

Transfer functions of geophones and accelerometers and their effects on frequency content and wavelets

Michael S. Hons and Robert R. Stewart

Outline

- Intro to transfer functions
- Deriving transfer functions
- Implications in the derivation
- Examples
- Conclusions

Transfer Functions

 $\frac{B}{A} = H$

- A is input
- B is output
- H is transfer function

- u is ground displacement
- x is proof mass displacement relative to the case
- n is the net motion, used earlier in the derivation

- Must represent output divided by input
- Seismic sensors are "single degree of freedom" systems, or damped simple harmonic oscillators

$$\frac{\partial^2 x}{\partial t^2} + 2\lambda\omega_0 \frac{\partial x}{\partial t} + \omega_0^2 x = -\frac{\partial^2 u}{\partial t^2}$$

- The transducer
 - Detects the displacement of the proof mass relative to the case (x)
 - x is the input
 - Outputs an electrical signal
 - Accelerometer: capacitor responds to proof mass displacement
 - Geophone: magnetic induction responds to proof mass velocity

• At low frequencies, then proof mass displacement is directly proportional to acceleration $x \propto \frac{\partial^2 u}{\partial t^2}$

then

• When $\omega << \omega_0$

• At frequencies near resonance, the proof mass displacement is proportional to velocity $x \propto \frac{\partial u}{\partial t}$

then

• When $\omega \cong \omega_0$

• At high frequencies, the proof mass displacement is directly proportional to ground displacement

then

• When $\omega >> \omega_0$

 $\chi \propto \mu$

- Input:
 - Proof mass displacement relative to case, so A=x
 - x is proportional to some aspect of the ground motion, either displacement, velocity or acceleration

- Thus
$$A \propto \frac{\partial^2 u}{\partial t^2}$$
 if $\omega << \omega_0$,
or $A \propto \frac{\partial u}{\partial t}$ if $\omega \cong \omega_0$,
or $A \propto u$ if $\omega \ge \omega_0$

 $\Pi \omega$

• Output:

 Related to some aspect of the motion of the proof mass relative to the case (either displacement or velocity), depending on the transducer used

– For a geophone:

 $B \propto \frac{\partial x}{\partial t}$

– For an accelerometer:

 $B \propto \chi$

• Transform to frequency domain, rearrange according to velocity (geophone) output and assorted inputs yields:

$$\frac{\frac{\partial X}{\partial t}}{\frac{\partial^2 U}{\partial t^2}} = \frac{-j\omega}{-\omega^2 + 2j\lambda\omega_0\omega + \omega_0^2}, \quad \omega << \omega_0 \left| \frac{\frac{\partial X}{\partial t}}{\frac{\partial U}{\partial t}} = \frac{\omega^2}{-\omega^2 + 2j\lambda\omega_0\omega + \omega_0^2}, \quad \omega \cong \omega_0 \right|$$
$$\frac{\frac{\partial X}{\partial t}}{U} = \frac{j\omega^3}{-\omega^2 + 2j\lambda\omega_0\omega + \omega_0^2}, \quad \omega >> \omega_0$$

• Arranging for displacement (accelerometer) output and various inputs yields:

$$\frac{X}{\frac{\partial^2 U}{\partial t^2}} = \frac{-1}{-\omega^2 + 2j\lambda\omega_0\omega + \omega_0^2}, \quad \omega \ll \omega_0 \left| \frac{X}{\frac{\partial U}{\partial t}} = \frac{-j\omega}{-\omega^2 + 2j\lambda\omega_0\omega + \omega_0^2}, \quad \omega \cong \omega_0 \right|$$
$$\frac{X}{U} = \frac{\omega^2}{-\omega^2 + 2j\lambda\omega_0\omega + \omega_0^2}, \quad \omega \gg \omega_0$$

Implications

- In both cases, raw output is a double time derivative of ground displacement
- Geophone equation retains ω in the numerator, MEMS accelerometer equation does not
- Equations as solutions = no frequency limits
- Equations as transfer functions = frequency limits
- Geophone equation not a transfer function at low frequencies

10 Hz, 0.7 damping

10 Hz, 0.1 damping

4 Hz, 0.7 damping

Geophone response curves

• Accelerometer response curves

1000 Hz, 0.7 damping

1000 Hz, 0.1 damping

Input ground displacement Bandpass 1-8-60-70 Hz

Input ground velocity

Input ground acceleration

0.05 0.05 0 -0.05 -0.15 -0.5

Output Wavelet

Transducer input

Transducer output

Conclusions

- Equations governing proof mass motion in terms of ground motion become transfer functions when they represent transducer output/input
- Raw output from geophone and accelerometer is expected to be similar
- Geophone equation is not a valid transfer function for very low or very high frequencies

Acknowledgements

• Thanks to Glenn Hauer of ARAM for helpful comments, and all the CREWES sponsors for their support