Violet Grove CO₂ Injection Pilot: The Time-lapsed inefield

Marcia Couëslan & Don Lawton, University of Calgary Mike Jones, Schlumberger Canada

Outline

- Introduction
- Field Background
- Time-lapse Surveys
 - Importance of Repeatability
 - Time-lapse Results
 - Supporting Evidence
 - Conclusions
- Recommendations
 - Acknowledgements

Introduction

The Penn West Project is

• A pilot project that injects CO₂ into the reservoir for EOR and sequestration purposes.

 Uses an innovative surface and borehole seismic program that has been designed to monitor injected CO₂.

- CO₂ injection for EOR and sequestration
- CO₂ is delivered by tanker truck from a gas plant 50 km away
- Supercritical CO₂ is injected

- At a rate of ~ 70 tonnes/day at ~ 20 MPa
- The average Canadian produces ~5 tonnes of CO₂ per year

- Monitor well equipment was installed in February 2005
 - 8 geophone arrays
 - 6 pressure/temperature sensors
 - 2 fluid sampling ports
- Baseline seismic survey was acquired in March 2005

• CO₂ injection commenced the next week

Advantages of Fixed VSP Array

- Higher frequency bandwidth than surface seismic data
 - Results in higher vertical and horizontal resolution near the monitor well
- Provides a correlation between the time indexed surface seismic and the depth indexed well logs
- Information gained from the VSP can be used to improve surface seismic processing Velocities, Q Estimation, anisotropy analysis
 Allows for passive seismic monitoring

Processing Flow

0.00	Line	e 3:	PP S	urfa	ce Se	eism	nic 8	γV	SP	
Offse (m)	t 1000	-800	-400	-200	200	600	1000 800	1200	1400	1600
1.0 s							Cardium	Form	ation	
1.2							Viking]	Format	tion	
1.4										
16									Line 1	
1.0			······································				Line 2			
1.8			**************************************			2	Line 3			
2.0										

Li Offse (m)	ne 3:	Surfa	lsm e	ic & 800	S-V 1200	SP 1600
1.0 s				Cardium	Formatio	
1.2				Viking F	ormation	
1.6						
1.8						

- Andrea

k

Time-lapse Surveys

• Time-lapse surveys are required

- To monitor the CO_2 flood in the reservoir
- To look for leakage pathways in the overburden
- First monitor survey was acquired in December 2005
 - Expect to acquire a second monitor survey in early 2007

Time-lapse Surveys

- Properties expected to change:
 - P-wave velocity at the reservoir
 - Fluid composition as the CO₂ is injected
- Expected seismic response:
 - Increased travel times
 - Change in reservoir amplitudes
 - Geophone array is fixed

- Can be used to calibrate source variability and overburden travel times between the surveys

Why Is Repeatability Important?

- Repeatability is affected by source-receiver geometries, consistency of the source signature, and shot-generated noise
- Seismic noise is often caused by subsurface heterogeneities

• Repeating source-receiver geometries allows the noise to the replicated and differenced away

Line 2 All Shots: Baseline

Line 2 All Shots: Monitor

Line 2 All Shots: Difference

Line 2 Repeated Shots: Difference

Finite Difference Modelling: Baseline

Finite Difference Modelling: Monitor

Finite Difference Modelling: Difference

- -

P-wave Results Line 2: Baseline

P-wave Results Line 2: Monitor

P-wave Results Line 2: Difference

The Supporting Evidence

- Amplitude increases correlate directly to the Cardium event
- Excellent data repeatability

- Seismic traces, amplitude & phase spectra
- Small time shifts in the crosscorrelations
 - Travel times at base of the reservoir show a systematic increase of 0.2 ms

Conclusions

- Shot repeatability is extremely important
- P-wave amplitudes at the Cardium on Line 2 have increased since the baseline survey
- Comparison of the datasets, amplitude & phase spectra, and crosscorrelations indicate an excellent tie between surveys
- Expect to see increased time-lapse effects on the next survey as the volume of CO₂ in the reservoir increases

Recommendations

- Instrument entire well with geophones

 Will provide high resolution images of the reservoir and overburden around the well
- May want geophone arrays in several wells in the field
 - Merge the volumes for laterally extensive coverage
- Potentially instrument production or injection wells

Acknowledgements

- Scott Leaney and Schlumberger Canada
- Alberta Energy Research Institute (AERI)
- Western Economic Diversification (WED)
- Natural Resources Canada (NRCan)
- CREWES sponsors for financial support
- Penn West Petroleum

S-wave Results Line 2: Monitor

Time (s)

S-wave Results Line 2: Baseline

S-wave Results Line 2: Difference

Comparison of Amplitude Spectra

Comparison of Phase Spectra

