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ABSTRACT

Quantum computation is described as a promising paradigm for the future. One of their
advantages is the quantum parallelism, that consists in solving many instances of the same
problem in a single run. This can be done due to the possibility to set a quantum system in
a superposition of states. Although its main limitation is that only one of the states can be
read at the end, it is possible to increase the chances of the state we are looking for. In this
report we show a framework to pose the traveltime tomography problem, usually solved
using gradient methods, as a quantum computing algorithm. This algorithm does a global
exploration of the model space using the aforementioned quantum parallelism. Then it
manipulates the quantum phase of their states to increase the chances of reading the model
that produces the global minimum. In that way we can read the tomography answer at the
end of the quantum computation. Something important to notice is that there is no need to
compute gradients or Hessians but only to do forward modelling and residual calculation.
In this report we introduce only the notions needed to solve the inverse problem and we
show a small example step by step to illustrate how the quantum algorithm works. The
algorithm has been coded and run in a quantum simulator.

INTRODUCTION

In 1981 quantum computation was proposed by physicist Richard Feynman to simulate
quantum systems (Preskill, 2021). Later, in 1985, David Deutsch extended the notion
of quantum computer to problems not related to quantum physics (Deutsch and Penrose,
1985).

Several applications appeared in the following decade showing that quantum computing
is more powerful than classical computing. For example, an exponential speedup was
found in the period finding problem (Simon, 1994) that inspired the Shor algorithm for
factoring large numbers (Shor, 1997) that threatens cryptological systems. The quantum
search algorithm that inspires the algorithm proposed in this report is also from that decade
(Grover, 1997) and its speedup is quadratic.

Some applications of quantum computing to geophysical problems have been proposed
in the last 10 years. Most of them use a less powerful technique called quantum annealing
(de Falco and Tamascelli, 2011). Only in the last couple of years general quantum com-
puting algorithms have been proposed in geophysical problems. Alulaiw and Sen (2015)
find that quantum annealing is faster than the simulated annealing and does not get trapped
in local minima when performing seismic prestack inversion. Moradi et al. (2018) present
the different quantum computing concepts necessary for wave modelling applications in
geophysics.

Sarkar and Levin (2018) use quantum annealing to estimate the rock material percent-
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ages with traveltime information. Greer and O’Malley (2020) introduce a quantum an-
nealing algorithm to solve constrained optimization problems and applies it to invert the
subsurface P-wave velocity. van der Linde (2021) solves the residual statics problem using
quantum annealing and quantum-classic hybrid solvers. In Souza et al. (2022) the velocities
of a layered model are inverted using quantum annealing techniques. Albino et al. (2022)
solve the same problem with a more general gate-based quantum computer but using a
variational quantum algorithm.

This report is structured as follows. First we show an overview of the quantum comput-
ing theory, illustrating the ideas that will be used in the rest of the report. Then we present
in a more formal way the quantum bits, quantum gates, quantum arithmetic and quantum
amplitude amplification techniques, needed in the quantum tomography algorithm. In the
third section we show the quantum traveltime tomography algorithm by running a small
instance of it. At the end we discuss the results and present some conclusions. In the
appendix we include the simulation Python code.

QUANTUM COMPUTING OVERVIEW

Classical computers differ from Quantum computers in that the later can be in more
than one computation state at the same time. Figure 1 depicts three bits of information in
a classical computer. Each column of two circles is a bit that can be in only one of two
possible states: 0 or 1, represented in the diagram as filled circles. In this example the three
bits are in state 110, from left to right.

1 :

0 :

FIG. 1. Three classical bits. Each column of two circles is a bit. The filled circles indicate their
states. The states are 110, from left to right.

On the other hand, the quantum equivalent of a bit, called quantum bit or qubit can be
in a mixture or superposition of states. Figure 2 shows three possible states of three qubits.
On the left all 0 circles are filled and in consequence the state is 000. On the centre all the
1 circles are filled resulting in a 111 state. On the right is a state that differs from all the
possible classical ones. In it, each circle is partially filled, meaning that the corresponding
qubit is in a superposition of states 0 and 1. There is also a phase factor that the diagrams
do not show but we introduce in the next section.

1 :

0 :

1 :

0 :

1 :

0 :

FIG. 2. Three possible states of a set of three qubits. Each column of two circles is a qubit. The
shaded portion inside each circle indicates the amount of each possible states, 0 and 1, the qubit
can be. On the left all the qubits are in state 0, while in the middle all are in state 1. On the right
each qubit is in a different mixture or superposition of states 0 and 1. The figures do not show the
phase factor that will be introduced in the following section.

The advantage of being in a superposition of states is that with a quantum computer
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is possible to make computations in that superposition and obtain a superposition of the
results in a single run. This is called quantum parallelism.

To be more specific, consider the wave simulation problem. In a classical computer
you have a velocity model made of cells with propagation velocities and you produce a
wavefield where cells contain the wave amplitudes. In a single run with a single processor
you can compute the outcome for a single velocity model.

In contrast, in a quantum computer you can have a superposition of many velocity mod-
els. Each cell in that model contains the superposition of different propagation velocities.
In a single run, with a single quantum computer is possible to obtain a superposition of the
wavefields that are the result of the wave simulation of all superposed velocity models.

However, there is catch. Although the quantum computer produces a superposition
of all the computation results, it is only possible to read one of them. This is due to the
properties of quantum measurement. Figure 3 illustrates the measuring of a qubit in a non
trivial superposition. After the measurement it collapses to 0 or 1. The filled portion of the
circles is proportional to the probability of reading the qubit in that state. In this example,
the shaded portion corresponding to circle 1 is bigger so there is more chance to read this
qubit in state 1.

1 :

0 :

measurement:

0 :

1 :

FIG. 3. Above the qubit is in a superposition of states 0 and 1. The shaded portion of the circle
indicates the probability of the qubit to turn into that state after being read. Below are the two
possible measurement outcomes.

Another example is in Figure 2; the two states on the left and centre of that figure are
read with 100% chance in states 000 and 111, respectively. The state on the right of the
figure is different; the chance of reading any qubit as 0 or 1 is not 100% because the circles
are partially filled.

As it is only possible to read a single final state of a quantum computation, we have
to use a quantum computer differently from a classical parallel one. Instead of doing all
the calculations and collecting them at the end, we do all the calculations in superposition
and increment the probability of one of them so it can be read with higher probability than
the others. This single solution must have a special property that solves the problem at
hand. In the traveltime tomography problem described in subsequent sections this property
is related to the residuals.
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Figure 4 shows a general quantum algorithm flow diagram. The first step consists
on setting the superposition of states that contribute to the inputs. The second step is to
perform computations in this state superpositions. At this point the quantum computer
contains all the results in superposition, but as was already mentioned, it is not possible to
read but one of them. The third step is in charge of increasing the probability of one subset
of those results. This subset depends on the characteristics of the answer we are looking
for. Most of the times it is necessary to repeat the second and third steps several times until
the probability of the answer is high enough to produce a successful reading. The last step
in the flow diagram is to read the answer.

Set
superposition Compute Increase

probability Read answer

FIG. 4. A general quantum algorithm flow diagram. It starts by setting the states superpositions
we want to use as inputs. Then it computes in superposition. The next step is to increase the
probability of a subset of the answers. It is possible that this step and the previous one have to be
repeated several times until the probability of the answer is high enough. The last step is to read
the answer. Diagram modified from Johnston (2019).

In the next section we will explain with more formality the qubits and quantum gates
needed to solve the traveltime tomography problem.

THEORY

Quantum bits

Traditional computers are binary due to the high commutation speed between two volt-
age levels that electronic technology can achieve. These two levels are usually assigned
two values, like 0 and 1 or true and false, among others. A system capable of having these
two values is called a bit. Other pieces of computer information like integer numbers, real
numbers or characters are encoded using sets of bits.

On the other hand, quantum systems can take a superposition of states and perform cal-
culations on this ensemble of states simultaneously. There is not yet a definitive hardware
implementation of quantum computers but they usually choose two states, following the
electronic tradition, and assign the number 0 to one state and 1 to the other.

To be more precise and following the usual quantum notation, one state is written |0〉
and the other |1〉, and pronounced ket zero and ket one, respectively. The superposition of
these two values is noted like a weighted combination of values:

|ϕ〉 = α|0〉+ β|1〉 (1)

where α and β are complex numbers, and |α|2 + |β|2 = 1. A system capable of having this
superposition is called a qubit.
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FIG. 5. Three single qubit gates. The inputs are on the left side and the outputs on the right. Above
are the not and the Hadamard gates. Below is a measuring gate.

The meaning of the numbers α and β has something to do with the action of measuring
or reading the qubit. When you measure a quantum system, it collapses to one of the basis
elements you are measuring into. In the qubit case, when measured, it collapses to |0〉 with
probability |α|2 and to |1〉 with probability |β|2. You might have noticed that these squared
moduli are proportional to the shaded portions of the circle diagrams in Figure 3.

As explained before, measuring damages the superposition stored in the qubit and with
it the quantum parallelism. However, this is something that is done at the very end of a
quantum computation and after we make the probability of one of the values, usually the
answer to our calculation, as high as possible.

Quantum gates

Quantum computers evolve the superposition stored in the qubits in ways that are useful
to perform calculations. The mathematics behind the evolution of quantum systems is the
mathematics of unitary complex matrices but it can also be described with quantum gates
in the style of the logic gates used to describe digital circuits.

Figures 5 and 6 show some of the most common quantum gates. They have the inputs
in the left side and the outputs in the right side, with the gate in the middle.

The gate on the left of Figure 5 is called flip gate or not gate and is defined by its action
on basis qubits. It transforms |0〉 into |1〉 and vice versa. Its action on a superposition
α|0〉 + β|1〉 is to transform it into β|0〉 + α|1〉. This is usually expressed using arrow
diagrams:
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|0〉 not7−−→ |1〉 (2)

|1〉 not7−−→ |0〉 (3)

α|0〉+ β|1〉 not7−−→ α|1〉+ β|0〉 (4)

The next gate in Figure 5 is called Hadamard gate and is very important in the creation
of quantum superpositions. It will be used in the first box of the quantum algorithm diagram
flow of Figure 4.

This gate turns |0〉 into 1√
2
|0〉 + 1√

2
|1〉, and |1〉 into 1√

2
|0〉 − 1√

2
|1〉. Note that the

difference is the sign of the second term. It is also important to notice that it transforms
a basis qubit into an equal superposition of the basis qubits. It is equal because | 1√

2
|2 =

| − 1√
2
|2 = 1/2. Using arrow diagrams:

|0〉 H7−→ 1√
2
|0〉+ 1√

2
|1〉 (5)

|1〉 H7−→ 1√
2
|0〉 − 1√

2
|1〉 (6)

The gate on the bottom of the same figure is the reading or measuring gate. It is used
in the last box of the quantum algorithm diagram flow in Figure 4.

This quantum gate has two lines: q for a qubit y c for a classical bit. It reads q, de-
stroying the superposition, and outputs a |0〉 or a |1〉 at random in the bit c. After several
readings of a qubit generated in the same way, the normalized counts should approximate
the probabilities determined by the superposition coefficients.

Multiple qubits

The two gates in Figure 6 work in sets of two qubits. Before continuing we have to
see how to group qubits for computations. We know a single qubit has basis elements |0〉
and |1〉. We form the basis elements of groups of qubits using the tensor product rules, or
basically, concatenating the basis elements of the single qubits in all possible combinations.

For example, two qubits have basis elements |0〉|0〉, |0〉|1〉, |1〉|0〉 and |1〉|1〉. Three
quantum bits have basis elements |0〉|0〉|0〉, |0〉|0〉|1〉 and so on, up to |1〉|1〉|1〉. A typical
3-qubit can be expressed as:

|φ〉 =
1,1,1∑

i,j,k=0,0,0

αijk|i〉|j〉|k〉 (7)

6 CREWES Research Report — Volume 34 (2022)



Quantum traveltime tomography

FIG. 6. Two multiple qubit gates. On the left is the controlled not or cnot gate. On the right is a
phase gate.

where i, j, k take the values 0 and 1, αijk ∈ C and
∑1,1,1

i,j,k=0,0,0 |αijk|2 = 1. Each amplitude
|αijk|2 is the probability the 3-qubit is in state |i〉|j〉|k〉.

It is usual to abbreviate the notation by using a single ket symbol around all the qubit
values: |i〉|j〉|k〉 to |ijk〉. A further simplification is to transform the binary values to their
decimal representation. For example |011〉 would be |3〉.

Quantum gates with multiple inputs

The first gate with multiple inputs is the controlled not or cnot, shown in the left part of
Figure 6. The controlling qubit is q0 and the controlled one is q1. If and only if q0 is |1〉, a
not gate is applied to q1. For example, the action on |00〉 and |01〉 is:

|0〉|0〉 cnot7−−→ |0〉|0〉 (8)

|0〉|1〉 cnot7−−→ |1〉|1〉 (9)

where the controlling qubit is the rightmost one. An interesting case is when the controlling
qubit is a superposition: the not gate is applied and not applied to the controlled qubit at the
same time. In this way the cnot gate is performing both actions simultaneously in a quantum
parallel way. For example, if the controlling qubit is α|0〉 + β|1〉 and the controlled qubit
is |0〉, the action is:

|0〉(α|0〉+ β|1〉) = α|00〉+ β|01〉 cnot7−−→ α|00〉+ β|11〉 (10)

There exist versions of the cnot gate with multiple controlling qubits and multiple con-
trolled ones. They work in a similar way: when all the controlling qubits are one, all the
controlled qubits are flipped.

The last gate in Figure 6 is the phase gate. It changes the phase of two qubits if both
are |1〉. The way to change the phase is to remember that the coefficient of the qubit is a
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complex number that can be expressed in terms of amplitude and phase: α = |α|eiφ. The
gate specifies an angle that is added to the coefficient phase. For example, if both qubits
are |1〉 and the gate angle is π/3, the action is the following:

α|11〉 = |α|eiφ|11〉 pha(π/3)7−−−−−→ |α|eiφeiπ/3|11〉 = |α|ei(φ+π/3)|11〉 (11)

Note that the exponential factor has magnitude equal to 1, so it does not change the
qubit probabilities. As was the case with the cnot gate, if one of qubits is in superposition,
the phase is added only to one of the states:

|1〉(α|0〉+ β|1〉) = α|11〉+ β|10〉 pha(π/3)7−−−−−→ αeiπ/3|11〉+ β|10〉 (12)

Similar to the cnot case, there are versions of this gate for more qubits that add the
phase only when all qubits are |1〉. The gates just described are not the only ones used in
quantum computing (Johnston, 2019), but are the ones necessary for this report.

Encoding numbers with qubits

We are interested in numerical computations. That is why we need to express numbers
using qubits. In classical computing the bits can be interpreted as unsigned integers, signed
integers or floating numbers, among others. In quantum computing the same encodings can
be used.

An set of n qubits qn−1, qn−2, . . . , q0 can be interpreted as the unsigned number that is
a power of two expansion:

|qn−1, qn−2, . . . , q0〉 7→
n−1∑
i=0

qi2
i (13)

For example, |101〉 can be interpreted as the number 5 = 1 · 22 + 0 · 21 + 1 · 20.
A superposition of qubits is interpreted as a superposition of the corresponding unsigned
numbers.

In the case of the signed numbers, there are two options: ones’ complement and two’s
complement (There is no typo in the apostrophes). We use two’s complement because is
more widespread. The set of qubits qn−1, qn−2, . . . , q0 is interpreted as:

|qn−1, qn−2, . . . , q0〉 7→ −qn−12n−1 +
n−2∑
i=0

qi2
i (14)
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FIG. 7. Increment quantum circuit for three qubits. It is composed of two cnot and one not gates.

Notice that the summation goes up to n−2 and that the qubit qn−1 is used similarly to a
sign: when is |0〉, the interpreted number is positive and when is |1〉, the number is negative.
Using the same example as before, |101〉 is interpreted as −3 = −1 · 22 + 0 · 21 + 1 · 20.

There are also encodings for real numbers, but we are not going to use them in this
report. We suggest to consult Johnston (2019) to know more about them.

Quantum arithmetic

With a set of qubits that we can interpret as numbers we can use quantum gates to
perform arithmetic operations on them. Remember that if the qubits are in superposition,
the arithmetic operations produce a superposition of results.

We are going to introduce only one quantum arithmetic circuit. This circuit is the
increment by one circuit shown in Figure 7. This particular circuit operates in sets of three
qubits |q2q1q0〉. It first flips q2 if q0 and q1 are both |1〉, then it flips q1 if q0 is |1〉, and finally,
it flips q0.

As an example, if the input is |011〉, 3 in binary, the outputs of each stage are:

|3〉 = |011〉 ccnot7−−−→ |111〉 cnot7−−→ |101〉 not7−−→ |100〉 = |4〉 (15)

The first cnot is doubly controlled and called ccnot. It flips q2 because q0 and q1 are |1〉.
The second cnot flips q1 and the final not flips q0. The final output is interpreted as |4〉.

If the input is in the superposition α|1〉+ β|4〉 the circuit performs the following oper-
ations:
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FIG. 8. Quantum phase amplification circuit for two qubits, also known as mirror or Grover’s iteration
circuit. It rotates the qubits amplitudes around their mean. It is used to increase the amplitude of a
subset of terms in the quantum superposition.

α|1〉+ β|4〉 = α|001〉+ β|100〉 ccnot7−−−→ α|001〉+ β|100〉
cnot7−−→ α|011〉+ β|100〉 (16)
not7−−→ α|010〉+ β|101〉 = α|2〉+ β|5〉

Other quantum arithmetic circuits needed in this report are the addition circuit and the
multiplication circuit. They are explained in Johnston (2019) and work similarly to the
quantum increment circuit just shown, so we are going to depict them as black boxes in
quantum circuits. They are all used in the second box, compute, of the quantum algorithm
diagram flow of Figure 4.

Quantum phase amplification

The only box in the quantum algorithm diagram flow depicted in Figure 4 we have not
addressed yet is the third one, increase probability. The quantum phase amplification circuit
helps to perform this part of a quantum algorithm. This circuit is also called Groover’s
iteration or mirror.

Figure 8 depicts a version of the mirror circuit for two qubits. This circuit performs the
following operations:

1. Apply Hadamard gate to every qubit.

2. Flip every qubit.

3. Multiply by eiπ = −1 the element composed of all ones |1 . . . 1〉.

4. Flip every qubit.

5. Apply Hadamard gate to every qubit.

The mirror circuit reflects the amplitude coefficients around the mean. Figure 9 shows
how this reflection is performed. On the left is a graph of all the amplitudes. There is
an entry in the horizontal axis for every term in the state superposition. The vertical axis
shows the signed magnitude of the corresponding coefficient in the superposition. They are
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equal and positive, except one that is negative. The term with this negative coefficient is the
one we are going to amplify. The dashed line is the amplitudes mean. This mean is slightly
below the positive amplitudes due to the contribution of the single negative amplitude.

Amplitudes

Superposition term

Amplitudes

Superposition term

FIG. 9. Quantum phase amplification or Groover’s iteration. The left plot are the amplitudes of each
term in the superposition. There is one amplitude, corresponding to the term we want to increase its
probability, that has the opposite sign or phase. The dashed line is the mean amplitude. Quantum
phase amplification reflects all amplitudes around the mean, increasing the amplitude of the target
term and decreasing the others as the right part shows.

The right part of the same figure is after the application of the mirror circuit. Imagine
the original amplitudes being rotated by using the mean as the rotation axis. The positive
amplitudes are now slightly below the original mean while the negative amplitude is now
bigger than the rest.

To summarize this circuit, the initial amplitudes were equal except one that was neg-
ative, that is, it had the opposite phase. After the mirror operation this phase difference
was converted to an amplitude difference. In the quantum algorithm described in the next
section we flip the phase of the term that is the solution of our geophysical inversion prob-
lem and then we transform that phase difference into an amplitude difference by using the
mirror circuit. This higher amplitude of the solution increases its probability of being read
as the final answer.

QUANTUM TRAVELTIME TOMOGRAPHY ALGORITHM

First arrivals tomography is the geophysical problem solved by the proposed quantum
algorithm. To illustrate it we use the most simple first arrivals tomography instance: one
time measurement and one velocity cell. Figure 10 shows this problem configuration where
the star is the source, the triangle is the receiver, the square is the cell and the arrow is the
ray path. The objective is to estimate the cell slowness knowing the raypath length between
source and receiver and the wave traveltime.

The obvious solution of this problem is to divide the traveltime by the ray path length
to obtain the cell slowness. However, we are going to show how to solve it doing the
calculations in a quantum superpositions of velocity models. This will help understand
how to solve a bigger problem with more cells, sources and receivers.

The gradient descend strategy to solve a problem like this is to start with an initial
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? ∇
FIG. 10. Tomography problem used to illustrate the quantum inversion algorithm. It is composed
of a single velocity cell and a single pair of source and receiver. The source is the star and the
receiver the triangle. Only one traveltime is inverted.

model and do forward modelling and evaluate the residual. If the residual is not good
enough the gradient and possibly the Hessian are calculated to update the velocity model
and start another iteration.

The quantum strategy is to do forward modelling in a superposition of all the velocity
models and evaluate the residuals. The smallest residual is used to increase the probability
of its corresponding velocity model of being read. There is no need to calculate the gradient
or the Hessian and the model space can be explored completely.

Blackbox quantum circuit

A blackbox version of the main quantum circuit is shown in Figure 11. It consists of
horizontal lines for each qubit and boxes that will be explained later.

On the left are the qubits and bits used in the computation. We denote each group of
qubits as a quantum register. Raypath distances are in register d = [d1, d0]. The superposi-
tion of velocity models is in register v = [v1, v0]. The modelled traveltimes will be placed
in register t∗ = [t∗3, t

2
2, t
∗
1, t
∗
0]. Measured traveltimes are input in register t = [t3, t2, t1, t0].

There is a temporary qubit temp and two classical bits out where the output velocity model
will be read to at the end.

The box setup initializes the input data. Is in charge of writing the known physical
quantities to register d and t, and also of initializing the velocity models superposition in
register v.

The box labelled computation calculates the traveltimes t∗ from the input raypath dis-
tances d and superposition of velocity models v, then it computes the residuals using the
measured traveltimes t, and finally, it reverses the phase of the residual corresponding to
the answer velocity model vm.

The box labelled mirror implements the quantum phase amplification circuit described
in the previous section. It amplifies the probability to be read of the state whose phase
was reversed by the the computation stage, that is, the state corresponding to the answer
velocity model vm. The final stage reads the velocity qubits into the classical bits out.
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FIG. 11. Blackbox traveltime tomography quantum circuit. Horizontal lines are the qubits and
bits. Quantum register d = [d1, d0] has the raypath distances. Register v = [v1, v0] contains
the velocity models in superposition. Register t∗ = [t∗3-t∗0] will have the calculated traveltimes.
Register t = [t3-t0] has the measured traveltimes. There is one temporary qubit temp and two
classical bits out where the output velocity model will be read to. The setup box sets the input data
and velocity models superposition. The Computation box calculates the traveltimes and residuals,
then it reverses the phase of one velocity model. The mirror box implements the quantum phase
amplification circuit described in the previous section. At the end, a velocity model is read into
classical bits out.
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# Step t t∗ v t

1 Initial |0〉 |0〉 |0〉 |0〉

2 Setup | − 4〉 |0〉 1
2
|0〉+ 1

2
|1〉+ 1

2
|2〉+ 1

2
|3〉 |2〉

3 | − 4〉 1
2
|00〉+ 1

2
|01〉+ 1

2
|02〉+ 1

2
|03〉 |2〉

4 Mult | − 4〉 1
2
|00〉+ 1

2
|21〉+ 1

2
|42〉+ 1

2
|63〉 |2〉

5 Add | − 4〉 1
2
| − 40〉+ 1

2
| − 21〉+ 1

2
|02〉+ 1

2
|23〉 |2〉

6 Phase eiπ | − 4〉 1
2
| − 40〉+ 1

2
| − 21〉 − 1

2
|02〉+ 1

2
|23〉 |2〉

7 Add† | − 4〉 1
2
|00〉+ 1

2
|21〉 − 1

2
|42〉+ 1

2
|63〉 |2〉

8 Mult† | − 4〉 1
2
|00〉+ 1

2
|01〉 − 1

2
|02〉+ 1

2
|03〉 |2〉

9 | − 4〉 |0〉 1
2
|0〉+ 1

2
|1〉 − 1

2
|2〉+ 1

2
|3〉 |2〉

Table 1. Evolution of the quantum circuit states during the setup and computation stages. The
columns contain, from left to right, the step number, the step name and the contents of the quantum
registers t, t∗, v and d. Some registers are joined together for explanatory motives.

Registers

This is a small instance of the traveltime tomography problem and we are going to use
small numbers for the physical quantities. The number of qubits of each register and its
encodings indicate the set of possible values that we can process with this configuration.
We are going to use only integer numbers to simplify the explanation.

Traveltimes d and velocity models v are two qubits wide and they are non negative
quantities. This means the allowed values of these registers are 0, 1, 2 and 3.

Although the traveltimes are also non negative quantities, we are going to subtract them
to calculate the residuals and possibly getting negative values. For this reason the quantum
registers t and t∗ are signed integers in two’s complement encoding. Both have 4 qubits so
their allowed values are in the range [−8, 7].

Detailed circuit and example execution

Figure 12 shows a more detailed version of the quantum algorithm of Figure 11. The
four parts are separated by vertical dashed lines. Table 1 contains the quantum circuit states
during the setup and computation stages. The columns are the step number, the step name
and the four quantum registers t, t∗, v and d. We will be referring to each row of this table.

The problem instance that we are going to solve has a raypath of 2 distance units and a
measured traveltime of 4 time units. The answer is 2 slowness units.

14 CREWES Research Report — Volume 34 (2022)



Quantum traveltime tomography

FIG. 12. Detailed version of the blackbox quantum circuit of Figure 11. Before the first vertical
dashed line is the setup stage. Between the first and second vertical dashed lines is the compu-
tation stage. Between the second and third vertical dashed lines is the mirror stage. The velocity
reading is at the end.
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Setup stage

By convention the initial of all qubits before the setup stage are |0〉 as step 1 of table 1
shows. To input these quantities the setup stage sets d = |2〉 = |10〉 and t = |−4〉 = |1100〉
using not gates in the appropriate qubits. This stage also sets the velocity register to an
equal superposition of all the velocity models by using two Hadamard gates:

|v1v0〉 = |00〉
HH7−−→

(
1√
2
|0〉+ 1√

2
|1〉
)(

1√
2
|0〉+ 1√

2
|1〉
)

=
1

2
|00〉+ 1

2
|01〉+ 1

2
|10〉+ 1

2
|11〉 (17)

=
1

2
|0〉+ 1

2
|1〉+ 1

2
|2〉+ 1

2
|3〉

Step 2 of the table shows the state after the setup stage. To ease the explanation we dis-
tribute the register t∗ state over the superposition in register v. The |0〉 in t∗ is simply
attached in front of every term in v as the result of this distribution. Step 3 of the table
depicts this.

Computation stage

The next step consists in performing the forward modelling in superposition. In our
simple tomography instance this means to multiply the known value of the raypath lengths
in d by the superpositions of the slowness models in v to obtain a superposition of calcu-
lated traveltimes in t∗.

The blackbox labelled mult in Figure 12 performs this multiplication between the men-
tioned registers. Details about the implementation of this quantum arithmetic circuit can be
found in Häner et al. (2018). Step 4 shows the results of this step. For example, this circuit
multiplies |2〉 in d with the 2 in term 1√

2
|02〉 of combined register t∗v obtaining 1√

2
|42〉.

The blackbox with the label add in Figure 12 calculates the residuals. It subtracts the
measured traveltimes in t from the just calculated traveltimes in t∗, storing the answer in t∗

itself. Information about this quantum arithmetic circuit is in Cuccaro et al. (2004). Step
5 of table 1 has the state after this step is performed. For example, −4 is added to the first
part of the term 1√

2
|21〉 resulting in 1√

2
| − 21〉.

The centre of the computation circuit in the same figure is in charge of flipping the
phase of the state with the correct answer. In this idealized noise free problem instance the
correct model is the one with residual equal to |0〉 = |0000〉. Also remember that the phase
gates are only applied to terms where all the qubits are |1〉. This means the circuit must
transform this residual in one composed of just ones by flipping every qubit, then applying
a π phase gate and finally flipping all the qubits again. This is shown in step 6 of table
1. Notice that the only the term 1√

2
|02〉 changes phase because it first part is all |1〉 after

flipping:
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|02〉 = |0〉|2〉 = |0000〉|2〉 not47−−→ |1111〉|2〉 pha(π)7−−−−→ −|1111〉|2〉 not47−−→ −|02〉 (18)

while the other terms like 1√
2
|23〉 does not change phase:

|23〉 = |2〉|3〉 = |0010〉|3〉 not47−−→ |1101〉|3〉 pha(π)7−−−−→ |1101〉|3〉 not47−−→ |23〉 (19)

Inverse computation stage

Up to this point we have the residuals in the quantum circuit state, but the only important
information is the phase that marks the correct velocity model. In quantum computing is
normal to undo the computation before proceeding further because the different states can
be entangled Johnston (2019) and this can damage the following stages.

To break those possible entanglements we perform all the computations in the opposite
order, except for the phase change. The two boxes labelled sum_dg and mult_dg are
the inverses of the boxes sum and mult. The steps 7 and 8 in table 1 show this inverse
computing. Notice that all states return to their original values but the phase attached to the
term with the correct velocity model is preserved. In step 9 of the same table we factor the
register t∗.

Mirror stage and reading

Now that the state of the circuit has the term with the correct velocity model with a
phase different from the other terms, we apply the mirror circuit to the register v.

Figure 13 shows this. Before the computation stage the register v is in an equal super-
position of velocity models as the top left part of the figure shows. After the computation
stage the amplitude of term |2〉 changes to −1

2
like in the top right part of the figure.

The mean of the amplitudes is (1
2
+ 1

2
− 1

2
+ 1

2
)/4 = 1

4
. The bottom left part shows the

mean of all the amplitudes as a dashed line. The mirror circuit reflects the amplitudes using
the mean as the reflection axis. In this case the amplitude of term |2〉 becomes 1 while the
others vanish. At this point, a reading of the register v would get the velocity model |2〉
that is the correct answer to this problem instance.

We are lucky in this case that only one iteration of the computation and mirror stages
are needed to have 100% chances of reading the correct velocity model. In bigger models
the number of iterations needed is proportional to the square root of the number of models
Johnston (2019).

In this way we computed in superposition using a quantum algorithm the one cell trav-
eltime tomography problem. Bigger problems can be solved in the same way, but the will
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|0〉 |1〉 |2〉 |3〉1/2 |0〉 |1〉 |2〉 |3〉1/2

−1/2

|0〉 |1〉 |2〉 |3〉1/2

−1/2

|0〉 |1〉 |2〉 |3〉
1

FIG. 13. Mirror stage effect on the velocity models superposition in register v. Top left is v state
before computation stage. The four possible models have the same amplitude. Top right is after
the computation stage. Model answer |2〉 amplitude is reversed. On the bottom left, the dashed line
is the mean amplitude. Mirror stage reflects amplitudes around the mean on the bottom right. All
amplitudes have vanished except for the amplitude of |2〉 that is 1.

need more qubits to have more cells, more measured traveltimes and more numeric pre-
cision. Also more iterations will be needed. However, no gradient or Hessians will be
necessary and the model space can be explored more thoroughly.

DISCUSSION AND CONCLUSIONS

The main attractive of using quantum computation for solving inverse problems is us-
ing quantum superposition. With quantum superposition we can calculate the residuals of
a set of velocity models in parallel. The main drawback is that it is not possible to read
all of them but just one, depending on the coefficients of the quantum superposition. It is
necessary to increase the probability of one term, the one corresponding to the inversion
solution, by applying the mirror or Grover’s iteration several times. This approach is the
same used in quantum searching algorithms (Grover, 1997) and requires around O(

√
N)

iterations when N models are simulated in superposition. It is still a huge advantage be-
cause it allows to explore the model space with the same number of iterations of a single
gradient based inversion.

In addition, the actual computation done in superposition is simpler than the classical
one because there is no need to compute gradients or Hessians. Only forward modelling
and residual calculation are needed, and this simplifies the quantum operations.

Classical computers use floating point formats to encode the inverted models and per-
form the optimization. In the quantum computing case, the number of available qubits,
that is scarce for the moment, constraints the range and precision of the numbers in the
quantum calculations. We used very few qubits and a very small problem to test the con-
cept of quantum inversion and because simulating a quantum computer with a classical one
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is computationally expensive. However, there are reports that predict up to thousands or
even millions of qubits by the end of this decade (IBM Computing, 2021a; Google, 2022).
Although this refers to physical qubits and not logical qubits, the increase in the size of the
applications will be worthwhile.

The traveltime tomography with fixed raypaths required a simple forward modelling.
More complex modellings, like full wave simulations, are still a challenge due to their
complexity. In quantum computing every operation should be reversible, because quantum
systems are, and this means that more effort has to be spent in coding numerical computa-
tions in quantum terms. Future quantum compilers can leverage this issue, though.

In our proof of concept problem we found the answer model by looking at the residual
that was identically zero. In real applications where noise is present this is not possible.
With noise we have to change the residual calculation to include some kind of norm and
look for the smallest residual. For the first part, it is possible to calculate absolute val-
ues with quantum gates (Johnston, 2019). For the second, there are quantum searching
algorithms that find the minimum of a numerical set (Dürr and Hoyer, 1996) that are very
similar to the mirror operation.
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CODE AND SIMULATION

The quantum traveltime tomography algorithm was coded in Python using the IBM
Qiskit libraries IBM Computing (2021b). The first block of code imports all the packages
needed to create the quantum circuit and run the simulation.

from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister,
assemble, Aer, transpile

from qiskit.circuit.library import HRSCumulativeMultiplier,
CDKMRippleCarryAdder, MCPhaseGate

from qiskit.visualization import plot_histogram
from math import pi

The second block of code creates the quantum and classical registers that compose the
quantum circuit.

# Register for distances

CREWES Research Report — Volume 34 (2022) 19



Monsegny, Trad, Lawton

d = QuantumRegister(2,’d’)

# Register for velocities
v = QuantumRegister(2,’v’)

# Register for calculated traveltimes
ct = QuantumRegister(4,’t*’)

# Temporary register for arithmetic
temp = QuantumRegister(1,"temp")

# Register for observed traveltimes
t = QuantumRegister(4,’t’)

# Register for output velocity model
outv = ClassicalRegister(2,’out’)

The third block of code instantiates from Qiskit the multiplication, addition and multi-
ple controlled gates used in the computation and mirror stages.

# Multiplication circuit
mult = HRSCumulativeMultiplier(2,name="mult")

# Addition circuit
add = CDKMRippleCarryAdder(4,kind=’fixed’,name="add")

# Controlled phase inversion gate
ph = MCPhaseGate(pi,3,’ph’)

# Controlled phase inversion gate for Mirror circuit
groover = MCPhaseGate(pi,1,’ph’)

The fourth block of code assembles the quantum traveltime tomography circuit stage
by stage. At the end it prints the graphical representation shown in Figure 12.

# Main circuit
qc = QuantumCircuit(d,v,ct,temp,t,outv)

# Fixed distance inputs: 2
qc.x(d[1])

# Observed times: -4 = 1100_b
qc.x(t[2])
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qc.x(t[3])

# Velocity model superposition
qc.h(v)
qc.barrier()

# Multiplication d*v
qc.append(mult,range(9))

# Add measured and calculated times
qc.append(add,[9,10,11,12,4,5,6,7,8])

# Invert bits
qc.x(ct)

# Phase change
qc.append(ph,[4,5,6,7])

# Invert bits
qc.x(ct)

# Undo adding measured and calculated times
qc.append(add.inverse(),[9,10,11,12,4,5,6,7,8])

# Undo multiplication d*v
qc.append(mult.inverse(),range(9))

qc.barrier()

# Grover mirror
qc.h(range(2,4))
qc.x(range(2,4))
qc.append(groover,range(2,4))
qc.x(range(2,4))
qc.h(range(2,4))

# Read velocities into classical bits
qc.measure(v,outv)

qc.draw(output=’mpl’,scale=2)

The fifth block of code creates the simulator, compiles the circuit and runs the simula-
tion. At the end it gathers the results and print the histogram of Figure 14. This histogram
shows the final probabilities of the velocity models that were read into the classical bits.
the model |10〉 = |2〉 has probability 1, meaning that the circuit produces with certainty the
correct velocity model.
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FIG. 14. Simulation result histogram. It shows the final probabilities of the velocity models read into
the classical bits. The velocity model |10〉 = |2〉 probability is 1 meaning that the circuit produces
with certainty the correct velocity model.

# Instantiate simulator
sim = Aer.get_backend("aer_simulator")

# Compile and assemble circuit
qc_trans = transpile(qc,sim)
qobj = assemble(qc_trans)

# Run
result = sim.run(qobj).result()

# Get results and plot
counts = result.get_counts()
plot_histogram(counts)
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