ are the unit base vectors in that
system (Modified from Sato et al. (2012)).

In order to study a scattered wavefield and be able to extract its analytic radiation pat-
terns, we can analyze a plane wave that interacts with a localized inhomogeneity or scatter
point, using the first order perturbation method or Born approximation in stationary state
(Sato et al., 2012). To obtain the P-P and P-S analytic radiation patterns we must start by
considering:
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u = u0 + u1 (4)

where u is the total wavefield, u0 is the incident wavefield and u1 is the scattered wavefield,
and |u1| � |u0|. Overall, the scattered wavefield results after summing the response from
all single scatter points, but since the scattered wavefield from the inhomogeneity is weak
with respect to u0, the wavefields from more scatter points can be negligible (Moradi and
Innanen, 2015). This assumption implies that the radiation patterns analysis will not pro-
vide information about crosstalk at different spatial locations (Keating and Innanen, 2019).

On the other hand, the isotropic elastic wave equation in time domain for the full dis-
placement wavefield u(x, t) is:

ρ(x)üi(x, t)− ∂jCij(λ, µ;uk) = 0 (5)

written for the incident wave as:

ρ0ü
0
i − ∂jCij(λ0, µ0;u

0
k) = 0 (6)

We can find the scattered wave equation by substituting Equation 4 in Equation 5 and
using Equation 6, as well as neglecting cross-terms of (δλ, δµ, δρ) × u1i to only focus on
first order perturbations, obtaining:

ρ0ü
1
i − ∂jCij(λ0, µ0;u

1
k) = δfi(x, t) (7)

The term δfi(x, t) in Equation 7 is a mathematical expression of the interaction between
the incident wave and the scatter point (equivalent body force):

δfi(x, t) = −δρü0i + ∂iδλ∂ju
0
j + ∂jδµ(∂iu

0
j + ∂ju

0
i )+ δλ∂i∂ju

0
j + δµ∂j(∂iu

0
j + ∂ju

0
i ) (8)

To solve Equation 7, we need to define the equivalent body force according to the type
of incident wave we would like to simulate. For a P-wave:

u0P = e3e
i(k0e3x−ωt) where k0 =

ω

VP0

(9)

Then, when u0 or ü0 appear in Equation 8, the previous expression must be used. Later,
the Green’s function is applied to solve for the desired type of scattered waves, in this case
P-P and P-S. The derivation of u1PPi and u1PSi was developed in detail by Sato et al. (2012),
producing the following expressions:
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u1PPi (x, t) =
ei(k0r−ωt)

r
F PP
i (10)

u1PSi (x, t) =
ei(l0r−ωt)

r
F PS
i (11)

where l0 = ω/VS0 and F PP
i and F PS

i are the scattering amplitudes, which can be written
in spherical coordinates as:

FPP =
3∑
i=1

F PP
i ei = F PP

r er + F PP
ψ eψ + F PP

ζ eζ (12)

FPS =
3∑
i=1

F PS
i ei = F PS

r er + F PS
ψ eψ + F PS

ζ eζ (13)

F PP
r =

l20
4π

[(
− 1

γ20
+

cosψ

γ20
+

2

γ40
sin2 ψ

)
δρ̃(k0er − k0e3)

ρ0

−
(

2

γ20

)
δṼP (k0er − k0e3)

VP0

+

(
4

γ40
sin2 ψ

)
δṼS(k0er − k0e3)

VS0

] (14)

with F PP
ψ = F PP

ζ = 0

F PS
ψ =

l20
4π

[(
− sinψ +

2

γ0
cosψ sinψ

)
δρ̃(l0er − k0e3)

ρ0

+

(
4

γ0
cosψ sinψ

)
δṼS(l0er − k0e3)

VS0

] (15)

with F PS
r = F S

ζ = 0

In Equation 14 and 15, γ0 = VP0/VS0 . Additionally, each scattering amplitude con-
tains the Fourier transforms of the fractional fluctuations ( δρ̃

ρ0
, δṼP
VP0

, δṼS
VS0

) representing the
difference between the scattered wavenumber vector and the incident wavenumber vector
for an angular frequency. The terms on their left (grouped with parenthesis) are the analytic
radiation patterns produced by its associated parameter perturbations.
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EXTRACTION OF EMPIRICAL RADIATION PATTERNS

To initially examine the empirical radiation patterns produced by perturbations in P-
wave velocity (VP ), S-wave velocity (VS), and density (ρ), we considered a homogeneous
reference medium in each parameter with 200 samples in both x and z directions and with
values of VP=3000 m/s, VS=1800 m/s, and ρ=1400 kg/m3. Additionally, perturbed me-
dia were constructed containing a localized perturbation (scatter point) in one of the three
parameters and placed in the middle of the model grid. This perturbation represented an
increment of 10% of the respective background value.

The isotropic elastic wave equation in frequency domain was selected as the wave prop-
agation model. An explosive source, represented by a Ricker wavelet with 25Hz of domi-
nant frequency, was located in the middle of the surface of the grid and 1C vertically and
horizontally-oriented geophones were placed at each grid point, responding at discrete fre-
quencies and recording the simulated vertical (uz) and horizontal (ux) displacement wave-
fields. Each displacement component was computed twice, (1) simulating that the source
wave traveled only in the reference media and (2) simulating that it traveled through the
medium perturbed in one parameter class, but with no perturbations of the other parame-
ter classes. The inverse Fourier Transform was applied to each displacement component
and the subtraction of the former to the latter displacements corresponded to the scattered
wavefield, according to Equation 4, generated by a change in a particular model property
(Figure 2).

FIG. 2. Mathematical procedure to compute the scattered wavefield caused by a perturbation of
one parameter class. The blue dot corresponds to the scatter point, while the yellow star represents
the explosive source.

With all the information in time domain, the scattered wavefield was plotted for ap-
propriate times that allowed to visually differentiate both P-P and P-S wavefields. For this
fixed time, both types of wavefields were separated using a radius dependent mask of the
size of the model grid. Favorable radii were input by the user to isolate both wavefields,
considering the values out of the radius when working with P-P energy and within the
radius when working with P-S energy (Figure 3).

Later, within the isolated regions, a sweep of angles was performed by fixing a par-
ticular angle and selecting a range of 10 discrete upper and lower degrees. The energy
within this group of angles was summed and attributed to the fixed angle. The process was
repeated for 360 degrees. The energies associated to ux were summed to those of uz and
the square root was applied so that the total amplitude could be represented. Finally, polar
plots were constructed to illustrate the empirical radiation patterns and compared with the
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FIG. 3. Proposed workflow to extract the empirical radiation patterns from simulated wavefields.(a)
Extraction of patterns from the P-P wavefield. (b) Extraction of patterns from the P-S wavefield. R
corresponds to the radius indicated by the user.

obtained from the corresponding analytic expressions.

It is observed in Figure 4 that the shape and values of both, the analytical and empirical,
radiation patterns were almost identical for every perturbed parameter class and for each
type of energy conversion mode, which means that effectively this workflow recovered
accurate enough patterns and can be used in situations where the analytic expressions are
unknown.

RADIATION PATTERNS WITH HETEROGENEOUS REFERENCE MEDIA

Three different heterogeneous background media with varying complexities were stud-
ied using the procedure described in the previous section. The first case consisted in refer-
ence media for VP , VS , and ρ with a linear increment of values with depth; the second case
corresponded to a linear increment of values with depth, but with an increment of 25% of
the slopes of the first case; and the third case was a modified Marmousi model (the origi-
nal VP Marmousi model was divided by 2 to obtain VS and by 1.5 to obtain ρ). Figure 5
illustrates the perturbed VP medium in each case. Once more, for each of these scenarios,
scatter points were placed in the middle of the grid with values of 10% increment with
respect to the reference media.

For each case, the model size was modified to avoid grid dispersion effects. Figures 6
and 7 show a comparison between the analytic radiation patterns, those obtained from a ho-
mogeneous background, and those obtained after considering the heterogeneous reference
media proposed in this section. In that sense, for the cases of heterogeneous background,
the general shape of the scattering patterns prevailed, but some changes appeared in terms
of rotation of lobes and amplitude ratio.
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FIG. 4. Comparison between analytic and empirical radiation patterns of P-P and P-S wavefields.

FIG. 5. Different heterogeneous reference media used in this study. (a) Case 1, (b) case 2, and (c)
case 3.

When values of the reference media increase linearly with depth (case 1 and 2), scat-
tering amplitudes tended to be more focused around smaller angles than those described
by the analytic responses. For instance, there was a slight upward rotation of the radiation
lobes associated to changes in ρ for the P-S wavefield and VS for the P-P and P-S wave-
field. Additionally, the VP scattering pattern (P-P wavefield), even though still circular, did
not have its characteristic analytic isotropic behavior anymore, but higher amplitudes were
scattered towards small and intermediate angles. Moreover, the radiation pattern caused by
ρ perturbations (P-P wavefield) shrinked mainly towards small angles.
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FIG. 6. Overlapped radiation patterns of analytic, homogeneous, and heterogeneous cases ex-
tracted from the P-P wavefield.

FIG. 7. Overlapped radiation patterns of analytic, homogeneous, and heterogeneous cases ex-
tracted from the P-S wavefield.

On the other hand, areas with increment of values with depth and structural complex-
ities, represented by the modified Marmousi model (case 3), exhibited radiation patterns
with behaviors in between the homogeneous case and case 1-case 2, and the shape of the
patterns differed with respect to the analytic shapes for some angles. Hence, rotation of
lobes still occured similar to the previous heterogeneous cases, but especially for the P-P
wavefield and the VP and ρ patterns, the amplitude values tended to get closer to those
described by the analytic expressions. Therefore, the shrinkage of the ρ radiation pattern
was much more subtle and the VP radiation pattern had higher amplitudes scattered from
small to large angles, but it lost its perfectly circular isotropic shape.

Figure 8 and 9 illustrate the overlapped scattering patterns of each parameter perturba-
tion generated by the analytic and empirical procedures. For the P-P wavefield, the analytic
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VP and ρ patterns indicated crosstalk in very small angles (0-6°), and for the heterogeneous
cases the crosstalk occurred in slightly smaller angles, with lack of symmetry for the Mar-
mousi reference media. Regarding the comparison between VP and VS radiation patterns,
crosstalk in case 2 was the least similar to what was expected from the analytic responses,
with no crosstalk in large angles but in very small ones. Moreover, according to the ana-
lytic expressions, no crosstalk should appear between parameters VS and ρ, but for case 3
a small overlap of the patterns existed between 80 and 90°. For the P-S wavefield, the ana-
lytic expressions of VS and ρ suggested crosstalk from 0 to almost 30° and its counterpart;
however, case 1 and 3 showed overlap of the radiation patterns from 0 to 20° and for case
2, from 0 to 5°.

Therefore, subtle differences existed between the crosstalk indicated by the analytic
and the empirical patterns and, in some cases of the P-P wavefield, new small crosstalk re-
gions appeared. However, the empirical patterns also gave insights on the strong variations
of amplitude values that effectively occur between patterns of each case, which suggest
that sensitivity issues might be present during the inversion depending on the considered
reference media.

CONCLUSIONS

Simulated scattered wavefields allowed to introduce a workflow to isolate the P-P and
P-S mode energy conversion and extract their empirical radiation patterns with high ac-
curacy, which is beneficial to perform crosstalk analysis in heterogeneous configurations
or using re-parameterizations where the analytic expressions are somehow unknown. This
workflow demonstrated that the shape of the radiation patterns generated from heteroge-
nous reference media is very close to the indicated by the analytic expressions, but in some
cases, rotation of lobes, decrease of amplitude values, and loss of symmetry or irregulari-
ties might occur. Moreover, the overlap of these heterogeneous scattering patterns helped to
perform more accurate analysis under more realistic scenarios, since the produced crosstalk
between parameters might slightly change with respect to those indicated by the analytic
expressions and different sensitivities between patterns might be present, having impact on
the inversion of the observed data.
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FIG. 8. Crosstalk assessment with radiation patterns extracted from P-P wavefield. (a) Analytic
expressions, (b) case 1, (c) case 2, and (d) case 3.

FIG. 9. Crosstalk assessment with radiation patterns extracted from P-S wavefield. (a) Analytic
expressions, (b) case 1, (c) case 2, and (d) case 3.
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