Shallow P and S velocity structure Red Deer, Alberta

Don Lawton, Meredith McArthur Rachel Newrick & Sarah Trend

Cygnet field, Red Deer, Alberta

Stratigraphy of the Ardley coals

Cased hole logs, Cygnet

Vertical Vp/Vs

Vertical component, walkway VSP

P-wave first arrival traveltime analysis

P-wave velocity model and turning rays

Vertical component

Radial component

Transverse component

SV-wave first arrival traveltime analysis

SV-wave velocity model and turning rays

P-wave incident angle at well

SV-wave incident angle at well

Conclusions

- Turning rays are present at Cygnet
- Velocity gradients up to 10 s⁻¹ for P-waves
- Velocity gradients up to 8 s⁻¹ for SV waves
- Weak P-wave anisotropy observed
- Incident angle analysis generally supports raytracing results
- Study provides insights into P-S statics

Acknowledgements

- CREWES sponsors
- NSERC
- Alberta Energy Research Institute
- Cygnet project sponsors
- GX-Technology
- Landmark Graphics
- Alberta Ingenuity Fund