Improvements to Spherical-Wave AVO Modeling

Chuck Ursenbach, Arnim Haase and Jon Downton CREWES Sponsors Meeting November 30, 2006

Research Reports

 Ursenbach, Haase and Downton, "Improved modeling of spherical-wave AVO"

 Ursenbach and Haase, "AVO modeling of monochromatic spherical waves: comparison to band-limited waves"

Outline

- Review: An efficient approach for modeling spherical-wave reflectivity
- Improvement 1: more compact and general expressions → shorter run time, higher *n* values
- Comparison to monochromatic results
- Improvement 2: fitting parameters to those of common wavelets
- Demonstration of updated Explorer

Efficient modeling of spherical-wave AVO

Standard Approach

•Obtain displacement spectrum for a single ω by numerical integration of weighted plane-wave reflection coefficients

•Repeat for other ω as required

•Multiply displacement and wavelet spectra and apply $FT^{-1} \rightarrow$ yields time trace

•Extract reflection coefficient from maximum in time trace envelope

Efficient Approach

•Multiply Rayleigh wavelet spectrum and weighting function and integrate *analytically* over frequency

•Set time equal to ray theoretical arrival time

•Perform a single numerical integration to obtain reflection coefficient

Improvement #1

Simplified expression

$$\begin{split} R_{\rm PP}^{\rm sph}(\theta_i) &= \left[\int_0^1 - \int_{i0}^{i\infty}\right] R_{\rm PP}(\theta) W_n(\theta, \theta_i, S) d(\cos \theta). \\ W_n &= -\frac{(nS)^{n+2}}{\overline{\tau}^{n+4}} \frac{BP_n(\overline{T}/\overline{\tau}) + CP_{n+1}(\overline{T}/\overline{\tau})}{1 + iSn/(n+1)}, \\ B &= (n+1)(i+nS)\overline{\tau}, \\ C &= -n^2(1+n)S^2 - inS[2(n+1) + \cos \theta \cos \theta_i] \\ &\quad +n(\sin^2 \theta + \sin^2 \theta_i) + 3(1 - \cos \theta \cos \theta_i) - 2(\cos \theta - \cos \theta_i)^2, \\ \overline{\tau} &= \sqrt{T^2 + \sin^2 \theta \sin^2 \theta_i}, \\ &= \sqrt{(nS)^2 + 2inS(1 - \cos \theta \cos \theta_i) + (\cos \theta - \cos \theta_i)^2}, \\ \overline{T} &= nS + i(1 - \cos \theta \cos \theta_i). \end{split}$$

- Shorter runtime
- Can use arbitrary values of n

Outline

- Review: An efficient approach for modeling spherical-wave reflectivity
- Improvement 1: more compact and general expressions → shorter run time, higher *n* values
- Comparison to monochromatic results
- Improvement 2: fitting parameters to those of common wavelets
- Demonstration of updated Explorer

Monochromatic wavelet

The spectrum of the displacement along the ray path:

$$u_{\parallel}(\omega) = Ai\omega \exp(-i\omega t) \int_{0}^{\infty} \frac{p}{\xi} R_{PP}(p) \left[-\omega p J_{1}(\omega pr) \sin \theta_{i} + i\omega \xi J_{0}(\omega pr) \cos \theta_{i} \right] \exp[i\omega \xi(z+h)] dp.$$
Normalize by
$$u_{\parallel}^{R_{PP}=1}(\omega) = A \left(-\frac{1}{R^{2}} + \frac{i\omega}{R\alpha_{1}} \right) \exp\left[-i\omega \left(t - \frac{R}{\alpha_{1}} \right) \right].$$
Final result:
$$near-field$$

$$far-field$$

$$R_{PP}^{spherical}(\theta_{i}) = \int_{\Gamma} W(S, \theta, \theta_{i}) R_{PP}(\theta) d(\cos \theta),$$

$$S = \frac{\alpha_{1}}{R\omega},$$

 $W(S,\theta,\theta_i) = \frac{\left[-J_1(\sin\theta\sin\theta_i/S)\sin\theta\sin\theta_i + iJ_0(\sin\theta\sin\theta_i/S)\cos\theta\cos\theta_i\right]}{S(1-iS)\exp[i(1-\cos\theta\cos\theta_i)/S]}.$

Reflectivity Curves for a Monochromatic Wavelet

High *n* Reflectivity Curves for Rayleigh Wavelets

High *n* Weighting Functions

Outline

- Review: An efficient approach for modeling spherical-wave reflectivity
- Improvement 1: more compact and general expressions → shorter run time, higher *n* values
- Comparison to monochromatic results
- Improvement 2: fitting parameters to those of common wavelets
- Demonstration of updated Explorer

Fundamental Ormsby parameters

Influence of tapers

Determining S

Determining n

Wavelet			Optimal n value for Rayleigh Wavelet			
Name	B_r	\overline{S}_{z}	Model I	Model II	Model III	
Ricker	-	.01	5	5	5	
		.1	5	5	5	
	\frown	1	5	5	≥ 8	
Ormsby	1/9	.01	3	4	3	
		.1	3	3	3	
	\frown	.5	3	3	4	
Ormsby	1/4	.01	7	≥ 8	7	
		.1	6	6	6	
		.5	6	6	≥ 8	

$\underline{\underline{C}}^{\text{a}} = 0.5$

Determining n

CREWES Spherical Zoeppritz Explorer

Sphericity: a	1 / (2 Z f0) = 0	Z [m]:	500.0						
Rayleigh	f0 [Hz]:	23.121	n:	4					
C Ricker	f0-Ricker)	25.0							
C Ormsby	5.0	15.0	80.0	100.0					
Ave.freq.: Rayleigh 28.901, Ricker 28.209, Ormsby 50.156									
Upper layer	density (p1):	2400.0	kg/m³						
<									
Upper layer '	Vp (α1):	2000.0	m/s						
Upper layer	Vs (β1):	880.0	m/s						
Lower layer	density (p2):	2000.0	kg/m³						
Lower layer	Vp (a.2):	2933.0	m/s						
Lower layer	Vs (β2):	1882.0	m/s						
< I >									
Spherical	Zoeppritz	🗖 Spherica	l Aki-Richards						
🔽 Zoeppritz		🗖 Aki-Richards							
Angle limits	(integers, 0 to	0	90						
Magnitude li	mits:	0.0	1.0						
Phase limits	(integers):	-200	200						
Click here to recalculate graph									
Units:	• m/s and k	g/m³	C ft/s and g/cm ³						

Conclusions

- The Spherical Zoeppritz Explorer is now based on simpler and more general expressions
- It now runs more quickly, and allows one to choose values of n>5
- As before, the Rayleigh wavelet parameters may be input directly
- A new feature is that the Rayleigh wavelet parameters may alternatively be calculated to represent a Ricker or Ormsby wavelet whose parameters are input instead